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Summary

An essential aspect of Auditory Scene Analysis is the localisation of sound sources in relation to the
position of the listener in the surrounding environment. The human auditory system is capable of
precisely locating and separating different sound sources, even in noisy and reverberant environments,
whereas mimicking this ability by computational means is still a challenging task. In this work, we
investigate a Bayesian-network-based approach in the context of binaural sound source localisation.
We extend existing solutions towards a Bayesian network based blackboard system that includes ex-
pert knowledge inspired by insights into the human auditory system. In order to improve estimation
of source positions and reduce uncertainty caused by front-back ambiguities, hypothesis-driven feed-
back is used. This is accomplished by triggering head movements based on inference results provided
by the Bayesian network. We evaluate the performance of our approach in comparison to existing
solutions in a sound-source localisation task within a virtual acoustic environment.

PACS no. 43.60.Jn, 43.66.Qp

1. Introduction

Human listeners have a remarkable ability to make
sense of complex acoustic scenes, a phenomenon that
has been termed auditory scene analysis (ASA) by
Bregman [1]. Spatial hearing makes a substantial
contribution to ASA, by allowing individual sound
sources to be localised and perceptually segregated
from other sounds (see [1, 2] for a review). Reproduc-
ing this ability in machine hearing systems is proving
to be very challenging (for example, see [3]). In par-
ticular, current machine hearing systems are unable
to localise sounds under conditions of noise and re-
verberation that present little difficulty for a human
listener.

Machine hearing systems differ from human listen-
ers in a number of important respects. The current
paper focuses on two of these. First, machine hearing
systems are typically implemented on a static plat-
form, so that the acoustic sensors are in a fixed ori-
entation. In contrast, human hearing is active; head
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movements provide listeners with information about
changes in interaural time differences (ITDs) and in-
teraural level differences (ILDs) which can be used
to disambiguate the location of a sound source [4].
Secondly, machine hearing systems typically assume
that information flow is strictly bottom-up. Again, this
stands in contrast to auditory processing, in which
top-down feedback is known to play an important role;
in fact, there is evidence for pronounced top-down
pathways in the human auditory system and also in
the visual cortex [5, 6, 7]. Learning from the biologi-
cal paradigm, it becomes clear that mere bottom-up
feature processing cannot explain human capabilities
in audiovisual analysis.

The current paper proposes a software architec-
ture for machine hearing in which head movements
and top-down feedback play a crucial role, which is
being developed within the EU project Two!Ears.
Our approach is based on a blackboard problem-
solving architecture, which was originally introduced
in the Hearsay-II Speech-Understanding System [8].
A blackboard system consists of a group of indepen-
dent experts, also referred to as knowledge sources

(KSs) that communicate by reading and writing data
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on a globally-accessible data structure, the blackboard.
The blackboard is typically divided into layers, cor-
responding to data, hypotheses and partial solutions
at different levels of abstraction. Given the contents
of the blackboard, each knowledge source indicates
the actions that it would like to perform; these ac-
tions are then coordinated by a scheduler, which de-
termines the order in which actions will be carried out.
The blackboard architecture has a number of charac-
teristics that make it eminently suitable for machine
hearing: it provides a framework for reasoning about
acoustic scenes that is flexible, opportunistic and inte-
grates bottom-up processing with top-down feedback.

In the 1990s, a number of authors described
blackboard-based systems for machine hearing [10, 11,
12, 13]. All of these systems were in most respects
‘conventional’ blackboard architectures, in which the
knowledge sources consisted of rule-based heuristics.
In contrast, the approach proposed here aims to ex-
ploit recent developments in machine learning, by
combining the flexibility of a blackboard architecture
with powerful learning algorithms afforded by proba-
bilistic graphical models.

The remainder of the paper is organised as follows.
Section 2 describes the bottom-up processing compo-
nent of the Two!Ears architecture, which computes
ITD and ILD cues from models of auditory process-
ing. The graphical-model-based blackboard architec-
ture is described in Section 3, where the motivation
for it is also discussed in detail. Section 4 describes
a methodology for evaluating the system on a single-
source localisation task and presents the results. The
paper concludes with general discussion in Section 5.

2. Bottom-up processing

2.1. Binaural signal generation

The binaural signals that serve as inputs to the au-
ditory front-end are generated using head related
transfer functions (HRTFs) obtained from a Kemar

dummy head [14]. The HRTFs were recorded in an
anechoic chamber with an angular resolution of 1◦ in
the horizontal plane at a distance of 3m from the
source to the receiver. We use linear interpolation to
obtain HRTFs corresponding to arbitrary angular po-
sitions. The left and right ear signals are then gen-
erated by filtering a single-channel source signal with
the HRTF pair corresponding to the desired source lo-
cation. Head movements are simulated by computing
the relative angle between the target source position
and the head orientation and adapting the HRTF in-
terpolation to this specific angle.

2.2. Auditory front-end

To model the specific properties of the human au-
ditory periphery, we use an auditory front-end that

is adopted from [15]. The ear signals are pro-
cessed by a bank of gammatone filters followed by
inner-hair-cell processing. In order to model the fre-
quency selctivity of the human basilar membrane,
the gammatone filterbank consists of N fourth-order,
phase-compensated gammatone filters. The center-
frequencies of the filters are equally spaced on the
equivalent rectangular bandwidth (ERB) scale [16].
Additionally, each gammatone filterbank channel is
scaled with a specific gain to model the frequency
response of the middle ear canal [17]. The gamma-
tone filterbank output is further processed by apply-
ing half-wave rectification and square-root compres-
sion to account for the behavior of the inner hair
cells. In this work, we apply a frame-based process-
ing, dividing the incoming ear signals into overlap-
ping frames, with a specific frame shift. The result-
ing signals serve as inputs to the blackboard system.
Detailed parameters of the auditory front-end compo-
nents used during the evaluation will be described in
Section 4.2.

3. Blackboard architecture

The blackboard system proposed in this work
is broadly based on the Hearsay-II Speech-
Understanding System [8]. The central element of a
blackboard system is the blackboard itself: it can be
best described as a global data structure that rep-
resents knowledge that can be used to incrementally
accomplish a certain task. Data that is stored on the
blackboard can be manipulated by a set of knowledge

sources. KSs collaborate via the blackboard by trig-
gering when relevant data is available and depositing
new data on the blackboard, which leads to a solu-
tion to the problem that should be solved. The archi-
tecture is event-driven; a change in the state of the
blackboard (such as the arrival of new data) causes
an event to be broadcast. A blackboard monitor is re-
sponsible for monitoring and handling these events. It
maintains an event register that indicates which KSs
should respond to a certain event. The possible ac-
tions that can be performed, given the current state
of the blackboard, are listed in an agenda. A sched-

uler is then responsible for ranking possible actions
and selecting one to perform. Completion of an ac-
tion will most likely result in further changes in the
state of the blackboard leading to broadcast of new
events.

The design of the blackboard system allows for a
fusion of statistical and expert knowledge. The novel
approach we investigate in this work is the represen-
tation of knowledge by designing the blackboard as
a set of interconnected graphical models, yielding a
representation of the blackboard itself as a Bayesian
network [9]. Computationally, this is realized by de-
signing the blackboard to be a space for creating, as-
sembling, and evaluating graphical models.
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3.1. Motivation for a Graphical-model-based

architecture

Graphical models have recently attracted great inter-
est within the fields of machine learning and cognitive
systems. They describe relationships between statis-
tical variables in the form of simple graph structures.
In these graphs, each node corresponds to a variable,
and each edge indicates a dependency relationship be-
tween variables. In this way, graphical models can be
used to describe the dependencies between all vari-
ables that are of interest, effectively providing a world
model, which is not only mathematically useful but
also interpretable.

Graphical models come in many different specific
forms, such as Hidden Markov Models, Markov Ran-
dom Fields, or dynamic state space models, which are
suitable for creating precise descriptions of the con-
stituent components of acoustic or audiovisual scenes.
Efficient algorithms have been developed, which al-
low the optimal fit to be found between the model
parameters and the observations taken from all sen-
sors of a system. In effect, this means that, based on
a graphical model of the audiovisual objects in an
environment, the system will be able to find the best
explanation of all available information, optimally fus-
ing prior knowledge (e.g., linguistic or acoustic knowl-
edge) with the currently available sensor input.

Taking graphical models as building blocks further
allows us to

• consecutively build models of the audiovisual envi-
ronment from smaller, well-understood models of
environmental objects (including state-of-the art
statistical models of auditory objects),

• understand sensory data as a composition of these
source models and a model of the system’s own
“perception”

• and to understand the system’s interpretation of
the audiovisual environment, by virtue of the in-
terpretability of each component and of their con-
nections.

Since the model is statistical in nature, the result-
ing interpretation of the environment will not only
denote the type, number, location and – if applicable
– the possible intention of all objects of interest, but
also contain estimates of the variances (or probabil-
ity distributions) of all of these quantities. This will
endow the system with the ability to judge the relia-
bility of its own interpretation, and can ultimately be
used to design active listening and active exploration,
so as to ensure that the most relevant variables are
determined with sufficient reliability.

3.2. Proposed blackboard architecture

Fig. 1 shows an overview of the general system ar-
chitecture that is used in this work to solve a single-
source localisation task. The blackboard workspace is
arranged into a hierarchy of four layers:

The first and lowest layer, denoted as the acoustic

cues layer, contains observation vectors modeled as
continuous, multivariate and observable random vari-
ables. The observations are assembled of estimated
ITDs and ILDs that can be added to the blackboard
by the corresponding Acoustic Cue KS that operates
on this layer. The Acoustic Cues KS takes the monau-
ral left and right ear signals that were processed by
the auditory front-end as inputs and estimates ITDs
and ILDs independently for each frame and filterbank
channel. The resulting observation vector

ok =
(

τ̂k,1, . . . , τ̂k,N , δ̂k,1, . . . , δ̂k,N
)T

(1)

has 2N dimensions, where τ̂k,l denotes the estimated
ITD at frame index k ∈ N0 and filterbank channel
l = 1, . . . , N and δ̂k,l denotes the estimated ILD, re-
spectively.

The central element of the second layer, which is re-
ferred to as the location hypothesis layer, is a discrete
hidden random variable φ̂k which represents hypothe-

ses about the possible locations of a sound source. φ̂k

is statistically related to the corresponding observa-
tion vector described in Eq. (1). Both random vari-
ables form a special case of a Bayesian network, a
Gaussian Mixture Model (GMM)

p(ok|λ) =

M
∑

i=1

πipi(ok) (2)

composed of M mixture components, with model pa-
rameters λ specified as

λ = {πi, µi, Σi}, i = 1, . . . , M.

The mixture components in (2) are modeled as
D-dimensional, Gaussian distributions pi(ok) with
mean vectors µi, covariance matrices Σi and mix-

ture weights πi satisfying
∑M

i=1
πi = 1. Each GMM

corresponds to a specific discrete source position in
the horizontal plane φ̂k,1, . . . , φ̂k,M . In this work,
we restricted the number of GMMs to 72, yielding
an angular resolution of 5◦ for the localisation esti-
mates. If new observations are added to the black-
board, the GMMs are triggered to infer the poste-
rior probabilities p(φ̂k,i|ok) of all possible locations.

The resulting probability distribution p(φ̂k|ok) =

{p(φ̂k,1|ok), . . . , p(φ̂k,M |ok)} is then placed on the
blackboard.

To reduce localisation errors caused by front-back
confusions, a third layer is introduced in the black-
board architecture that is denoted the confusion hy-

pothesis layer. Confusion hypotheses are generated by
the Confusion KS that operates on this layer. The
KS examines if location hypotheses on the second
layer contain potential confusions. This examination
is based on a threshold pmin ∈ [0, 1], that defines a
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Figure 1. Overview of the proposed blackboard architecture. Data flow between the different components is represented
by dotted arrows, whereas dashed arrows represent control commands. The different components on the blackboard
are divided into continuous random variables (ellipsoid nodes), discrete random variables (rectangular nodes) and data
segments (hexagonal nodes). The GMM that is used in layers 1 and 2 is illustrated by a solid arrow that represents the
statistical relationship between the observation vectors ok and the discrete locations φ̂k.

probability at which one of the posterior probabili-
ties p(φ̂k,i|ok) is considered as a location hypothesis.
A confusion is identified if there are multiple loca-
tion hypotheses within one frame. When a confusion
is identified, a confusion hypothesis

ck = {φ̃k,1, . . . , φ̃k,Q} (3)

is created which includes all Q competing locations
φ̃k,j , j = 1, . . . , Q. If Q = 1, no confusion is detected

and a relative source location hypothesis φ̂r,k is cre-
ated on the fourth layer of the blackboard.

The fourth layer, denoted as the perceptual hypothe-

ses layer, contains two variables ψk and φ̂r,k, corre-
sponding to the current head position and the esti-
mated relative source position, respectively. As de-

scribed before, if no front/back confusion was de-
tected, the estimated relative source position is di-
rectly computed by the Confusion KS from the pos-
terior probabilities on the second layer. If there is a
remaining confusion hypothesis according to (3) on
the third layer and the head has not been rotated, the
Head Rotation KS is triggered. This halts the listening
process and activates the feedback path that triggers
a change of the current head orientation. After the
rotation is completed, it indicates that the system is
ready for the next frame and triggers the Confusion

Solving KS. This KS solves localisation confusions by
predicting the location probability distribution after
a head rotation, and comparing it with new location
hypotheses that have been gathered within the next
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positions for a source located at 30◦ azimuth. There clearly exists a ghost at 150◦ azimuth. The right panel shows the
predicted location distribution in dotted lines and the actual distribution after head rotation by 10◦. The two distributions
overlap at 30◦ azimuth which suggests a true source position.

frame. If a hypothesised source position reflects a true
source location, then the predicted location distribu-
tion and the observed distribution after head rota-
tion should overlap at the same location. If this is the
case, the estimated position is considered a valid rela-
tive source location hypothesis φ̂r,k, which is then put
onto the blackboard. The corresponding confusion hy-
potheses on the third layer are then discarded by the
Confusion Solving KS. If the predicted and observed
distributions do not match, the hypothesised location
is considered a ghost and the system proceeds with the
next frame to gather more data before repeating the
process. An example of the confusion solving process
is illustrated in Figure 2.

The triggering of specific KSs is attached to certain
events that are stored in an event register, which is
part of the blackboard monitor. As described before,
events are generated if new data is available from the
auditory front-end or if specific KSs have performed
certain actions on the blackboard. The blackboard
monitor keeps track of the current state of the black-
board and generates an agenda which contains all ac-
tions that could be performed according to this state.

The agenda is then passed to the scheduler that
decides which of the possible actions would be best
suited given the current state of the blackboard and
the task that should be accomplished. In the current
system, a weight is attached to each KS represented
as an integer value between 0 and 100. This weight
corresponds to the importance of a specific KS for
accomplishing the localisation task. Given the agenda,
the scheduler executes the action that is linked to the
KS with the highest weight.

4. Experiments and results

4.1. Evaluation scenario

The blackboard architecture was evaluated in a single-
source localisation scenario. Here the position of the
listener was assumed to be static but changes in head
orientation were possible. The target sound was a
static speech source, but could be located on the hor-
izontal plane at an arbitrary angle between [0◦, 360◦]
with a 5◦ angular resolution. Since the localisation
task was not restricted to the frontal plane, the local-
isation systems were presented with potential front-
back ambiguities.

7 target source positions were selected for evalua-
tion: 270◦, 300◦, 330◦, 0◦, 30◦, 60◦, 90◦. Note although
the evaluated target source positions were all on the
frontal plane, the localisation systems did not have
this prior knowledge and assumed an azimuth range
of [0◦, 360◦] for a potential target source position.

Two localisation conditions were evaluated. The
first condition contained only the target speech
source. The second condition also included a diffuse
noise at a signal-to-noise ratio (SNR) of 0 dB in or-
der to evaluate the noise robustness of the proposed
system. In both conditions, it was assumed that the
listener and the sound source were located in a free-
field environment. The simulation of the scenario was
generated using HRTFs [14] acquired from a Kemar

dummy-head, recorded at a distance of 3m between
the head and the source.

4.2. Experimental setup

The target source was speech signals taken from the
GRID corpus [18]. The GRID corpus consists of short
utterances spoken by 34 native English speakers (18
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Figure 3. Mean utterance-level localisation errors of the GMM baseline and the proposed blackboard system for localising
a speech source. Left: no noise was present. Right: busy street noise was present at an SNR of 0 dB. Error bars show
standard deviations.

male speakers and 16 female speakers), in the form
<command> <colour> <preposition> <let-

ter> <number> <adverb>, e.g. “place white at
L 3 now”. The training set included 340 randomly se-
lected utterances (10 utterances per speaker). They
were then spatialised to produce training data for
each azimuth position between [0◦, 360◦] with a 5◦

step. A further set of 170 utterances (5 utterances
per speaker) were selected as the evaluation test set,
and were spatialised to simulate the 7 target source
positions described above.

The diffuse noise used in the second test condi-
tion was one of the environmental sounds (“busy
street”) taken from IEEE AASP CASA Challenge
Dataset [19]. The noise was added to the binaural
speech signals after spatialisation at an SNR of 0 dB.

The peripheral processing of the auditory system
was simulated by the auditory front-end described
in Section 2.2, which decomposed signals arriving at
both ears into 31 gammatone filterbank channels. The
centre frequencies of the filterbank were equally dis-
tributed on the ERB scale between 80 Hz and 8 kHz.
The channel output was then halfwave-rectified and
used to extract channel-dependent binaural cues. A
Hann window of 20 msec was used for analysis in each
frame with an overlap between successive frames of
10 msec. The ITD for each channel was estimated
by choosing the maximum lag of a cross-correlation
function within the range of [−1, 1] msec. The chan-
nel ILD was estimated by comparing the energy inte-
grated across the window between the left and right
ears within each channel and expressed in dB.

Two localisation systems were evaluated: a GMM-
based localisation baseline and the proposed black-
board system. Both systems used GMMs to model the
azimuth-dependent distribution of the binaural fea-
ture space consisting of ITDs and ILDs. The GMM

baseline simply selected the azimuth that has the
maximum posterior given a binaural feature obser-
vation as the target source position, while the black-
board included top-down feedback for head rotation in
order to resolve front/back ambiguities as described
in Section 3. To make the two systems more com-
parable both employed identical sets of GMMs. The
GMMs were trained only on spatialised speech signals
and no noise was included during training. No prior
knowledge of source positions was used.

4.3. Results and discussion

Localisation performance of both systems was evalu-
ated as utterance-level localisation errors. Utterance-
level localisation errors were computed by averag-
ing the minimum angular differences between the
reference target position and the estimated posi-
tions within each utterance. Fig. 3 shows the mean
utterance-level localisation errors based on the 170
test utterances for each evaluated target position. Er-
ror bars show standard deviations.

In the left panel of Fig. 3 where no noise was
present, both systems were able to localise the speech
source at all the evaluated positions with very lit-
tle error. The localisation errors averaged across all
target positions were 0.001◦ and 0.3◦ for the black-
board system and the GMM baseline, respectively. A
t-test showed that performance of the blackboard sys-
tem was significantly better than that of the GMM
baseline (p < 0.001). It should be noted that in this
clean condition the GMM baseline was able to handle
front/back ambiguities without head rotation. This
is largely because the GMMs captured the azimuth-
dependent patterns of binaural cues across all fre-
quency channels. The subtle spectral difference be-
tween front and back was realised by the HRTFs used
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in the simulation and thus implicitly modelled by the
system.

When diffuse noise was present, shown in the right
panel of Fig. 3, the localisation errors of the GMM
baseline increased significantly across all target posi-
tions except for the 0◦ azimuth (average localisation
errors across all target positions: 11.8◦). Performance
was particularly bad for the GMM baseline at azimuth
positions where the front-back confusion was strong
(30◦ and 60◦ at both sides). The performance of the
blackboard system, however, was generally robust in
the presence of the diffuse noise (average localisation
errors across all target positions: 0.5◦) and was signif-
icantly better than the baseline (t-test; p < 0.001).
The top-down feedback that allowed head rotation
helped the system resolve most ambiguities and the
improvement over the baseline was consistent across
all the target positions.

5. Conclusions and future work

We have presented a general high-level framework for
auditory scene analysis, which, based on a graphical-
model representation, can iteratively develop an “un-
derstanding” — an internal, interpretable high-level
description — of an auditory scene. While results were
shown for a small toy example, consisting of localisa-
tion of a single acoustic source, the framework allows
inference in a wide range of dynamic Bayesian net-
works, supporting many types of knowledge sources
and inference strategies.

Thus, a natural next step will be the integration of
dynamic state-space models, describing sources not as
stationary but as dynamically moving. Tracking these
dynamic sources will hence become necessary. In the
proposed framework, this can be achieved by incor-
porating a source-type-dependent state-space model
for the source position. Inference of the source posi-
tion will hence be possible by developing Kalman-style
filters. These, based on strategies like the unscented
Kalman filter [20], can additionally include the black-
board’s estimates of the uncertainties of all graphical-
model variables to obtain optimal, time-varying esti-
mates of all source positions.

To test feedback strategies in a controlled environ-
ment, we plan to integrate our blackboard architec-
ture with the Bochum Experimental Feedback Testbed

(BEFT) [21], a tool that has been designed to test
complex feedback strategies early in the Two!Ears

project. BEFT provides a custom-made virtual envi-
ronment for visualization of XML-scripted scenes and
allows the success of actual feedback strategies to be
monitored in near real-time. Visual and (emulated)
auditory features provided by the BEFT system core
will act as input to our KSs. To that end, the testbed
architecture is explicitly designed to closely approxi-
mate real-life conditions: ground-truth characteristics
of environmental objects are artificially degraded to

mimic weak sensor performance under adverse envi-
ronmental conditions. The BEFT framework is not
limited to the emulation/degradation of physical ob-
ject or scenario features: specific degradation func-
tions allow emulating an object classifier that provides
category labels for each observed environmental entity
and generates input to higher-level KSs. Further, the
testbed architecture provides task stack mechanisms
to control the behavior of a virtual robotic platform
that explores a given scenario.

In conclusion we have shown that the extension
of machine hearing systems with top-down feedback
prove to be advantageous over those that are solely
based on bottom-up processing. Graphical-model-
based blackboard systems, as introduced in this work,
are a flexible framework for further investigating the
role of feedback in the context of machine hearing
systems. Focusing on human perception, the black-
board paradigm furthermore allows for easy integra-
tion of additional cues like visual and tactile informa-
tion, providing a powerful framework for biologically
inspired computational systems.
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