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Abstract
A recent kinetic mechanism (Sarathy et al., 2012) describing the low temperature oxidation ofn-butanol was
investigated using both local and global sensitivity/uncertainty analysis methods with ignition delays as
predictive targets over temperature ranges of 678-898 K and equivalence ratios ranging from 0.5-2.0 at 15 bar.
The study incorporates the effects of uncertainties in forward rate constants on the predicted outputs, providing
information on the robustness of the mechanism over a range of operating conditions. A global sampling
technique was employed for the determination of predictive error bars, and a high dimensional model
representation (HDMR) method was further utilised for the calculation of global sensitivity indices following the
application of a linear screening method. Predicted ignition delay distributions spanning up to an order of
magnitude indicate the need for better quantification of the most dominant reaction rate parameters. The
calculated first-order sensitivities from the HDMR study show the main fuel hydrogen abstraction pathways via
OH as the major contributors to the predicted uncertainties. Sensitivities indicate that no individual rate constant
dominates uncertainties under any of the conditions studied, but that strong constraints on the branching ratio for
H abstraction by OHat the α  and γ  sites are provided by the measurements.

Introduction
Due to the need to address the issue of climate
change, there is interest in seeking fuels which may
be generated from renewable sources including from
biomass [1]. Alcohols such as methanol, ethanol and
butanol are being projected as satisfactory fuels that
could be produced from renewable sources, and used
successfully within internal combustion engines.
Alcohols, along with other oxygenated fuels, have
been shown to have the potential to improve engine
performance and emissions because of some of their
unique physical and chemical properties [2-6].

There is presently some support for bio-butanol
as a potential replacement for ethanol in spark
ignition (SI) and compression ignition (CI) engines
due to several advantages. Its higher heating value
combined with higher stoichiometric air-fuel ratio,
allow higher blending levels of butanol in gasoline
than can be achieved for ethanol without changing
regulations, engine control systems, and distribution
networks. Moreover, butanol has a lower latent heat
of vaporization than ethanol reducing issues with
fuel atomization and combustion during cold start
[7]. It is less corrosive and less prone to water
absorption than ethanol, allowing it to be transported
using existing fuel pipelines. It also has a higher
cetane number than ethanol, lower vapour pressure,
similar viscosity to diesel and improved miscibility
in diesel [8].

Experimental testing of bio-butanol in SI and
CI engines has shown promise. However, a detailed
investigation and understanding of the behaviour of
this new fuel in real engines can be greatly assisted
through modelling, particularly to improve our
understanding of the key kinetic processes that drive
combustion over a range of temperatures and
pressures. In order to accurately reproduce the
combustion and emission characteristics of the target

fuel during the simulation of SI and CI engines,
accurate and reliable detailed chemical kinetic
models of fuel oxidation are needed. While the
combustion chemistry of common hydrocarbon fuels
such as ethanol and dimethyl ether are qualitatively
relatively well understood, much work is still needed
to clearly identify the most important reaction steps
that determine the key predictive targets within
combustion devices fuelled by larger alcohols, such
as butanol [9].

A number of recent studies addressing the
chemical kinetic modelling of bio-butanol
combustion have been performed [10-16]. Most of
the mechanisms developed to date focus on high
temperature reaction classes and have not been
specifically designed for application to the
prediction of ignition behaviour at lower
temperatures. However, very recently, Sarathy et al.
[17] proposed a detailed reaction mechanism that
includes both low and high temperature reaction
pathways for the four isomers of butanol, with
reaction rate parameters determined from
experimental data,ab initio studies and estimations
based on bond dissociation energies. For certain key
reactions, modifications to rate constants were made
(within parameter uncertainties) as part of the
validation study of [17], in order to improve
agreement with experimental data.

The current work is fundamentally driven by
the search for suitable scheme ofn-butanol oxidation
for subsequent simulations ofn-butanol combustion
in CI and SI engines. The detailed chemical kinetic
scheme ofn-butanol proposed by Sarathy et al. [17]
is investigated in a rapid compression machine
(RCM) with ignition delays forming the set of
predictive targets. The predictive capability of the
Sarathy mechanism, in terms of its ability to
accurately reproduce the low temperature chemistry
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(auto-ignition regime) ofn-butanol is investigated
by comparing predicted data from simulations with
measured experimental data over temperature ranges
of 678-898 K,ϕ = 0.5-2.0, at 15 and 30 bar.

Kinetic models of complicated fuels are
usually made up of a large set of elementary
reactions which are quantitatively described by rate
parameters and thermodynamic and transport data
for the species. A large number of the rate
parameters are, by necessity, determined using semi-
empirical estimation approaches (e.g. group
additivity methods) because of the difficulties
associated with the experimental measurement of
such large numbers of rate parameters. This however
has the disadvantage of potentially introducing large
uncertainties in the determined parameter values and
therefore the model as a whole [18]. As a result,
even if validated against a range of target
experimental data sets using more fundamental
combustion apparatuses (such as RCMs, jet stirred
reactors, premixed and diffusion flames etc.), a
model could quite easily fail when utilised under
practical engine conditions that are outside the range
in which it is validated or constrained.

Although local sensitivity methods have been
applied to the butanol scheme in previous modelling
work [17,19] for importance ranking of key
reactions that influence the predicted target
quantities, it does not however account for the
impact of the inherent uncertainties in the input rate
parameters on the predictive uncertainties. On the
other hand, global uncertainty and sensitivity
methods provide an understanding of the predictive
output uncertainties as well as details on their main
contributing parameters, even where the relationship
between the input parameters and predicted target
output are highly nonlinear [18]. Therefore, the
sensitivity of predicted ignition delays to possible
uncertainties within the input data of the kinetic
scheme (in this case, rate parameters) is investigated
here via global uncertainty and sensitivity analyses.

Methodology
The Cantera software libraries (version 2.1.1) [21]
were used within the Python environment to
numerically model then-butanol fuelled RCM in
line with the experimental conditions and data given
by Weber et al. [20] and recent data obtained from
the RCM in Leeds.  The RCM used by Weber et al.
has been described in detail in [22]. In the
experimental setup [20],n-butanol/O2/N2 mixtures
were investigated over a compressed temperature
range of 679-925 K, compressed pressures of 15 and
30 bar, at equivalence ratiosϕ of 0.5, 1.0 and 2.0.
The modelling approach adopted here is in line with
that of Weber et al. [20], in which both compression
and post compression events are accounted for.
Volume traces which inherently account for the heat
losses during both compression and post
compression effects were used as input into the auto-

ignition simulations of this study. According to [20],
the volume traces for the full event were determined
from the measured pressure trace of the non-reactive
experiment using the isentropic core relations and
temperature-dependent mixture specific heat ratios.
The volume profiles were implemented in our
Cantera calculations during each time step in which
the state of the RCM reactor is advanced. A python-
based subroutine obtained from the GitHub account
of Weber [23] was used alongside an in-house
Cantera RCM code for this purpose. The volume
traces used in this study are available from [24]. The
Leeds RCM, on the other hand, was modelled as a
constant volume adiabatic reactor based on provided
experimental data, with heat loss effects of the
reactants to chamber walls taken as negligible.n-
butanol mixtures of different diluents ratio were
modelled for compressed temperature ranges of
670K – 865K and compressed pressures of 20 bar
under stoichiometric conditions.

Definition of ignition delays
The computed ignition delay time is defined as the
time from the end of compression (at TDC) to the
point of maximum rate of pressure rise

. Appropriate tolerance criteria were

chosen to ensure sufficiently stable and well
converged solutions for the chosen kinetic scheme.

Chemical kinetic model
The mechanism adopted is the recent and previously
validated butanol mechanism, proposed by [17]. The
kinetic model was constructed based on the 1-
butanol kinetic scheme of [13] by upgrading the
mechanism with the primary reactions of tert-
butanol, 2-butanol, and iso-butanol and related
radical reactions. The mechanism, containing 426
species and 2335 mainly reversible reactions, was
validated with reasonable agreement against a wide
range of experimental data which includes:
speciation data obtained in low pressure laminar
premixed flames, premixed laminar flame velocities
under atmospheric pressures, species data from a
high pressure jet-stirred reactor (JSR), ignition delay
times from a high pressure RCM and ignition delay
times from atmospheric and high pressure shock
tubes (ST). The scheme is available from the
Lawrence Livermore website and described in [17].

Calculations of rate coefficients for pressure
dependent reactions were achieved within Cantera
using both the Troe formulation [21] and
interpolation based on the PLOG approach
depending on the requirements of the scheme. Using
the PLOG approach, Arrhenius expressions are
given at particular pressures and logarithmic
interpolation is used for pressures in between [21].
The Sarathy et al. kinetic scheme, originally in
Chemkin format, was converted to Cantera input
format (.cti file including the thermodynamic data)
using the Cantera 2.1.1 ck2ti.py subroutine.
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Sensitivity screening approach
Since only a few key reactions are likely to greatly
influence the accuracy of the predicted targets,
computational time can be saved if these reactions
are identified for inclusion in global sensitivity
analysis, whilst parameters of low sensitivity are
retained at their nominal values. This allows for
smaller sample sizes to be used without
compromising the sparsity of the input space. A
screening approach based on the brute force local
sensitivity method was therefore performed for a
range of conditions in [20] to identify the key
reactions that influence the ignition delay at
compressed (TDC) conditions of 15 bar,
temperatures of 678-898 K andϕ = 0.5-2.0. The local
sensitivity setup is a Python based code originally
developed in [25] and adapted for implementation
within the current bio-butanol RCM model. The
ignition delay sensitivity to each reaction in the
kinetic model is calculated after multiplying each
pre-exponential factor (A-factor) for the reaction
rate by a factor of 1.3 (30% increase) and then
computing the corresponding ignition delay燕after.

The ignition delay computed without perturbation is
represented by燕before. The sensitivity coefficient for

reactioni is given by = or in this case:

=

For each condition, reactions to be included in the
subsequent global uncertainty and sensitivity
analysis were screened based on a threshold ofSi >
2 % leading to a total of 40 reactions.

Global uncertainty and sensitivity analysis
In the global approach employed in the study, the
uncertainty in the selected input parameters is
propagated though the model in order to provide
error bars on the predicted ignition delay
distribution. Global sensitivity analysis is then
performed in order to determine and rank the
contribution of each parameter uncertainty to the
overall output uncertainty, represented by the output
sample variance. The global sensitivity method
allows one to be able to investigate the impact of
model input parameters (e.g. reaction rates) across
their entire uncertainty range and also to account for
the effect of parameter interactions.

Prior to performing global uncertainty and
sensitivity analysis, uncertainty factors (Gi) were
assigned to each of the screened reactions based on
values evaluated in the reviews of Baulch [26]
where available. For reactions without evaluated
uncertainties, data available on National Institute of
Standard and Technology (NIST) website
representing several studies was employed to
estimate the uncertainty of the input parameter. In
situations where there was no evaluation and
insufficient studies within NIST (experimental or

theoretical) to determine uncertainty from spread of
data, an uncertainty value of 2 was chosen for the
sensitivity calculations in the present study. This is
perhaps an optimistic factor for reactions with rates
determined by theory, group additivity or estimation,
but the results will show that it already leads to quite
large uncertainties within the predictive targets.

The global technique employed here is built
around a sampling approach in which many
simulations are carried out with samples covering
the entire domain of the defined input space. A low
discrepancy sampling sequence such asSobol’s

quasi-random sequence is employed because of its
ability to converge faster (in terms of output mean
and variance) compared to standard Monte Carlo
random sampling. The Sobol’ sequence represents a
set of quasi-random numbers between 0 and 1
generated for each of the selected input parameters
across the chosen sample sizeN. This sequence is
then used to create a sample of rate parameters
within the uncertainty range (ki/Gi, Gi × ki) which is
uniform in the space of log(ki), where ki is the
original rate parameter in the scheme,ki/Gi is the
lower limit and Gi × ki is the upper limit. The log
rate constants within the chosen uncertainty range
are uniformly distributed, as they have been
assumed to have equal probability of being the
actual rate parameter value. This approach is fairly
typical for schemes with estimated parameters since
insufficient information is available to take a
probabilistic approach.

Following the sampling and performance of
model runs, there is a need to estimate the global
sensitivity index - a factor that gives an indication of
the importance ranking of input parameters that
contribute most to the variance in the predicted
output. Monte Carlo (MC) simulations and response
surface methods (RSMs), are commonly employed
to investigate the relationship between the input and
output distributions [27-28]. In the RSM method
based on high dimensional model representations
(HDMR) employed in the study, the sensitivity
indices are calculated using a functional meta-model
fitted to sample input-output distributions that is
based on the quasi-random sample (QRS) of full
model runs. The accuracy of the calculated
sensitivities is dependent on the accuracy of the
constructed meta-model which in turn is a function
of the sample size, the fitting approach used in
constructing the meta-model and the complexity of
the surface response [27]. A total sample size ofN =
256 was used for the uncertainty study (i.e. in order
to estimate error bars on the predicted targets) while
a sample sizeN ranging from 2048-4096 was used
for the QRS-HDMR study in order to obtain
accurate HDMR meta-model fits based on up to 10th

order orthonormal polynomials and a coefficient of
determination R2>90% for ignition delay
predictions. A full description of the QRS-HDMR
method can be found in [29].
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Results and discussion
Comparison with experimental data.

Weber Data

Fig 1 Comparison of predicted ignition delays with
experimental data from Weber et al. for conditions
of 15 bar andϕ = 0.5-2.0

Fig. 2 Comparison of predicted ignition delays with
experimental data forϕ = 1at 15 bar and 30 bar

Figure 1 shows a comparison of predicted ignition
delays with the data from Weber et al. for a
compressed pressure of 15 bar, temperatures ranging
from 678K- 925K andϕ = 0.5 -2.0. In common with
Sarathy et al. and Weber et al. [17,19], we find (Fig.
1) that under these conditions, the RCM data is
predicted to a reasonable level of accuracy across
the entire equivalence ratio range. However, under
rich conditions, the model’s over-prediction of the
ignition delay data could be over a factor of 5 for the
low temperature region (i.e. T < 700K). Under
stoichiometric conditions, at a higher pressure of 30
bar (Fig. 2), which is above the pressure range at
which the model was constrained by ignition delays,
the model over-predicts the Weber data by a factor
of about 2 across a major part of the temperature
range. In addition, the decrease in ignition delays
when pressure is increased from 15 to 30 bar is
under-represented by the model. It is also apparent

from Figs. 1 and 2 thatn-butanol does not exhibit
the well-known two-stage, negative temperature
coefficient (NTC) behaviour commonly seen for
linear alkanes and shown for DME ignition delays in
our previous work [29].

Leeds Data

Fig. 3 Comparison of predicted ignition delays with
Leeds data for conditions of 20 bar under
stoichiometricconditions of ф = 1

Figure 3 shows that under constant volume
stoichiometric simulation conditions of 20 bar, the
kinetic model predicts the Leeds data quite well at
high temperatures but over predicts the experimental
data by about a factor of 2 at lower temperatures
below 700K. The discrepancy is smaller than that
shown at 30 bar in Fig. 2 but still significant.

Uncertainty study
Figure 4 shows that for the case ofф=1, at 15 bar,
and T = 725K-839K, uncertainties in the predicted
ignition delays are quite large; up to at least plus or
minus one order of magnitude. Although the original
model appears to predict the ignition delay data at
lower temperatures quite well, the experimental
values fall only within the 25th percentile of the
predicted outputs and are not close to the median of
the distributions. This results from the fact that the
predicted distributions are skewed with respect to
the mean values. At higher temperatures, the
agreement at nominal parameter values, is less good,
although the experimental values do lie close to the
median predictions. Overall, within the suggested
uncertainties for the model, there is agreement with
the experiments across the temperature range. The
large uncertainties in predicted delays do however,
indicate the need for a more accurate knowledge of
the dominant rate parameters in the scheme if the
scheme were to be reliably utilised for auto-ignition
predictions under real engine conditions. Particular
focus should be paid to temperature dependencies of
the rate parameters. Via a global sensitivity study we
can determine first of all, which parameters
contribute most to these predictive uncertainties.
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Secondly we can determine how the experimental
measurements constrain these parameters under the
different conditions studied.

Fig. 4 Comparison of predicted ignition delays
(blue) with Weber data (red). Boxes - 25th and 75th

percentiles; whiskers - 5th and 95th percentiles

Global sensitivity study
Figure 5 shows the main first-order sensitivity
coefficients determined by the HDMR study for
selected conditions at 15 bar. The selected reactions
are the seven most dominant reactions for predicted
n-butanol ignition delay predictions and account for
over 85 % of the predictive uncertainties,
highlighting that the uncertainties are dominated by
the first-order effects of just a few reactions.

Fig. 5 Main first-order sensitivity indices for
simulated ignition delays with respect to reaction
rates at selected temperatures and 15 bar

The branching fractions of fuel + OH hydrogen
abstraction reactions dominate the predicted

uncertainties across the entire temperature range (i.e.
low-intermediate temperatures) for stoichiometric
conditions. The hydroxybutyl radicals produced as a
result of the main fuel oxidation reactions are
consumed via two different types of reaction
pathways: one is the oxygen addition reaction (alpha-
hydroxybutyl+O2) leading to the formation of  the
peroxy radical (RO2) that drives auto-ignition, and the
other is termination that inhibits autoignition due to
the formation of HO2. Although it is well known [29]
that isomerisation reactions of the peroxy radical
(RO2) dominate auto-ignition chemistry in general
low-temperature mechanisms, the dominance of the
main fuel hydrogen abstraction reactions in the
butanol scheme may be due to its key role in
determining the amount of fuel that goes to
termination steps compared with how much is
available for chain branching and propagation steps.
The contribution from the hydrogen abstraction
reactions diminishes with increasing in temperature
while a contribution from HO2 chemistry and
formation routes for H2O2 become more significant.

The sensitivities highlight that constraints in the
reaction rate coefficients for the H abstraction
reactions by OH are better provided by ignition delays
at stoichiometric lower temperature conditions since
their uncertainties contribute to a larger percentage of
the predictive variance. However, no single rate
constant dominates, with the two main H abstractions
from the α  and γ  sites showing first-order sensitivities
of 0.32 and 0.29 respectively. This means that a wide
range of chosen rate constants for these reactions
could reproduce the experimental ignition delays with
reasonable accuracy. Sarathy et al. report [17]
discrepancies between theab initio studies for
abstraction from the α  site between the studies of

Zhou et al. [30] and Zádor et al. [31] and have adopted
the temperature dependence of Zádor et al. to give
better agreement with experimental data. H abstraction
from the γ  site is critical to correctly determining the
amount of chain branching which drives low-
temperature autoignition. The rate constant for this
reaction was however, subject to large discrepancies
between [30] and [31] and hence corrections were
made in [17]. The low temperature ignition delays at
ϕ =1 provide some constraints on this reaction channel
(Si=0.29) but there is still a large influence of
uncertainties in other key rates.

However, if we plot predicted log ignition delay
against a scaled ratio of the log reaction rates for these
main abstractions reactionsfrom the α  and γ  sites,

leading to C4H8OH-1 + H2O and C4H8OH-3 + H2O
respectively, we see an almost linear relationship (Fig.
6), with the scatter resulting from uncertainties in the
other main reactions listed in Fig. 5. The sensitivity
index for this branching ratio is 0.7 i.e. twice that for
the individual rates. On the contrary the sensitivity
index for the sum of reaction rates for H abstraction
by OH is <0.1. The analysis therefore demonstrates
that ignition delay measurements provide much
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stronger constraints on the branching ratio than on the
overall rate constant for this reaction class. There is
still scatter in Fig. 6 however, due to the influence of
uncertainties in other channels such as R+O2.

At lower temperatures and richer conditions
( ϕ =2), where discrepancies between model and
experiment were seen in Fig. 1, R+O2 reactions are
equally as important as H abstraction (Fig. 5). The
reaction to form butanal+HO2 is included as a high
temperature pathway in [17] but actually shows a
higher sensitivity at low temperature rich conditions.

Fig. 6 Scatter plot and HDMR component function for
predicted log(ignition delay) against the scaled
branching ratio for the two main H abstraction reactions
by OH, taking into account uncertainties in the 40 main
reactions, T=725 K,ϕ =1, 15 bar.

Conclusions
A global uncertainty and sensitivity study of the low-
intermediate temperature of n-butanol combustion has
been conducted with ignition delays as predictive
targets. The key reactions that dominate the predicted
uncertainties were identified through global sampling-
based HDMR analysis. Calculated sensitivity indices
show that the dominant reaction pathways are H
abstraction via OH. The study indicates that low
temperature ignition delay measurements provide a high
level of constraint on the branching ratio for abstraction
from the α  and γ  sites but not on the total rate constant.
For rich conditions R + O2 pathways are equally as
important as H abstraction.
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