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Important aspects in engineering gold nanoparticles for theranostic applications include the 

control of size, optical properties, cytotoxicity, biodistribution and clearance. In this study, 

gold nanotubes with controlled length and tunable absorption in the near-infrared (NIR) 

region have been exploited for applications as photothermal conversion agents and in vivo 

photoacoustic imaging contrast agents. A length-controlled synthesis has been developed to 
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fabricate gold nanotubes (NTs) with well-defined shape (i.e. inner void and open ends), high 

crystallinity, and tunable NIR surface plasmon resonance. A coating of poly(sodium 4-

styrenesulfonate) (PSS) endows the nanotubes with colloidal stability and low cytotoxicity. 

The PSS-coated Au NTs have the following characteristics: (i) cellular uptake by colorectal 

cancer cells and macrophage cells, (ii) photothermal ablation of cancer cells using single 

wavelength pulse laser irradiation, (iii) excellent in vivo photoacoustic signal generation 

capability and accumulation at the tumor site, (iv) hepatobiliary clearance within 72 h post 

intravenous injection. These results demonstrate that these PSS-coated Au NTs have the ideal 

attributes to develop their potential as effective and safe in vivo imaging nanoprobes, 

photothermal conversion agents and drug delivery vehicles. To the best of our knowledge, this 

is the first in vitro and in vivo study of gold nanotubes. 

 

1. Introduction 

Photoacoustic imaging (PAI) is a non-invasive and non-ionizing modality that combines the 

spectral selectivity of laser excitation with the high resolution of ultrasound imaging.
 
 In PAI, 

an absorbed laser pulse induces rapid thermal expansion at the target leading to the generation 

of acoustic waves that are detected by ultrasonic transducers to form images. By tuning the 

incident light into specific molecular absorption bands, PAI has been able to, for example, 

map the oxygenation state of hemoglobin or to map different chemical distributions in vivo.
[1] 

For applications where no natural contrast is available, contrast agents, such as indocyanine 

green, have been demonstrated to be effective.
[2]  

 

     Photothermal therapy, also known as photothermal ablation or optical hyperthermia, has 

been actively explored as a minimally invasive approach to cancer therapy. It utilizes 

photothermal conversion agents (PTCAs), which strongly absorb light and convert the 

absorbed light into heat, to generate rapid localized heating to preferentially ablate cancerous 

cells.
[3]

 

     Key criteria for the development of PAI contrast agents and PTCAs are, firstly, they 

should have strong absorbance in the NIR tissue transparent region of the EM spectrum (650-

900 nm) which is ideal for optical imaging and photothermal therapy
[4]

, and secondly, they 

should have low toxicity.  
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    Gold nanostructures have been recently developed as versatile, multifaceted platforms for a 

broad range of biomedical applications, which include biosensing, photothermal therapy, 

targeted drug delivery and bioimaging (e.g. optical coherence tomography, two-photon 

luminescence, and photoacoustic techniques).
[5]

 The development of Au nanostructures as 

contrast agents is based on the ability to tune their optical properties via control over the 

localized surface plasmon modes.
[4]

 The photoacoustic signal-to-noise ratio can be 

significantly improved by carefully choosing the excitation laser wavelength within NIR 

region to minimize the light attenuation.
[6]  

Hence, considerable efforts have been made to 

develop Au nanostructures active in the NIR window, such as Au nanorods, Au nanoshells, 

hollow Au nanospheres and Au nanocages. These NIR-absorbing gold nanostructures have 

been exploited as theranostic nanosystems that integrate targeting, imaging and therapy 

(chemotherapy via drug delivery and photothermal therapy) into one platform.
[7-10] 

As a novel 

nanostructure with promise for theranostic applications, Au nanotubes (NTs) offer potential 

advantages over their solid counterparts. Firstly, as open-ended tubes they have large inner 

voids that can be filled with suitable drugs from small molecules through to proteins. 

Secondly, they have inner and outer surfaces, which might provide routes for differential 

surface functionalization enabling selective attachment of moieties to the inside (such as 

drugs and imaging agents) and outside (targeting moieties, antifouling agents). Thirdly, they 

have open ends that make the inner surface accessible and allow subsequent incorporation of 

species within the tubes and can be used as a gate to control drug release.
[11, 12]

 In addition, for 

photoacoustic imaging and photothermal therapy, the hollow core can lower the heat capacity 

to allow better pulse heating.
[13]

 Compared to their spherical counterparts, the elongated 

nanostructures have longer blood circulation times
[14] 

and show multi-valence effect, that is, 

multiple binding sites of a functionalized NT to one cell, leading to improved cell adhesion 

and more effective targeting.
[15]

 

  However, to date, little work has been undertaken on the biomedical application of Au 

NTs because of the limited control over their length and uniformity coupled with the lack of 

NIR optical absorption. Therefore it is essential to develop synthesis routes that allow good 

control over the NT length and fine-tuning their optical behavior in the NIR region.   

     A major concern related to biomedical application of Au nanoparticles is their in vivo 

metabolism and toxicity. While little acute and sub-acute toxicity has been observed from in 

vivo administration of therapeutic Au nanoparticles,
[16] 

chronic toxicological investigations 

have shown that after a single intravenous injection in rat, 40 nm gold nanoparticles 

accumulated in liver throughout the entire timeframe of the study (2 months) and caused 
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changes of gene expression in the liver and spleen.
[17]

 An irreversible change in the proteomic 

profile was observed in the liver of mice receiving PEG-coated hollow Au nanospheres.
[18]

 

With respect to maintenance of reticuloendothelial (RES) organ function, protection from  

chronic inflammation, mutagenicity and effects on reproductive health, it is necessary to 

facilitate hepatobiliary clearance of Au nanoparticles used for imaging or therapy.
[16] 

  

     Here we present the synthesis of Au NTs of controlled length, over the range of 300- 700 

nm, via the room-temperature galvanic displacement of silver nanorods (Ag NRs). The 

resultant Au NTs show strong surface plasmon resonance based absorption in the NIR region, 

which can be tuned by varying the NT length or the composition of the nanotube. PSS coating 

of the gold nanotubes imparts colloid stability and low cytotoxicity. In vitro cell studies 

demonstrate that, PSS-Au NTs can be internalized by cancer cells (SW480 cells) and 

macrophages (RAW 264.7).  NIR laser irradiation caused photothermal ablation of the cancer 

cells that had internalized PSS-Au NTs. The PSS-Au NTs also displayed strong in vivo 

photoacoustic signals and accumulation at the SW620 tumor site, enabling them to be used as 

effective PAI contrast agents. Furthermore, investigation of the in vivo biodistribution of the 

PSS-Au NTs showed hepatobiliary clearance within 72 h, demonstrating that PSS-Au NTs are 

suitable for clinical translation. 

    To our knowledge, the present work represents the first in vitro and in vivo study of gold 

nanotubes and demonstrates their effectiveness as novel agents for photoacoustic imaging and 

photothermal therapy with a potential of drug delivery, to achieve image-guided combined 

chemo-photothermal therapy. 

 

 

2. Results and Discussion 

2.1. Synthesis and Length Control of Gold Nanotubes 

The formation of hollow Au nanostructures via the galvanic replacement of metallic template 

by Au (III) ions has received significant interest due to its simplicity and because of the 

homogeneous and highly crystalline nature of the structures formed.
[19, 20]

 In the present work, 

Au NTs were formed via the galvanic displacement of Ag NRs of controlled length. The Ag 

NRs were grown from Ag seeds using PSS as a structure-directing agent.
[21] 

This involved 

two steps: (1) generation of Ag seeds (D = 4 nm) by chemical reduction of AgNO3 by NaBH4 

in the presence of trisodium citrate to stabilize the nanoparticles
[22]

 and (2) formation of Ag 



  

5 

 

NRs upon the addition of the Ag seeds to a growth solution containing AgNO3, ascorbic acid 

and PSS.  The resultant Ag NRs had pentagonal cross-section, five flat side surfaces bounded 

by {100} facets and ten {111} end facets. It was found that, by adjusting the seed amount and 

growth temperature we could obtain improved control over the nanorod length. Previous 

reports of this approach produced significantly longer NR, typically, of the order 1 µm.
[21] 

 In 

contrast, the Ag NRs produced here could be controlled with lengths down to 300 nm, and by 

controlling the growth temperature we have been able to greatly improve the reproducibility 

for synthesizing Ag NRs of a desired length.  

     Figure 1 shows SEM images of Ag NRs synthesized at 25ºC by adding different volumes 

of seed dispersion into the growth solution.  The resultant Ag NRs had a uniform diameter of 

50 nm and the lengths that varied inversely with seed amount. The NRs displayed a standard 

deviation in length of ~22% (Figure S1) and readily formed smectic-like mesophases on 

evaporation of their solvent. The NRs of length (670±179) nm, (533±126) nm and (432±96) 

nm were formed by respectively adding 20 µL, 50 µL, or 100 µL of the seed to a growth 

solution (see Experimental Section).  The UV-Vis spectra for these materials display 

characteristic transverse and longitudinal surface plasmon absorption modes (Figure S3).
[23] 

The position of the longitudinal SPR shifts to longer wavelengths (from 495 nm to 630 nm) 

with the decreased seed amount, resulting from the production of longer nanorods.  
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Figure 1 SEM images of Ag nanorods synthesized at 25ºC with different seed amounts, the 

number in brackets refer to the mean length and standard deviation; (A) 20µL (670±179) nm; 

(B) 50µL (533±126) nm. SEM images of Ag NRs synthesized with 100µL seeds at different 

temperatures (C) 20ºC (429±116) nm; (D) 40ºC (305±78) nm. (E) The length of Ag NRs as a 

function of seed amount and growth temperature. All the lengths were determined by 

examining SEM images of the resultant Ag NRs and represent the average (and the variance) 

of 300 NRs. (Scale bar= 200 nm). 

Temperature was found to be a key parameter in controlling the length of the Ag NRs. The 

Ag NR length varied non-monotonically as a function of temperature, because although the 

higher temperature raises the growth rate, it also leads to more disorder, which disturbs the Ag 

NR growth.
[24]

 

    Figure 1E shows the combined role of seed amount and temperature on NR length. 

Understanding the effect of reaction parameters (i.e. seed amount and growth temperature) 

provides the ability to control the NR length from 300 nm to 700 nm with a narrow length 

distribution. 
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    Gold nanotubes were formed through a room-temperature galvanic replacement reaction
[25]

 

between AuCl4
-
 ions and the sacrificial Ag NRs. The as-prepared Ag NRs were capped with 

PSS (Zeta potential (-47 ± 2) mV). The PSS-Ag NRs were washed with deionized water to 

remove PSS molecules on the surface, then added into the aqueous solution of CTAB and 

sonicated for 15 mins to produce positively charged CTAB-Ag NRs  (Zeta potential (+55 ±2) 

mV). In addition to providing a positively charged surface, the CTAB also preferentially bind 

to the {100} facets, which run the length of the Ag NRs, and plays a key role in the formation 

of the open ended NTs.
 [25, 26]

 

After adding HAuCl4 into the CTAB-Ag NR dispersion, the combined galvanic reaction 

(See the Reaction 1) and Kirkendall growth lead to the formation the Au NTs with hollow 

interiors and porous walls.
[27, 28]

 

      

 3Ag (s) + AuCl4
-
(aq) → Au(s) + 3Ag

+
(aq) + 4Cl

-
(aq)   (1) 

            

    Figure 2A and B shows the SEM and TEM images of 370 nm Au NTs. The Au NTs 

exhibit uniform walls with pinholes. The TEM images show that the center portion of each 

nanostructure is lighter (i.e. less dense) than the edges, indicating the formation of hollow 

nanostructures (Figures 2B). The thickness of the wall is c.a. 6 nm, which is about one tenth 

of the template diameter, in good agreement with the stoichiometric relationship (i.e. three 

silver atoms are replaced by one Au atom, see reaction 1). Noticeably, each NT inherits the 

morphological features of the Ag NRs, such as the pentagonal cross section and five straight 

side edges.  
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Figure 2 SEM (A) and TEM (B) image of Au NTs of length ~370nm; (C) SAED pattern of 

an individual Au NT (D) schematic illustration of the elongated cyclic penta-tetrahedral 

model of Au NTs and real space (TEM) image; (E) TEM image of a broken Au NT, of which 

the outer wall was partially detached, exposing the inner wall; HRTEM images of the inner 

wall (F), outer wall (G) and open end  (H) of the nanotube in E. 

 

     The selected area electron diffraction (SAED) pattern of an individual Au NT showed 

superpositions of <110> and <111> zones, which are consistent with a cyclic penta-twinned 

crystal with five {111} twin boundaries arranged radially to the [110] direction of elongation, 

that is, the ends of this NT are terminated by {111} facets, and the side surfaces are bounded 

by {100} facets,
[29-31]

 providing further support for the above-mentioned morphological 

features observed from the real space TEM images of the Au NTs (Figure 2B and D) and the 

diffraction patterns from X-ray diffraction (XRD)  (Figure S4). Further structural information 

of the Au NTs, (e.g. open end, cross section, inner wall, and outer wall) was obtained by 

sonicating the sample for 10 min to break some of the Au NTs.  The resultant NTs were drop-

cast onto the TEM grid.  Figure 2E shows the TEM image from a typical broken gold 
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nanotube. The outer wall of this imaged NT was partially detached, exposing the inner wall. 

High-resolution TEM images were taken from the middle part (Figure 2G), upper end (Figure 

2F), and the lower end (Figure 2H), which correspond to the exposed inner wall, outer wall, 

and the open end, respectively. The fringe spacing measured from the outer wall was ~0.20 

nm, which can be assigned to the separation between (200) planes of face center-cubic gold 

(0.204 nm), revealing that the outer wall is dominated by the (200) planes, while the cross-

section of the open end is dominated by (111) planes with the spacing ~0.24 nm. It is 

noteworthy that, in addition to some regions with (200) plane, (111) planes also exist in the 

inner wall. Because atoms on different crystallographic facets have different interaction 

strengths with a polymeric or surfactant capping reagent,
[32]

 it can be envisaged that, when the 

Au NTs are utilized as drug delivery systems, the varied crystalline morphology on the inner 

and the outer wall will provide a possibility for differential surface modification on the two 

separate sides of the wall.
[12] 

 

2.2. Tunable NIR Absorbance of the Gold Nanotubes 

The Au NTs exhibit absorbance peaks associated with the excitation of localized surface 

plasmon modes in the NIR region. The absorbance peak red-shifted with increasing nanotube 

length (Figure 3A). Boundary Element Method (BEM) modeling (Figure 3B) indicates that 

the NIR absorbance could be assigned to the superposition of the transverse mode and the first 

harmonic (quadrupole) longitudinal mode (labeled 1 in Figure 3B). The calculation also 

shows the second harmonic longitudinal mode (labeled 2) that is too weak to be resolved 

experimentally. Figure 3C shows that the transverse mode is insensitive to NT length while 

the longitudinal mode displays a distinct red shift with increasing nanotube length. Calculated 

extinction spectra for different NT lengths are shown in Figure S5. Whilst the absolute peak 

positions observed in the experiments are slightly different from the calculated values 

(possibly because of the simplified representation of the NTs selected in the modeling), both 



  

10 

 

the experiment and modeling show a similar shift in the plasmon band of ~0.78 nm 

(wavelength) per nm (NT length).  

 

 

Figure 3 (A) UV-Vis spectra of the Au NTs of different lengths (B) BEM calculated 

extinction spectrum of NT of a length of ~370nm (Outer diameter= 75 nm, wall thickness= 6 

nm, Au% = 100%).  The label 1 is the quadrupole longitudinal mode, and the label 2 is the 

octupole longitudinal mode. (C) The dependence of the SPR position on the length of Au NTs 

(experimental and calculated) (E) The dependence of the SPR position on the amount of 

HAuCl4 for Au NTs (~370 nm) and the molar composition of Au NTs. 
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    It was also observed that for Au NTs of a given length, the absorbance peak was red-shifted 

with increasing amount of HAuCl4 added in the formation of Au NTs. For a NT of ~370 nm 

length, the peak shifted from 775 nm to 880 nm by a change in HAuCl4 amount from 20 µL to 

50 µL. Similar trends have been reported for hollow Au nanospheres,
[33] 

Au nanocages,
[34]

and 

long Au nanotubes (of micrometers in length).
[35] 

The TEM images (Figure 2B and S7) in our 

study showed no discernable variation in the thickness with increasing amount of HAuCl4, 

thus we ascribe the observed red-shift to the variation of elemental composition and porosity 

of the NTs. The elemental composition (Table S1) shows a decrease in the Ag content with 

the increasing HAuCl4 amount. Figure 3D shows a linear correlation between SPR peak 

position and the Au molar fraction, which is consistent with results found for Au-Ag alloy 

spherical nanoparticles
[36]

 and theoretically for the Au-Ag NTs.
[37]

 Furthermore, the reduced 

Ag content implies more Ag has been etched from the NTs, increasing the porosity and 

surface defects (as shown in Figure S7), which may also contribute to the observed red-

shift.
[28, 33, 38-40]

  

 

2.3. Surface Modification of the Au NTs 

    The route for NT synthesis described above involved CTAB, which is highly cytotoxic and 

its removal from solution generally causes undesired aggregation of the nanotubes, thus 

hindering potential biomedical applications.
[41] 

Furthermore, although the CTAB-Au NTs 

have good stability in DI water (well-dispersed after several weeks), during a 30 min-

incubation with serum-containing medium, CTAB-Au NTs agglomerate and precipitate with 

time, which also precludes their biological application. Therefore, surface modification is 

necessary to achieve biocompatible and low-cytotoxic nanotubes with colloid stability in a 

buffer medium.  The positively charged CTAB-Au NTs were coated with negatively charged 

sodium polystyrenesulfonate (PSS, 70 kDa) (see Experimental Section), which is commonly 
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used as a nontoxic peptizing agent in commercial products and thus generally regarded as a 

safe additive.
[42]

 After the treatment with PSS, a thin organic layer around the nanotubes was 

observed in TEM image (Figure S8A), which is a direct visualization of polymer coating of 

the Au NTs.
[43] 

The Zeta potential of gold nanotubes (in DI water) changed from (45±3.5) mV 

to (-43.7±1.7) mV, also consistent with the successful coating of PSS on the surface of 

CTAB-capped Au NTs. The magnitude of the Zeta potential indicates that a stable colloidal 

dispersion has formed.  The PSS coated NTs showed a 20 nm-red shift induced by the change 

in the local refractive index from that of water to that of PSS (Figure S8B). PSS-coated Au 

NTs demonstrated excellent stability in serum-containing medium without significant 

absorbance loss in the NIR peak over 7 days (Figure S9), making them suitable for long-term 

culture with cells and providing the basis for further in vitro and in vivo studies.  

2.4. Cytotoxicity Assessment of PSS-coated Au NTs 

    Cytotoxicity of the PSS-coated gold nanotubes was assessed by using SW480 human 

colonic adenocarcinoma and RAW 264.7 mouse leukemic macrophage cell lines with 

different concentrations of nanotubes ranging from 0.068 to 50 µg/mL. As shown in Figure 4, 

SW480 cells displayed a viability of over 90%, after 72 h incubation with Au NTs, even at 

high dosage (50 µg/mL). Raw 264.7 cells showed viability of ~100% at all concentrations 

after 24h exposure to NTs. The higher cytotoxicity of the Au NTs to the RAW 264.7 

macrophages after 72 hours at high doses (16.7 and 50 µg/mL, IC50=42.35 µg/mL) compared 

with that to SW480 cancer cells may result from higher cellular uptake of nanoparticles into 

macrophages.
[44]
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Figure 4 In vitro cell viability of SW480 cells and RAW 264.7 cells with increasing 

concentrations of PSS-coated Au NTs (~370 nm in length, Au mass fraction=73.9%). Results 

are shown as mean ±SD (n=3) as determined using CCK-8 assays.  

 

2.5. Cellular Uptake of PSS-Au NTs  

   The in vitro cellular uptake of Au NTs was investigated using dark field microscopy. 

Figure 5 shows the bright-field and dark-field microscopy images of SW480 and RAW 264.7 

cells after incubation for 12 h in media containing Au NTs.  Bright-field microscopy images 

(Figure 5A and C) show that cells incubated with Au NTs maintained their attachment to 

glass slides and their normal morphology corroborating the good biocompatibility of the PSS-

Au NTs. The dark field microscopy images (Figure 5B and D) show that both SW480 and 

RAW 264.7 cells appear to contain Au NTs as seen by the scattered light. 
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Figure 5 Bright-field and dark-field microscopy images of SW480 and RAW 264.7 cells after 

incubation overnight in a medium containing Au NTs (~370 nm in length, Au mass 

fraction=73.9%). All dark-field microscopy images are presented using the same brightness 

and contrast conditions.  

 

    Careful examination of the dark-field microscopy images shows the PSS-Au NTs enrich 

the cytoplasm of the cells instead of being evenly or randomly distributed on cells as it would 

be in the case of nonspecific adhesion, suggesting the cellular uptake of the nanotubes.
[45]

 It 

was found that RAW264.7 cells possessed higher levels of NT uptake than SW480 cells, 

presumably because of the specialized phagocytosis of macrophage cells. These results 

clearly demonstrate the potential theranostic application of such PSS-Au NTs as both a 

bimodal (dark-field optical imaging and photoacoustic imaging which will be discussed in the 

following section) contrast agent for bio-imaging, and as vehicles for drug delivery to cancer 

cells or macrophage-mediated targeting. (Circulating monocytes/macrophages have a natural 
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ability to traverse the intact and compromised Blood Brain Barrier and could be used as 

vectors to target tumors and surrounding tumor infiltrated tissue.
 [46, 47]

)
  

 

2.6. In Vitro Photothermal Cell Ablation with PSS-Au NTs 

 
    Motivated by the tunable NIR absorption, low cytotoxicity and cellular uptake of the PSS-

Au NTs, their efficacy for photothermal ablation of cancer cells in vitro was investigated. 

Their photothermal cytotoxicity was evaluated by exposing SW480 cancer cells to a 7 ns 

pulsed laser with a wavelength of 800 nm at a fluence of 13 mJ/cm
2
 for 600 pulses. In the 

absence of PSS-Au NTs, ~ 90% of SW480 cells were viable following irradiation. However, 

with the addition of 50 µg/mL of PSS-Au NTs, cell viability after laser illumination was 

reduced to (16 ± 3) % (Figure 6).  The results shown in Figure 6 demonstrate that the PSS-Au 

NTs, when combined with pulsed laser excitation, cause the photothermal ablation of cancer 

cells in the NIR window with low doses of NTs (the highest dose used was 50ppm). The 

results show that, for fixed irradiation conditions, the phototoxicity increased with increasing 

NTs dose. In addition, the laser fluence used was significantly below safe exposure limits for 

clinical use. 
[48]
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Figure 6 In vitro SW480 cell viability measured by CCK-8 assay (n=3). SW 480 cancer cells 

were cultured with varied concentrations of PSS-Au NTs and then irradiated with the 7ns 

pulse laser (wavelength=800 nm) at a fluence of 13 mJ/cm
2
 per pulse for 60 s (600 pulses). 

Cells that were incubated in the absence of agents without irradiation were used as the control 

group. Results are shown as mean ±SD (n=3). 

 

 In vivo Photoacoustic Imaging and Biodistribution Study of PSS-Au NTs  

    To investigate their effectiveness as a photoacoustic image contrast agent, we performed in 

vivo imaging of the Au NTs using multispectral optoacoustic tomography (MSOT), which is 

ideally suited for detecting probes in the NIR window. A 200 µL bolus of PSS-Au NTs (25 µg 

Au/mL, ~370 nm in length, Au mass fraction=73.9%) was injected intravenously into SW620 

tumor-bearing mice and images were collected at pre-injection and 1 hour post injection (HPI) 

time points. A region of interest (ROI) consisting of transverse slices respectively spanning 

the mouse spleen-liver and tumor region was used to construct maximum intensity projection 
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(MIP) images. Figure 7 shows in vivo MIP images, obtained for excitation at 800 nm, at the 

plasmon absorbance peak of Au NTs, of the transverse slices at 1 HPI. The background-

corrected images (Figure 7B and D) exhibit good contrast enhancement, which demonstrates 

the excellent photoacoustic signal generation capability of Au NTs through high efficiency 

excitation of the NIR-SPR mode. The accumulation of Au NTs in the tumor site was observed, 

possibly due to EPR effect (enhanced permeability and retention effect, whereby the leaky 

tumor vasculature contains wide interendothelial junctions and a malfunctioning lymphatic 

system). It was also observed that, strong in vivo MSOT signal of Au NTs was detected in the 

liver, spleen, and intestines. The high spatial resolution of MSOT demonstrates that the signal 

is localized in the parts of the vessels and tissues that displayed elevated contrast on single-

wavelength optoacoustic images even before the probe was injected. This suggests that probe 

was co-localized to contrast producing areas of accumulated blood, and considerable amount 

of Au NTs remained in the circulation at 1 HPI.
[49] 

The overlay image (Figure 7E) of PSS-Au 

NT, oxyhemoglobin and hemoglobin signal reveal that the PSS-Au NTs are in or close to the 

blood vessels in the tumor, possibly due to the high interstitial fluid pressure and dense 

interstitial matrix,
[50, 51]

 similar to the previously reported intratumoral distribution pattern of 

passively targeted gold nanoparticles.
[49, 50]

 The strong MSOT signals from PSS-Au NTs 

observed in the tumor region at 1 HPI shows that MSOT imaging, combined with 

photothermal therapy, may offer a novel theranostic approach with high potential for 

translation to the clinics. 
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Figure 7 In vivo MSOT MIP images (single wavelength 800 nm) of transverse slices 

corresponding to spleen-liver region (A, B) and tumor region (C, D); Anatomical background 

(pre-injection of Au NTs) image (A, C) with the identification of major organs (Liver (L), 

Intestine (I), Spleen (S), Aorta (A), Tumor (T)); Background-corrected MIP image (B, D) 

showing strong in vivo photoacoustic signal of Au NTs and the regions of high Au NT uptake 
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at 1h-post injection point. (E) Overlay of PSS-Au NT signal (jet scale), oxyhemoglobin signal 

(red scale) and hemoglobin signal (blue scale). 

 

    The whole-body longitudinal biodistribution of PSS-Au NTs was visualized and semi-

quantified by MSOT. A 200 µL bolus of PSS-Au NTs (25 µg Au/mL, ~370 nm in length, Au 

mass fraction=73.9%) was injected intravenously into HCT116 tumor-bearing mice and 

images were collected at pre- and 0.5 h, 24 h, 48 h and 72 h-post injection time points. The 

non-background-corrected orthogonal images in Figure 8 reveal that, at 0.5 HPI, the PSS-Au 

NTs showed uptake by liver and spleen, likely attributed to the macrophages residing in these 

tissues, and substantial increase in signal from blood that makes vessels (e.g. aorta) visible. 

Passive targeting and selective accumulation of nanoparticles at tumor sites depend on the 

degree of tumor vascularization and porosity.
[52]

 In this biodistribution study with HCT116 

tumor lacking extensive vascularization,
[53, 54] 

no accumulation of PSS-Au NTs at the tumor 

site was observed. (Figure S11 resolves the contributions from oxygenated and deoxygenated 

hemoglobin within the tumor,
[49, 50]

 and shows limited oxyhemoglobin signal in the HCT116 

tumor, indicating a lack of vasculature required for probe delivery and providing a possible 

explanation for the absence of the probe inside the tumor.
[49]

)
 
The MSOT signal of Au NTs 

transferred from liver and spleen to intestine at 24 and 48 HPI and then decreased to the pre-

injection level at 72 HPI, suggesting probe clearance via the hepatobiliary system within 72 h.  
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Figure 8 In vivo non-background-corrected orthogonal images of HCT 116 tumor-bearing 

mice at varied time points after tail-vein injection of PSS-Au NTs. (The cartoon in the inset 

shows the 3D coordinate system defining the orientations of the orthogonal views), (Liver (L), 

Intestine (I), Spleen (S), Aorta (A), Tumor (T)) and quantifications of the MSOT signal 

intensity in aorta, different organs and tumor at different time points post-injection.  

 

- -   

    Histological analysis of the major organs (liver, spleen) was performed on tissues harvested 

at 72h post injection of the Au NTs. No apparent tissue/cellular damages were observed in the 

mice injected with Au NTs. No overt pathological changes were observed in the spleen or 

liver. As seen in Figure S12 and S13, in the dark-field microscopy images of these tissues, the 

light scattering signal of Au or Ag was absent, confirming the clearance of the Au NTs from 

these organs at 72 HPI, in agreement with in vivo MSOT imaging results. We postulate that 
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the abundant surface charge of the PSS-Au NTs make them amenable to hepatobiliary 

excretion into the gastrointestinal tract.
[55]

 It is known that most nanoparticles tend to exhibit 

high uptake in the reticuloendothelial system of liver and spleen upon intravenous 

administration and are not rapidly degraded or excreted. To best minimize toxicity and/or 

collateral effects, a nanoparticle should either be degraded in situ into truly non-cytotoxic 

subcomponents or be excreted from the body, once it has served its diagnostic/therapeutic 

purpose.
[56]

 Therefore, the strong in vivo MSOT signals from the Au NTs and the rapid 

hepatobiliary excretion will endow applicability as efficient and safe probes for in vivo bio-

imaging. 

 

 

3. Conclusion 

We have developed a route for the length-controlled synthesis of hollow gold nanotubes 

with well-defined shape, high crystallinity and strong surface plasmon absorbance bands in 

NIR region. The length control was achieved by adjusting both the seed amount and growth 

temperature in the synthesis of Ag NR templates. The resultant Au NTs had ~6 nm thick walls 

and open ends.  The inner and outer walls had distinct crystalline structures, which will 

facilitate differential surface functionalization for the future.  By varying the gold salt amount 

during NT growth we have further shown that the Au content in the nanotubes could be 

controlled in a systematic way providing an alternative means for tuning the optical and 

plasmonic properties.  

    The Au NTs have been engineered by PSS coating, leading to the formation of a 

nanosystem with good colloidal stability in cell culture medium, low cytotoxicity, cellular 

uptake by cancer cells and macrophage cells, and photothermal ablation of cancerous cells, 

offering the potential to be further developed for in vivo bioimaging or theranostic 

application. 
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 Multi-spectral optical tomography (MSOT) was used to evaluate the in vivo capability to 

visualize the PSS-Au NTs and their biodistribution. The intravenously injected PSS-Au NTs 

have shown excellent photoacoustic signal enhancement and the accumulation at the SW620 

tumor site. The biodistribution study shows that the PSS-Au NTs undergo hepatobiliary 

clearance over a period of 72 h.  

     Taken together, these results demonstrate that Au NTs can be applied as a safe and 

effective theranostic system for photothermal therapy and photoacoustic imaging, as well as a 

promising drug delivery vehicle. In future studies, more work will be devoted towards active 

targeting of the Au NTs to tumor site. One can envision the further development of gold 

nanotube based nanosystems which enable simultaneous visualization and delivery of 

therapeutic agents combined with high resolution imaging modalities and photothermal 

therapy function, holding great potential for further clinical application. 

 

 

4. Experimental Section  

Materials: Gold (III) chloride trihydrate (520918), cetyltrimethylammonium bromide (CTAB, 

H6269), ammonium hydroxide solution (NH3 in H2O), Cell count kit-8 (CCK-8, 96992-

500TESTS-F) were purchased from Sigma-Aldrich. Silver nitrate (11414), Trisodium citrate, 

anhydrous (45556), L-(+)-Ascorbic acid (A15613) were purchased from Alfa Aesar. 

Poly(sodium4-styrene sulfonate), MW 70, 000 (PSS, 10328550), sodium borohydride 

(NaBH4, 10599010), hydrochloric acid (37%, UN1789) and nitric acid (70%, UN2031) were 

purchased from Fisher Scientific. All chemicals were used without further purification. 

Characterizations: The UV-Vis absorption spectra were recorded with a Perkin-Elmer Model 

Lambda35 spectrophotometer. SEM micrographs were obtained using a LEO 1530 Gemini 

FEGSEM. Each SEM sample was prepared by placing 5 µL nanoparticle dispersion (in Milli-

Q) onto an aluminium substrate and drying under room temperature naturally. A transmission 

electron microscope (TEM; Tecnai™ G
2 

Spirit TWIN / BioTWIN) with an acceleration 
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voltage of 120 kV was used to take lower resolution TEM images.  A field emission gun TEM 

microscope (Philips CM200 FEGTEM; 200 kV) equipped with a Gatan GIF200 imaging filter 

running DigitalMicrograph software was used to take higher magnification TEM images and 

energy dispersive X-ray spectroscopy (EDX). For preparing for the TEM samples, 5µL 

nanoparticle dispersion (in Milli-Q) was dropped onto a carbon-coated copper grid and dried 

at room temperature naturally. A Malvern Zetasizer-Nano Series-Zen 3600 was used to 

perform zeta potential measurements. A minimum of 20 measurements was acquired for each 

sample. The XRD pattern was obtained by using a Panalytical Model X’Pert Pro MPD X-ray 

diffractometer with Cu Kα source and an X’cellerator detector. A continuous scan over a 2θ 

range from 30° to 90° was performed with an acquisition time of 1h per sample at a step size 

of 0.05°, samples were prepared by depositing and drying slurries directly on low-background 

Si sample holders. The concentration of Au nanotubes (Au and Ag content) in solution was 

determined using an atomic absorption spectrometer (AAS, Varian 240fs). 

Reaction Preparation: Vials and stir bars were cleaned with aqua regia (nitric acid and 

hydrochloric acid in a volume ratio of 1:3) thoroughly rinsed with DI water, and dried in an 

80ºC oven before use. Once dry, the flasks were allowed to cool to room temperature before 

any reactants were added. 

Synthesis of Ag NRs: 1) Preparation of Ag seed: The freshly-prepared AgNO3 aqueous 

solution (250µL, 10mM) and trisodium citrate aqueous solution (500µL, 5 mM) were added 

sequentially into 9.250mL Milli-Q to form a 10 mL solution with a final concentration of 0.25 

mM AgNO3 and 0.25 mM trisodium citrate, into which an aqueous solution of NaBH4 (0.3 

mL, 10 mM, freshly-prepared and kept in 4ºC refrigerator for 3h before use) was injected with 

vigorous magnetic stirring. Stirring was stopped after 30 s. The as-formed seed was incubated 

at 21ºC in dark for 2hs. (In our experiments, few Ag nanorods were formed when the seed 

was incubated at temperature higher than 25ºC). 2) Growth of Ag nanorods: the freshly-

prepared AgNO3 aqueous solution (200µL, 8mM) and ascorbic acid aqueous solution (400µL, 
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100mM), Ag seeds (20µL, 50µL or 100µL) were added sequentially into 21.7mM PSS 

aqueous solution (7.44mL, 21.7mM, the concentration of PSS was calculated according to its 

monomer unit. The solution was kept at corresponding growth temperature for 30min) 

without stirring. After an undisturbed growth for 10 min at a certain temperature (15ºC, 20ºC, 

25ºC, 30ºC or 40ºC), the reaction products were isolated by centrifugation at 4000rpm 

(3005g) for 10min followed by removal of the supernatant. The Ag NR pellet was re-

dispersed in Milli-Q. 

 

Formation of Au NTs: The as-synthesized Ag NRs were washed with Milli-Q for 3 times via 

centrifugation (at 4000rpm for 8mins for each time).  The final Ag NR pellet was mixed with 

330µL of CTAB aqueous solution (20mM), and then sonicated for 15mins.  0.02 M HAuCl4 

aqueous solution (20 µL, 30 µL, 40 µL or 50 µL) was slowly added dropwise to the CTAB-

Ag NR solution. The reaction was allowed to proceed at room temperature for 30min and 

magnetic stirring was used throughout the synthesis. The resultant solution was centrifuged at 

5000rpm (4696g) for 8mins and the supernatant was removed. The pellet was washed with 

CTAB aqueous solution (10mM) and NH3⋅H2O (33%) subsequently, then redispersed in 

200µL NH3⋅H2O and kept for overnight to further remove the AgCl,
[57] 

according to reaction 2 

(some Ag was also removed by treatment with NH3⋅H2O, following reaction 3
[58]

). The 

mixture was centrifuged (5000rpm, 8mins) and washed with CTAB aqueous solution (0.01M) 

twice. The final product of Au NTs was collected in Milli-Q. The synthesis was scaled up by 

10-fold to yield the gold nanotubes for in vitro and in vivo studies. 

 

AgCl (s) + 2NH3⋅H2O → [Ag(NH3)2]
+ 

(aq)+ Cl
-
(aq) +2H2O                   (2) 

 

4Ag (s) + 8NH3(aq)+O2 +2H2O→ 4[Ag(NH3)2]
+ 

(aq) + 4OH
- 
(aq)          (3) 
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Surface Modification with Poly(sodium 4-styrenesulfonate) (PSS): A CTAB-Au NTs 

suspension (O.D. ~1) was added dropwise into the solution of PSS solution (10 mg/mL) and 

NaCl  (5 mM) in a 1:1 volume ratio and allowed to react for 1 day (magnetic stirring was used 

throughout the reaction) The nanotubes were then collected by centrifugation (5000 rpm, 15 

mins), the supernatant was decanted, and the Au NTs were redispersed in an aqueous solution 

of unadulterated PSS (1mg/mL, the same volume as the original suspension of CTAB-Au 

NTs). The centrifugation (5000 rpm, 15 mins)-redispersion cycle was repeated twice to yield 

PSS-coated Au NTs suspensions with minimal cytotoxicity. The resultant PSS-Au NTs 

suspension (in unadulterated PSS solution) was centrifuged (5000 rpm, 15 mins) and 

redispersed in Milli-Q for future use.  

Cell Culture: SW480 cells (SW480 ATCC CCL-228, Invitrogen Life Technologies) and 

RAW 264.7 cells (ATCC-TIB-71, Invitrogen Life Technologies) were cultured in RPMI 1640 

medium (61870-010, Life Technologies) with 10% Foetal Bovine Serum at 37 ºC in a 

humidified atmosphere of 5% CO2 in air. 

Cytotoxicity Assay: The Cell Counting Kit - 8 (CCK-8) cell viability assays were performed 

according to the manufacturer's instructions. Cells were seeded in 96-well plates (3599, 

Corning) at a density of 5000 cells/ well. After incubation for 24 h at 37 ºC in 100 µL culture 

medium (RPMI 1640), 10 µL of culture medium containing varied concentrations of PSS-Au 

NTs was added into each well (The concentration in the Results and Discussion represents the 

final concentration of PSS Au NTs in the well). After incubation for 72 h (or 24h), 10 µL 

CCK-8 solution was added in each well, followed by incubation for another 4 h. The 

absorbance was monitored at 450 nm on a micro-plate reader (Mithras LB 940). The 

cytotoxicity was expressed as the percentage of the cell viability as compared with the blank 

control. A culture medium (without cells) containing PSS-Au NTs at corresponding 

concentration was used as the background, the optical density of which was subtracted for 
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eliminating the absorption interference of samples. For each condition, the experiment was 

performed in triplicate with the result of each individual experiment derived from 6 wells. 

Dark-Field Microscopy Imaging: Cells were plated onto 20 mm glass coverslips in a 6-well 

plate (Corning, 3516) at a certain density (2×10
5
 for SW 480 cells and 1×10

5 
for Raw 264.7 

cells) and allowed to grow for 2 days. Then the medium was replaced with 2mL of a medium 

containing PSS-Au NTs at different concentrations. After incubation for 12h, the medium was 

removed and the cell monolayer on the coverslip was rinsed with DPBS twice (14190-094, 

Life Technologies), fixed in 4 % paraformaldehyde/DPBS for 10min at room temperature and 

rinsed with DPBS twice. The fixed coverslips were mounted and sealed onto glass slides.  

Bright and dark field microscopy imaging was performed with an inverted microscope (Nikon 

Eclipse Ti-E, Nikon UK Limited, Surrey, UK) and an oil coupled 100x objective (CFI Plan 

Fluor, Nikon UK Limited, Surrey, UK). Images were recorded using a 5 Megapixel colour 

camera (DS-Fi1, Nikon UK Limited, Surrey, UK) and saved using the NIS-Elements D 

software. 

In Vitro Photothermal Cell Ablation with PSS-Au NTs: SW480 cells were seeded onto 96-

well plates (5000cells/well) and incubated in 100 µL of medium (per well) at 37 ºC in a 

humidified atmosphere with 5% CO2 for 24h. Then the cells were treated with different 

concentrations of PSS-Au NTs. After 4h incubation, the cells were exposed to a 7 ns pulsed 

OPO (optical parametric oscillator) laser (Surelite OPO Plus, Continuum, Santa Clara, CA, 

USA). The output of the 7 ns pulsed OPO laser was tuned to a wavelength of 800 nm, 

attenuated then coupled into a fibre optic cable (BF20LSMA02, ThorLabs Inc, Newton, NJ, 

USA). The fibre output was positioned to illuminate the bottom of a single well of a 96-well 

plate, where the beam width was 7 mm and a fluence of 13 mJ/cm
2
. The plates were mounted 

on a three axis computer controlled gantry system (Zolix Instruments Co, Beijing, China), 

where each well was exposed to the laser for 60 s, i.e. 600 laser pulses (10 Hz pulse repetition 

frequency).  Following the laser exposure, the cells were further incubated for 24h and then 
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10 µL of the CCK-8 solution was added to each well of the plate, followed by incubation for 

another 3h. Then, cell viability was determined by measuring absorbance at the wavelength of 

450 nm with a microplate reader. The experiment was performed in triplicate with the result 

of each individual experiment derived from 6 wells. 

In vivo Photoacoustic Imaging and Biodistribution Study: The colorectal cell line, SW620 

was grown in Roswell Park Memorial Institute medium 1640 (RPMI Medium 1640, GIBCO) 

supplemented with 10% (v/v) foetal calf serum in 5% CO2 at 37°C. 1x10
7
 cells were collected 

in 100µL of phosphate buffered saline and injected subcutaneously into the right flack of 12 

week old female CD1 nude mice to form xenografts. The colorectal cancer cell line, HCT116 

was grown in Dulbecco’s Modified Eagle Medium (DMEM, Invitrogen) supplemented with 

10% (v/v) foetal calf serum, and 4µL/ml Hygromycin B (Sigma, Poole U.K.) in 5% CO2 at 

37
o
C. 1x10

6
 cells were collected in 100µL of serum-free DMEM and injected subcutaneously 

into the right flank of 8-10 week old female CD1 nude mice to form xenografts. All 

experiments were performed following local ethical approval and in accordance with the 

Home Office Animal Scientific Procedures Act 1986. 

     A real-time MSOT scanner was utilized in this study (MSOT inVision 128, iThera medical 

Germany), The animal was anesthetized with isofluorane and placed in supine position inside 

the imaging chamber. 200 µL of PSS-Au NTs (25 µg/mL) was injected via a catheter into the 

tail vein of tumor-bearing anaesthetized mice and the probe biodistribution was monitored 

over time in various organs using PA imaging. Before image acquisition, a volume ROI 

consisting of transverse slices with a step size of 0.5 mm spanning from the liver to the lower 

abdomen was selected by manual inspection of live MSOT images, and the laser excitation 

wavelengths of 715, 730, 760, 800, 830, 850 and 900 nm were selected corresponding to the 

major turning points in the absorption spectra of PSS-Au NTs, oxy- and hemoglobin. 

Multispectral imaging was then performed with 10 signal averages per wavelength per 

transverse slice at different time points. 
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    Images were reconstructed using a model-based approach for offline analysis. After image 

reconstruction, spectral unmixing was performed to resolve individual components from 

different chromophores in the system. For each pixel in the image, the method fits the total 

measured optoacoustic spectrum to the known absorption spectra of the individual 

chromophores, based on linear regression. Maximum intensity projection (MIP) images were 

presented. For the later time points (24 h, 48 h and 72 h) the background subtraction is not 

possible, as the animal is removed and placed in the MSOT system repeatedly, with 

repositioning, in order to avoid over dosage of isoflurane for the entire duration.  

Ex-vivo Analysis: The major organs such as liver and spleen were harvested and fixed in 4% 

(w/v) paraformaldehyde in PBS overnight.  After processing and embedding in wax, sections 

were dewaxed, rehydrated and stained with haematoxylin and eosin.  The histological sections 

were observed with an optical microscope with different combinations of magnification and 

objective lens. 
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Supporting Information is available from the Wiley Online Library or from the author. 

Acknowledgements 

This work was supported by Wellcome ISSF Junior Investigator Development Fellowship. 

G.Marston and N. Ingram are funded by EPSRC. J.Mclaughlan would like to acknowledge 

support from an early career Leverhulme fellowship (ECF-2013-247). D.Sigle acknowledges 

support from the Defence Science and Technology Laboratory (DSTL). The authors thank 

Wouter Driessen, Thomas Sardella and Tim Devling for help in MSOT imaging and data 

analysis. S.Ye thanks Hanqing Qian for helpful discussions and Sarah Perry for help in ex 

vivo work. 

 

Received: ((will be filled in by the editorial staff)) 

Revised: ((will be filled in by the editorial staff)) 

Published online: ((will be filled in by the editorial staff)) 



  

29 

 

[1] S. K. Maji, S. Sreejith, J. Joseph, M. Lin, T. He, Y. Tong, H. Sun, S. W.-K. Yu, Y. Zhao, 

Adv. Mater. 2014, 26, 5633. 

[2] V. Ntziachristos, D. Razansky, Chem. Rev. , 110, 2783 

[3] H. Gong, L. Cheng, J. Xiang, H. Xu, L. Feng, X. Shi, Z. Liu, Adv. Funct. Mater. , 

23, 6059 

[4] J. Chen, M. Yang, Q. Zhang, E. C. Cho, C. M. Cobley, C. Kim, C. Glaus, L. V. Wang, M. 

J. Welch, Y. Xia, Adv. Funct. Mater. , 20, 3684. 

[5] E. C. Dreaden, A. M. Alkilany, X. Huang, C. J. Murphy, M. A. El-Sayed, Chem. Soc. Rev. 

2012, 41, 2740. 

[6] K. H. Song, C. Kim, C. M. Cobley, Y. Xia, L. V. Wang, Nano Lett. 2009, 9, 183. 

[7] X. Huang, S. Neretina, M. A. El-Sayed, Adv. Mater. 2009, 21, 4880. 

[8] R. Bardhan, S. Lal, A. Joshi, N. J. Halas, Acc. Chem. Res. 2011, 44, 936. 

[9] M. P. Melancon, M. Zhou, C. Li, Acc. Chem. Res. 2011, 44, 947. 

[10] Y. Xia, W. Li, C. M. Cobley, J. Chen, X. Xia, Q. Zhang, M. Yang, E. C. Cho, P. K. 

Brown, Acc. Chem. Res. 2011, 44, 914. 

[11] C. R. Martin, P. Kohli, Nat. Rev. Drug Discov. 2003, 2, 29. 

[12] A. Nan, X. Bai, S. J. Son, S. B. Lee, H. Ghandehari, Nano Lett. 2008, 8, 2150. 

[13] J.-W. Kim, E. I. Galanzha, E. V. Shashkov, H.-M. Moon, V. P. Zharov, Nat. Nanotechnol. 

2009, 4, 688. 

[14] X. Huang, X. Peng, Y. Wang, Y. Wang, D. M. Shin, M. A. El-Sayed, S. Nie, Acs Nano 

2011, 5, 6765. 

[15] P. Kolhar, A. C. Anselmo, V. Gupta, K. Pant, B. Prabhakarpandian, E. Ruoslahti, S. 

Mitragotri, Proc. Natl. Acad. Sci. U.S.A 2013, 110, 10753. 

[16] E. C. Dreaden, M. A. Mackey, X. Huang, B. Kang, M. A. El-Sayed, Chem. Soc. Rev. 

2011, 40, 3391. 



  

30 

 

[17] S. K. Balasubramanian, J. Jittiwat, J. Manikandan, C.-N. Ong, L. E. Yu, W.-Y. Ong, 

Biomaterials 2010, 31, 2034. 

[18] L. Guo, I. Panderi, D. D. Yan, K. Szulak, Y. Li, Y.-T. Chen, H. Ma, D. B. Niesen, N. 

Seeram, A. Ahmed, B. Yan, D. Pantazatos, W. Lu, Acs Nano 2013, 7, 8780. 

[19] Y. G. Sun, B. T. Mayers, Y. N. Xia, Nano Lett. 2002, 2, 481. 

[20] H. Jang, Y.-K. Kim, H. Huh, D.-H. Min, Acs Nano 2014, 8, 467. 

[21] S. H. Han, J.-S. Lee, Langmuir 2012, 28, 828. 

[22] N. R. Jana, L. Gearheart, C. J. Murphy, Chem. Commun. 2001, 617. 

[23] M. A. Mahmoud, M. A. El-Sayed, J. Gao, U. Landman, Nano Lett. 2013, 13, 4739. 

[24] R. Becker, B. Liedberg, P.-O. Kall, J. Colloid. Interf. Sci. 2010, 343, 25. 

[25] Y. Bi, G. Lu, Nanotechnology 2008, 19. 275306. 

[26] D. Fava, Z. Nie, M. A. Winnik, E. Kumacheva, Adv. Mater. 2008, 20, 4318. 

[27] E. Gonzalez, J. Arbiol, V. F. Puntes, Science 2011, 334, 1377. 

[28] A. M. Goodman, Y. Cao, C. Urban, O. Neumann, C. Ayala-Orozco, M. W. Knight, A. 

Joshi, P. Nordlander, N. J. Halas, Acs Nano 2014, 8, 3222. 

[29] C. J. Johnson, E. Dujardin, S. A. Davis, C. J. Murphy, S. Mann, J. Mater. Chem. 2002, 12, 

1765. 

[30] E. Carbo-Argibay, B. Rodriguez-Gonzalez, I. Pastoriza-Santos, J. Perez-Juste, L. M. Liz-

Marzan, Nanoscale 2010, 2, 2377. 

[31] H. Y. Chen, Y. Gao, H. R. Zhang, L. B. Liu, H. C. Yu, H. F. Tian, S. S. Xie, J. Q. Li, J. 

Phys. Chem. B 2004, 108, 12038. 

[32] Y. G. Sun, B. Mayers, T. Herricks, Y. N. Xia, Nano Lett. 2003, 3, 955. 

[33] H.-n. Xie, I. A. Larmour, Y.-C. Chen, A. W. Wark, V. Tileli, D. W. McComb, K. Faulds, 

D. Graham, Nanoscale 2013, 5, 765. 

[34] S. E. Skrabalak, L. Au, X. Li, Y. Xia, Nat. Protoc. 2007, 2, 2182. 

[35] Y. G. Sun, Y. N. Xia, J. Am. Chem. Soc. 2004, 126, 3892. 



  

31 

 

[36] S. Link, Z. L. Wang, M. A. El-Sayed, J. Phys. Chem. B  1999, 103, 3529. 

[37] J. Zhu, J. Phys. Chem. C 2009, 113, 3164. 

[38] Y. G. Sun, Y. N. Xia, Nano Lett. 2003, 3, 1569. 

[39] Y. G. Sun, Y. Wang, Nano Lett. 2011, 11, 4386. 

[40] N. R. Sieb, N.-C. Wu, E. Majidi, R. Kukreja, N. R. Branda, B. D. Gates, Acs Nano 2009, 

3, 1365. 

[41] L. Vigderman, P. Manna, E. R. Zubarev, Angew. Chem. Int. Ed. 2012, 51, 636. 

[42] A. P. Leonov, J. Zheng, J. D. Clogston, S. T. Stern, A. K. Patri, A. Wei, Acs Nano 2008, 

2, 2481. 

[43] A. Gole, C. J. Murphy, Chem. Mater. 2005, 17, 1325. 

[44] R. Weissleder, M. Nahrendorf, M. J. Pittet, Nat. Mater. 2014, 13, 125. 

[45] R. Guo, L. Zhang, H. Qian, R. Li, X. Jiang, B. Liu, Langmuir 2010, 26, 5428. 

[46] E. C. Dreaden, S. C. Mwakwari, L. A. Austin, M. J. Kieffer, A. K. Oyelere, M. A. El-

Sayed, Small 2012, 8, 2819. 

[47] S.-K. Baek, A. R. Makkouk, T. Krasieva, C.-H. Sun, S. J. Madsen, H. Hirschberg, J. 

Neurooncol. 2011, 104, 439. 

[48] ANSI. (2007). Z136.1 Safe Use of Lasers. 

[49] E. Herzog, A. Taruttis, N. Beziere, A. A. Lutich, D. Razansky, V. Ntziachristos, 

Radiology 2012, 263, 461. 

[50] W. Wu, W. Driessen, X. Jiang, J. Am. Chem. Soc. 2014, 136, 3145. 

[51] E. A. Sykes, J. Chen, G. Zheng, W. C. W. Chan, Acs Nano 2014, 8, 5696. 

[52] M. K. Yu, J. Park, S. Jon, Theranostics 2012, 2, 3. 

[53] N. Y. Rapoport, Z. Gao, P. Kamaev, D. A. Christensen, in Therapeutic Ultrasound, Vol. 

829 (Eds: G. T. Clement, N. J. McDannold, K. Hynynen), 2006, 481. 

[54] J. S. Burre, S. Walker-Samuel, L. C. J. Baker, J. K. R. Boult, A. J. Ryan, J. C. Waterton, J. 

Haiday, S. P. Robinson, Magnet. Reson. Med. 2011, 66, 227. 



  

32 

 

[55] J. S. Souris, C.-H. Lee, S.-H. Cheng, C.-T. Chen, C.-S. Yang, J.-a. A. Ho, C.-Y. Mou, L.-

W. Lo, Biomaterials 2010, 31, 5564. 

[56] R. Kumar, I. Roy, T. Y. Ohulchanskky, L. A. Vathy, E. J. Bergey, M. Sajjad, P. N. 

Prasad, Acs Nano 2010, 4, 699. 

[57] Y. Sun, Nanoscale 2010, 2, 1626. 

[58] S. E. Hunyadi, C. J. Murphy, J. Mater. Chem. 2006, 16, 3929. 


