This is a repository copy of Embodied carbon dioxide in concrete: Variation with common mix design parameters.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/86867/

Version: Accepted Version

Article:
Purnell, P and Black, L orcid.org/0000-0001-8531-4989 (2012) Embodied carbon dioxide in concrete: Variation with common mix design parameters. Cement and Concrete Research, 42 (6). pp. 874-877. ISSN 0008-8846

https://doi.org/10.1016/j.cemconres.2012.02.005

© 2012 Elsevier Ltd.Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Embodied carbon dioxide in concrete: variation with common mix design parameters

Phil Purnell *, Leon Black

* P.Purnell@leeds.ac.uk, +44 (0) 113 343 0370

Institute for Resilient Infrastructure, School of Civil Engineering, University of Leeds, Leeds, LS2 9JT, UK.

Keywords: C - Compressive Strength; E- Concrete; Embodied carbon dioxide.

Abstract

The transition towards a low-carbon infrastructure requires an understanding of the embodied carbon (eCO$_2$) associated with concrete. However, much current work on eCO$_2$ underestimates the complexity of its relationship with concrete mix design. This paper demonstrates how eCO$_2$ of concrete is not a simple function of strength. Rather, for a given strength, considerable eCO$_2$ savings can be made by careful attention to basic mix design. Replacement of cement with PFA (pulverised fuel ash) can achieve considerable savings; additionally, using a concrete of lower workability, employing a superplasticiser, using crushed rather than rounded aggregate and using a higher strength of cement can have comparably significant effects. The analysis is presented in terms of embodied carbon per unit strength; this shows that there is an optimum strength for all concretes (with regard to minimising eCO$_2$ per unit of structural performance) of between 50 and 70 MPa.
1. Introduction

Carbon dioxide emissions attributed to construction in the UK amount to almost 52 Mt per year [1], accounting for 9.6% of the UK’s ‘carbon footprint’ [2]. Legislation binds the UK Government to an 80% reduction in CO₂ emissions by 2050, and hence their reduction is a government priority [3]. Since operational CO₂ (oCO₂), defined as those emissions associated with the energy used in heating, lighting, air-conditioning, IT services, maintenance etc [4], makes the greatest contribution to emissions, current guidelines rightly concentrate exclusively on reducing these emissions.

Yet the embodied CO₂ (eCO₂) emissions – those associated with the construction and disposal phase of the lifecycle – are a significant proportion of the total lifecycle emissions. Sturgis and Roberts [4] quote figures of 30% for housing, 20% for a supermarket, 45% for an office and 60% for a warehouse. This proportion will approach unity as low-carbon operational paradigms – better insulation, low-energy lighting, fabric energy storage etc. – are introduced, pushing towards the target of reducing oCO₂ to zero by 2019 [5]. Furthermore, for infrastructure, operational emissions are either negligible (e.g. for a dam) or attributed to users (e.g. exhaust emissions from vehicles using a bridge). Thus it is important that we begin to understand the eCO₂ associated with construction.

Most analyses of eCO₂ in construction conclude that it is dominated by the emissions associated with the industrial production of materials [e.g. 6]. Concrete is the most predominant construction material, with global production approaching 20×10^{12} kg per annum, significantly more than all other construction materials combined; and increasing at several percentage points annually as large developing nations upgrade
and install infrastructure [7]. Thus, formulating policy for reducing the overall carbon emissions of the built environment will require that the eCO\(_2\) of concrete is known with some degree of confidence, and that approaches to maximise the efficiency of concrete use are developed.

In contrast to many other major structural materials, concrete is a complex composite. Its wide palette of engineering properties – compressive strength, workability, permeability, chemical resistance etc – is under the nominal control of the structural designer, rather than the materials supplier. Each of these properties can vary dramatically depending on mix recipe; in most cases there are many mix recipes that will result in a concrete which fulfils the designer’s requirements. This multiplicity offers the structural designer an effectively infinite range of concretes, each of which will have its own eCO\(_2\) value. Any notion that concrete has a single, easily defined eCO\(_2\) is clearly deficient.

Despite this, many commentators have published eCO\(_2\) values for concrete, either as individual values or a small range depending on certain properties (mainly compressive strength grade and the use of supplementary cementitious materials). Hammond and Jones [8] give a general value of 0.107 and a monotonic relationship between eCO\(_2\) (0.061 – 0.188) and characteristic cube strength (8 – 50 MPa) for CEM I and CEM II concretes (see below). However, they do advise against the indiscriminate use of these values. Meanwhile, Hacker [9] uses a value of 0.200 with no strength discrimination, whilst Harrison [10] uses 0.13 for plain concrete and 0.24 for “2% reinforced”; the additional CO\(_2\) attributable to the steel. Among those reporting on a volumetric basis, Flower & Sanjayan [11] use values of 0.225 - 0.322
kg/m³ for normal and blended cement concretes, corresponding to eCO₂ ~ 0.09 – 0.12. However, none of these studies give systematic details of mix designs (i.e. relative proportions of constituent materials).

The purpose of this paper is to demonstrate how changing some of the independent mix design variables that have the greatest effect on a concrete mix – cement grade, crushed vs uncrushed aggregate, use of superplasticisers, use of PFA (pulverised fuel ash, also known as fly ash) and workability (i.e. slump) – affects eCO₂ in traditional concrete mixes. It will also introduce a ‘normalised’ eCO₂ value to account for the trade-off between higher cement content (and thus increased eCO₂ per unit of material) and higher strength (and thus use of less material and decreased eCO₂ per component), and by extension the concept of a functional unit for correct analysis of the eCO₂ of structural elements. This goes some way towards aligning the treatment of such problems from an engineering perspective with formal life cycle analysis methods (e.g. ISO 14040).

2. Methodology

In summary, we calculated the eCO₂ and predicted mean compressive strength at 28 days standard curing of cube specimens (target mean strength) for 512 theoretical, ‘virtual’ concrete mixes, as a function of the most important mix design variables. These model mixes were derived from a widely accepted and validated mix design method used throughout UK academia and industry. Whilst it was clearly not feasible to manufacture and test over 500 mixes in a preliminary study of this nature, a number of real trial mixes were prepared, cured and tested for compressive strength in the lab to check the validity of the model.
The BRE mix design method [12] was used as the basis for this work by transferring
the graphical method therein to a spreadsheet in order that the entire range of
theoretical mix designs could be explored. The five design variables having the
greatest effect on the concrete mix specification were varied from their maximum to
their minimum values, i.e.:

- CEM I Cement strength class: 52.5 or 42.5 MPa
- Addition of PFA: 0% or 40% replacement of cement
- Use of super-plasticiser (1% by mass of binder content as liquid additive): no
 or yes
- Aggregate type: uncrushed or crushed
- Slump value: low (L, 0 – 10 mm) or high (H, 60 – 180 mm).

All other mix design factors (aggregate size, grading etc) were kept constant as they
have minimal effect on strength for normal concrete mixes. This approach gave $2^5 =
32$ mix families, as described in table 1. For each mix family, individual mixes were
designed for 16 target mean compressive cube strengths between 17 and 120 MPa
(approximately corresponding to the 16 characteristic strength classes between C8/10
and C100/115 specified in Eurocode 2 [13]; assuming a standard deviation in
compressive strength of 4 MPa), giving a total of 512 virtual mix designs (i.e. 32 mix
families \times 16 strength classes).

The embodied carbon dioxide (on a mass basis i.e. kg CO$_2$ per kg of concrete and thus
a dimensionless quantity) for each virtual mix was calculated according to the
contribution from each of its constituents, using the values given in table 2 [8, 11, 14, 15]. These values are considered by the authors to be the most authoritative available in the open literature. Note that the eCO$_2$ value for the concrete is overwhelmingly dominated (>95% in most cases) by that associated with the cement content.

To validate the strength predictions of the model, eight real trial mixes for mean compressive cube strengths of between 27 and 70 MPa were manufactured in triplicate. A plot of predicted virtual strength vs. measured real strength at 28 days was obtained and the resultant calibration curve was linear with slope of 1.04 and a correlation coefficient of >0.95 i.e. the model tended to slightly, but not significantly, underestimate strength.

3. Results & Discussion.

Figure 1a shows eCO$_2$ vs. target mean strength for all 32 concrete mix families. This represents the entire envelope of data generated by the mix design model; each curve corresponds to a single mix family. The figure is intended merely to show general trends and thus for clarity, only the maximal (mix family 18) and minimal (mix family 15) curves are labelled. As expected, eCO$_2$ rises with concrete strength, owing to the higher cement contents required of such mixes to preserve workability and compaction. However, for a given concrete strength, eCO$_2$ varies by a factor of ~3; thus, any notion that eCO$_2$ is a simple monotonic function of strength is clearly overly simplistic and explains the scatter encountered by Habert [16]. The eCO$_2$ of the concrete mixes where the binder is a blend of CEM I and PFA (dashed lines in Figure 1) is typically lower than the eCO$_2$ of concrete mixes with only CEM I (solid lines in Figure 1). However, this is not always the case. It is possible to have a PFA-CEM I
concrete with a higher eCO$_2$ than a CEM I concrete of the same strength; i.e. there is
some overlap between the sets of dashed and solid lines in Figure 1. Thus the
commonly held view that a concrete made with a blended cement binder will
automatically and necessarily have a lower carbon footprint than a traditional concrete
is also erroneous.

As presented in Figure 1, the observation that eCO$_2$ increases with compressive
strength is not surprising, and has been reported elsewhere [8, 11]. However, it is not
realistic to consider the eCO$_2$ of concrete solely in terms of its mass. It is clear that to
resist a given compressive load, using a higher strength concrete will result in the use
of a lower mass of concrete. Rather, the concrete should be considered in terms of its
structural performance; thus the simple eCO$_2$ plot in Figure 1a is of limited value.
Therefore, Figure 1b normalises eCO$_2$ with respect to compressive strength.

The embodied CO$_2$ of concrete is dominated by the contribution from the cement and
so rises approximately linearly with cement content. Yet the relationship between
strength and cement content is non-linear and dominated by the well-known (and also
non-linear) interaction with water:binder ratio [see e.g. 17]. Consequently, as clearly
demonstrated in Figure 1b, there is an optimum concrete strength with regard to
minimising eCO$_2$ per unit of structural performance, at around 60 MPa. For weaker
concretes, the reduction in eCO$_2$ associated with lower cement content is outweighed
by the need to use more concrete for any given structural component. For stronger
concretes, the reduction in material use afforded by the increased strength is
outweighed by the increased cement content required to achieve that strength. Using
the optimum strength concrete will result in eCO$_2$ reductions of up to 40% for any
given mix family. Fortunately the minima are quite broad, which allows the designer
to retain considerable flexibility in mix design without a large carbon penalty.

In addition to the data presented in Figures 1a and 1b, it was also possible to use the
raw data to extract the effect of the individual mix design variables (there is negligible
interaction) and assess their relative importance. As expected, an important factor was
moving from 100% CEM I binder to 40% replacement by PFA, producing a reduction
in eCO\textsubscript{2} (for a given concrete strength) of 35 ± 1%. Note that this is contrary to the
simple expectation that replacing 40% of the PFA reduces eCO\textsubscript{2} by ~40%. For a
given target 28 day strength, adding PFA requires that the water/binder mass ratio
(w/b) be reduced to compensate for the lower reactivity of the PFA (a \(k \) value of 0.3
has been assumed, [12]). Even though PFA is ~30% less dense than cement and thus
replacing cement with PFA tends to increase binder volume, the net effect is that in
order to keep the paste (i.e. cement + PFA + water) fraction of the concrete constant,
the total binder mass content must be increased by ~13% and thus the cement content
is only reduced by ~35%, not 40%.

The specification of workability had a surprisingly large effect on eCO\textsubscript{2}. Moving from
a slump class of 60-180 mm to 0-10 mm decreased eCO\textsubscript{2} by 35 ± 1% i.e. was as
significant a factor as the use of PFA. Increasing the workability of a normal concrete
mix (all other factors remaining the same) requires that the water content of the mix
be increased. In order that the w/b ratio remains constant, preserving strength, the
binder content must again be increased correspondingly.
Use of a superplasticiser was found to reduce overall eCO$_2$ by 26 ± 1%, since a given workability could be achieved at reduced water content and thus to keep the w/b ratio constant the binder content could be reduced correspondingly. This saving could be achieved because the eCO$_2$ imparted by the superplasticiser itself was negligible.

Changing the aggregate type from uncrushed to crushed, or the cement strength class from 42.5 to 52.5 MPa, both had a relatively small effect on eCO$_2$ (savings of 9 ± 1% and 7 ± 1% respectively). Therefore, to more clearly visualise the impact of the key variables on eCO$_2$, the data are re-plotted in Figure 2, with the curves for cement strength class 42.5 and/or uncrushed aggregate having been removed. Additionally, the curve focuses on the strength range from 20 to 80 MPa, since this is the region in which extensive laboratory experience suggests we can be confident in the model.

Overlaid in Figure 2 are eCO$_2$ and normalised eCO$_2$ values for selected mix designs from the literature spanning >20 years [18-20]. The mix designs arrived at via traditional means [18, 19], fall into the envelope predicted by the model. The designs supposedly optimised for ‘ecological effects’ using a neural network model however [20], would appear to be rather expensive in terms of eCO$_2$. The two monotonic relationships presented by Hammond [8] are also overlaid. They are almost coincident with the upper bound curves for both normal (mix 4) and PFA (mix 12) concretes.

Conclusions

This work has shown that it is an oversimplification to consider the embodied carbon of concrete either as a fixed value or as a direct function of compressive strength. It is clear that carbon savings may be achieved by carefully considering the mix recipe in
Replacement of cement clinker with PFA can achieve considerable savings, as is often reported, but using a concrete of lower workability, employing a superplasticiser, using crushed rather than rounded aggregate and/or using a higher strength of cement can have comparably significant effects. Furthermore, analysing eCO$_2$ normalised for compressive strength as a function of mix design clearly indicates that there is an optimum strength, typically about 60 MPa, at which the eCO$_2$ per unit of structural performance is minimised.

The absolute values presented here should emphatically not be taken as a definitive guide to the eCO$_2$ of concrete. Rather, they serve to highlight that considerable CO$_2$ savings can be achieved by adjusting everyday parameters without recourse to e.g. exotic cements.
Figure captions.

Figure 1: variation of eCO$_2$ (a) and eCO$_2$ per unit strength (b) for 32 mix families. Solid lines represent concrete with a CEM I binder. Dashed lines represent concrete with a 60% CEM I – 40% PFA binder.

Figure 2: detail of selected mixes from Figure 1, with selected data points from literature overlaid [8, 18-20]. Closed symbols indicate CEM I mixes; open symbols indicate 30 to 50% cement replacement by PFA. NB. Curves for mixes 12 & 3, and 16 & 7 overlap.

Table captions

Table 1: Mix design families

Table 2: eCO$_2$ values for major concrete constituents.

References

Purnell, Black – “Embodied … parameters” – Table 1

<table>
<thead>
<tr>
<th>Mix family</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM1 Cement class</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52.5 MPa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFA content</td>
<td></td>
<td>40% replacement of CEM1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superplasticiser</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Aggregate type</td>
<td>Uncrushed</td>
<td>Crushed</td>
<td>Uncrushed</td>
<td>Crushed</td>
<td>Uncrushed</td>
<td>Crushed</td>
<td>Uncrushed</td>
<td>Crushed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slump</td>
<td>L</td>
<td>H</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mix family</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM1 Cement class</td>
<td></td>
<td>42.5 MPa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFA content</td>
<td></td>
<td>40% replacement of CEM1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superplasticiser</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Aggregate type</td>
<td>Uncrushed</td>
<td>Crushed</td>
<td>Uncrushed</td>
<td>Crushed</td>
<td>Uncrushed</td>
<td>Crushed</td>
<td>Uncrushed</td>
<td>Crushed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slump</td>
<td>L</td>
<td>H</td>
</tr>
</tbody>
</table>
Purnell, Black – “Embodied … parameters” – Table 2

<table>
<thead>
<tr>
<th>Constituent</th>
<th>eCO2</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement</td>
<td>0.93</td>
<td>8, 14</td>
</tr>
<tr>
<td>PFA</td>
<td>0.01</td>
<td>8</td>
</tr>
<tr>
<td>Aggregate</td>
<td>0.005</td>
<td>8</td>
</tr>
<tr>
<td>Superplasticiser</td>
<td>0.01</td>
<td>11</td>
</tr>
<tr>
<td>Water</td>
<td>0.001</td>
<td>15</td>
</tr>
</tbody>
</table>
Purnell, Black – “Embodied … parameters” – Figure 1

![Figure 1](image-url)

Figure 1: Graphs showing the relationship between
- Target mean cube strength (MPa) and
- eCO₂ per MPa for Mix 15 and Mix 18.

a. Graph with eCO₂ on the y-axis.

b. Graph with eCO₂ per MPa on the y-axis.
Figure 2

(a)
(b)