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Abstract. Immersion freezing is the most relevant hetero-

geneous ice nucleation mechanism through which ice crys-

tals are formed in mixed-phase clouds. In recent years, an in-

creasing number of laboratory experiments utilizing a variety

of instruments have examined immersion freezing activity of

atmospherically relevant ice-nucleating particles. However,

an intercomparison of these laboratory results is a difficult

task because investigators have used different ice nucleation

(IN) measurement methods to produce these results. A re-

maining challenge is to explore the sensitivity and accuracy

of these techniques and to understand how the IN results are

potentially influenced or biased by experimental parameters

associated with these techniques.

Within the framework of INUIT (Ice Nuclei Research

Unit), we distributed an illite-rich sample (illite NX) as a

representative surrogate for atmospheric mineral dust parti-

cles to investigators to perform immersion freezing experi-

ments using different IN measurement methods and to obtain
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IN data as a function of particle concentration, temperature

(T ), cooling rate and nucleation time. A total of 17 measure-

ment methods were involved in the data intercomparison. Ex-

periments with seven instruments started with the test sam-

ple pre-suspended in water before cooling, while 10 other

instruments employed water vapor condensation onto dry-

dispersed particles followed by immersion freezing. The re-

sulting comprehensive immersion freezing data set was eval-

uated using the ice nucleation active surface-site density, ns,

to develop a representative ns(T ) spectrum that spans a wide

temperature range (−37 ◦C < T <−11 ◦C) and covers 9 or-

ders of magnitude in ns.

In general, the 17 immersion freezing measurement tech-

niques deviate, within a range of about 8 ◦C in terms of tem-

perature, by 3 orders of magnitude with respect to ns. In ad-

dition, we show evidence that the immersion freezing effi-

ciency expressed in ns of illite NX particles is relatively in-

dependent of droplet size, particle mass in suspension, par-

ticle size and cooling rate during freezing. A strong tem-

perature dependence and weak time and size dependence of

the immersion freezing efficiency of illite-rich clay mineral

particles enabled the ns parameterization solely as a func-

tion of temperature. We also characterized the ns(T ) spec-

tra and identified a section with a steep slope between −20

and −27 ◦C, where a large fraction of active sites of our test

dust may trigger immersion freezing. This slope was fol-

lowed by a region with a gentler slope at temperatures below

−27 ◦C. While the agreement between different instruments

was reasonable below∼−27 ◦C, there seemed to be a differ-

ent trend in the temperature-dependent ice nucleation activ-

ity from the suspension and dry-dispersed particle measure-

ments for this mineral dust, in particular at higher tempera-

tures. For instance, the ice nucleation activity expressed in

ns was smaller for the average of the wet suspended samples

and higher for the average of the dry-dispersed aerosol sam-

ples between about−27 and−18 ◦C. Only instruments mak-

ing measurements with wet suspended samples were able to

measure ice nucleation above −18 ◦C. A possible explana-

tion for the deviation between −27 and −18 ◦C is discussed.

Multiple exponential distribution fits in both linear and log

space for both specific surface area-based ns(T ) and geomet-

ric surface area-based ns(T ) are provided. These new fits,

constrained by using identical reference samples, will help

to compare IN measurement methods that are not included

in the present study and IN data from future IN instruments.

1 Introduction

1.1 Background

Primary ice formation by atmospheric ice-nucleating parti-

cles (INPs) markedly influences the formation and life cycle

of mixed-phase clouds and very often also initiates precipita-

tion formation. Therefore, ice-containing clouds play a sig-

nificant role in the energy balance of the climate system and

the hydrological cycle on Earth (Chapter 7 of IPCC 2013;

Boucher et al., 2013). Currently, quantitative predictions for

the impact of these clouds on the Earth’s radiative budget

and thereby the climate are highly uncertain. This uncertainty

arises primarily from a lack of fundamental understanding

of ice microphysical processes, the representation of these

processes in cloud models and knowledge of the abundance

of INPs (Hoose and Möhler, 2012; Murray et al., 2012).

In particular, yearly emission rates of soil dust are 1000 to

4000 teragrams, accounting for a major proportion of both

the dust component and the total particle loading in the atmo-

sphere (Boucher et al., 2013). The resulting radiative forcing

directly exerted by mineral dust is estimated to range from

−0.3 to +0.1 W m−2. Therefore, dust slightly contributes to

the direct cooling effect of aerosols. However, our under-

standing of the influence of the dust burden upon overall cli-

mate forcing, including its secondary effect on cloud albedo,

remains highly uncertain, in part due to the absence of ac-

curate INP representations in atmospheric models. Thus, the

effective radiative forcing effect of airborne dust on current

climate predictions remains unresolved.

A small subset of all particles acts as INPs across a range

of subzero temperatures, triggering ice formation in clouds

via the process of heterogeneous ice nucleation. Previous

laboratory experiments have taken diverse approaches in

an attempt to mimic ice nucleation and freezing processes.

These heterogeneous ice formation processes include deposi-

tion nucleation, immersion freezing, condensation freezing,

and contact freezing (Vali, 1985), inside-out contact freezing

(i.e., freezing of an immersed INP in contact with the droplet

surface from the inside; Durant and Shaw, 2005; Fornea et

al., 2009) and surface condensation freezing (i.e., freezing of

supercooled water or residual aqueous solution trapped on

particle surfaces, e.g., by the inverse Kelvin effect; Christen-

son, 2013; Hiranuma et al., 2014a; Marcolli, 2014; Welti et

al., 2014; Wex et al., 2014). Without INPs, pure cloud wa-

ter droplets or solution within particles can be supercooled

to below −37 ◦C before freezing (Koop et al., 2000; Murray

et al., 2010; Rosenfeld and Woodley, 2000).

Among the various modes of atmospheric ice nucleation,

immersion freezing is one of the most important mechanisms

for primary ice formation, accounting for 85 % of ice for-

mation in clouds that contain supercooled droplets (Hoose

et al., 2010). Furthermore, many of the previous experi-

mental studies have investigated heterogeneous ice nucle-

ation at conditions where water is supercooled before freez-

ing (e.g., Murray et al., 2012). However, the relative im-

portance of the particles’ physicochemical properties (i.e.,

size, composition, solubility, hygroscopicity, cloud conden-

sation nuclei (CCN) activity, ice nucleation (IN) active sites,

surface charge and/or crystallographic structure) for immer-

sion freezing is not yet well known (e.g., Hiranuma et al.,

2013, 2014b; Murray et al., 2012). Hence, more in-depth
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investigations and understanding of heterogeneous ice nu-

cleation processes in supercooled clouds (as well as mixed-

phase clouds) is of particular importance.

1.2 State of the art of IN measurement techniques

The concept of condensation nuclei contributing to ice for-

mation was first introduced by Alfred Wegener in 1911 (We-

gener, 1911). Since then, various instruments and methods

have been developed to investigate the composition of at-

mospherically relevant INPs as well as their abundance;

for example, the rapid expansion cloud-simulation chamber

(RECC) was first introduced as a detector of ionizing par-

ticles. Such instruments have been used in many ice nucle-

ation studies since the 1940s (e.g., Cwilong, 1947; Fournier

d’Albe, 1949; Palmer, 1949; Bigg, 1957; Kline and Brier,

1961). Supersaturated conditions with respect to water and

ice, as a function of temperature, are created in the RECC

vessel by a rapid pressure drop caused by mechanical ex-

pansion and concomitant cooling. Subsequently, water vapor

in the supersaturated air can either deposit or condense on

sample particles, leading to the formation of water droplets

and/or ice.

A different type of instrument widely used to measure

abundance and efficiency of INPs is the continuous flow dif-

fusion chamber (CFDC). The need for portable instruments

capable of obtaining continuous measurements for aircraft

applications emerged in discussions during the 1970s was

a main driver of CFDC development. In CFDCs, particles

are sampled into a region between two ice-coated concen-

tric cylinders (or dual parallel plates) maintained at different

temperatures, which generates a region of ice supersatura-

tion between ice-coated walls. As the particles experience

ice supersaturation conditions for a few seconds, INPs can

be activated and diffusively grow to supermicron ice crys-

tals. Typically, these large ice crystals can be detected and

counted by an optical particle counter (OPC) downstream of

the instrument while the chamber temperature and humid-

ity conditions are continuously recorded. Since its first ap-

pearance in the 1980s with horizontal parallel plates (Hus-

sain and Saunders, 1984; Tomlinson and Fukuta, 1985), sev-

eral new designs and operational principles have been intro-

duced (e.g., vertically oriented cylinders; Rogers et al., 1988,

horizontally oriented parallel plates; Kanji and Abbatt, 2009,

vertically oriented parallel plates; Stetzer et al., 2008; Chou

et al., 2011; Friedman et al., 2011). An alternative configu-

ration is the continuous flow mixing chamber (e.g., Fast Ice

Nucleus Chamber or FINCH; Bundke et al., 2008). The oper-

ation principle of this type of chamber does not involve water

vapor diffusion from the ice walls, as in CFDC, but water va-

por is available for ice growth from the humidified air within

the chamber flow. This leads to an upper limit on INP con-

centrations that are observable with this methodology (De-

Mott et al., 2011). A flow tube (e.g., Leipzig Aerosol Cloud

Interaction Simulator or LACIS, Hartmann et al., 2011) has

also been developed in which a humidified stream contain-

ing aerosol particles is first cooled to activate droplets on the

particles, which upon further cooling may then freeze.

In addition to chamber techniques, the mode-specific con-

ditions for heterogeneous ice nucleation of a known INP

placed on a substrate surface have been studied using opti-

cal microscope techniques. For example, by immersing ice

nuclei in water droplets placed on a hydrophobic substrate

surface and collecting a series of images at controlled cool-

ing rates, the change in reflectivity and opacity following

ice formation can be characterized, and the associated freez-

ing conditions can be identified (e.g., Knopf and Alpert,

2013; Murray et al., 2011). More recently, other optical mi-

croscopy techniques coupled with a unique method of en-

capsulating particles into droplets followed by cooling (Ian-

none et al., 2011) or using the hydrophobic squalene/water

emulsion (Wright and Petters, 2013) were introduced to the

community. Using a similar approach, substrate-supported

cooling studies have been applied to determine the freezing

temperature in the contact mode (e.g., Fornea et al., 2009;

Niehaus et al., 2014), or of deposition nucleation (e.g., Kanji

and Abbatt, 2006; Bingemer et al., 2012; Dymarska et al.,

2006). The microscopy-coupled substrate-supported freezing

devices are advantageous for visualizing the consequences

of specific ice nucleation modes in controlled and simulated

environments. In some studies, immersion freezing of micro-

liter scale droplet volumes was analyzed at temperatures (T s)

higher than−10 ◦C with a sensitivity of INP concentration as

good as ∼ 10−5 L−1 (Ardon-Dreyer et al., 2011).

The freezing temperature of INPs either immersed in or in

contact with levitated supercooled water droplets suspended

in the air can also be determined by the change in light scat-

tering with a charge-coupled device (CCD) camera using an

electrodynamic balance (EDB; Hoffmann et al., 2013), an

acoustic levitator (Diehl et al., 2014) or in a vertical wind tun-

nel (Szakáll et al., 2009). The advantage of these methods is

the ability to provide, via high-resolution images, substrate-

free information for statistically representative ice nucleation

processes on a single droplet basis. This advantage is shared

with all of the above-mentioned chamber and flow tube de-

vices.

Undoubtedly, these enormous efforts to develop numerous

IN measurement techniques have advanced our basic knowl-

edge of atmospheric ice formation. As a consequence, the

atmospheric science community will continue to pursue in-

vestigations of IN to unravel their associated effects on cli-

mate. Accordingly, exploring the sensitivities, uncertainties

and biases of various experimental techniques (e.g., methods

for particle generation, size segregation, size estimation, ice

detection and any other notable experimental procedures) in

nucleating ice on particles of known physicochemical prop-

erties is crucial in order to compile comparative INP data

of multiple and complex measurement techniques from vari-

ous research institutions. The information obtained from one

technique guides other measurement techniques (DeMott et
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al., 2011; Riechers et al., 2013). A better understanding of

the sensitivity of multiple techniques and the role of associ-

ated experimental parameters upon INP measurements will

also help in transferring the laboratory-based measurements

of INPs of various atmospheric constituents to their reliable

parameterizations in models of atmospheric processes.

Since the 1960s, four international workshops have been

organized to compare the performance of IN measuring in-

struments that were emerging or available at the time (De-

Mott et al., 2011). In particular, effort was made during the

fourth international ice nucleation workshop in 2007 (ICIS-

2007) to assemble a total of nine laboratory and field IN in-

struments at the AIDA (Aerosol Interaction and Dynamics

in the Atmosphere) facility and compare them using identi-

cal test dust samples (e.g., Arizona Test Dust, or ATD, and

Saharan dust) over similar thermodynamic conditions. State-

of-the-art knowledge was obtained from each workshop ac-

tivity, and such measurement understanding was further in-

corporated to develop the next generation of IN instruments.

1.3 Objectives

The major aim of this study, and concurrent studies within

the framework of the INUIT (Ice Nuclei Research Unit)

project, is to investigate the immersion freezing behavior of

reference particles (e.g., Snomax for bacterial IN processes

and potassium-rich feldspar, K-feldspar, for mineral dust IN

processes). In this work, we distributed illite NX samples

from the same batch [with the exceptions of the samples

used for Leeds-NIPI, ZINC and IMCA-ZINC (acronyms are

defined in the Supplement Sect. S4); Broadley et al., 2012;

Welti et al., 2009] among the INUIT project and associated

partners. With a total of 17 different IN measuring instru-

ments, we intercompared IN data from each instrument in

order to obtain a comprehensive data set for evaluating im-

mersion freezing properties of illite NX particles. The data

set captures the functional dependence of various experimen-

tal parameter variables, such as particle concentration, parti-

cle size, droplet size, temperature, cooling rate and nucle-

ation time, on the immersion freezing properties of illite NX

particles. Further, some instruments used test samples sus-

pended in water prior to experiments, while others used dry-

dispersed particles. The basic experimental methods and pa-

rameterization approaches used to interpret the overall results

and perform the intercomparison are discussed.

Results of freezing efficiencies at specific temperatures are

presented using the ice nucleation active surface-site den-

sity (ns) parameterization (e.g., Connolly et al., 2009; Nie-

mand et al., 2012; Hoose and Möhler, 2012) developed on

the basis of suggestions by DeMott et al. (1995). For in-

stance, Niemand et al. (2012) showed that the singular pa-

rameterization approach of immersion freezing (i.e., freezing

along water saturation conditions while cooling) of various

desert dust particles derived from AIDA experiments con-

verge upon one representative fit as a function of tempera-

ture, which is valid across a temperature range from −12 to

−36 ◦C. The time-independent ns parameterization has also

been used in describing INP activation by several different

constituents of clay minerals, e.g., microcline and kaolin-

ite, using the cold stage droplet freezing technique (Atkin-

son et al., 2013; Murray et al., 2010, 2011). Hence, compar-

ison of IN efficiencies can be readily performed for multiple

types of instruments using ns parameterizations. Moreover,

such time-independent and surface-area-scaled ns formula-

tions can be further adapted to comprehensively assess ice

nucleation in a wide range of atmospherically relevant tem-

peratures and relative humidities with respect to ice (RHice),

as was recently presented in Hiranuma et al. (2014a). The ns

parameterization for both immersion freezing and deposition

nucleation can be directly implemented in cloud, weather and

climate models to calculate the temperature-dependent abun-

dance of INPs as a function of the aerosol surface area con-

centration.

2 Methods

2.1 Illite NX characterization

In this study, we have chosen illite NX (Arginotec, NX

Nanopowder) as a surrogate for natural desert dusts. This

choice of an illite-rich material is based on a comparison of

its mineralogical composition to that of desert dusts, which

are also rich in illite but are also mixed with a range of

other minerals (Broadley et al., 2012). The present work

gives an overview of laboratory experiments for immersion

freezing of particles of illite NX, used as a surrogate for at-

mospheric desert dust particles. Illite NX bulk powder was

previously characterized for its physicochemical properties,

such as mineralogy and specific surface area (SSA or θ for

brevity). It was observed that illite NX samples contained

more than 74 weight percent (wt %) illite (Broadley et al.,

2012; Friedrich et al., 2008) along with other components

[kaolinite, quartz, calcite and feldspars (most likely ortho-

clase/sanidine), see Sect. 3.1 for more detail] which is simi-

lar to the X-ray diffraction (XRD) data specified by the man-

ufacturer. These test particles typically have aggregates of

many nanometer-sized grains, yielding an order of magni-

tude greater SSA (104.2 m2 g−1; Broadley et al., 2012). The

aspherical and elongated nature of illite NX particles (aspect

ratio up to ∼ 4.8; Veghte and Freedman, 2014) emphasizes

the importance of considering its irregular shape. The manu-

facturer reports the particle density, after mechanical granu-

lation, as 2.65 g cm−3.

To determine the purity of our sample, and to compare this

with previous observations, the dust mineralogy of a bulk

illite NX sample was characterized using XRD (Waseda et

al., 2011) prior to distribution. In addition, complementary

energy dispersive X-ray (EDX) spectroscopy analysis was

performed to characterize the elemental composition of in-
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dividual particles. The illite NX particles were sampled di-

rectly from the AIDA chamber using a 47 mm Nuclepore®

filter (Whatman, 0.2 µm pore-size, filter Cat. No. 111106)

and used in the EDX analysis.

The N2-adsorption-based SSA (or BET surface, Brunauer

et al., 1938) of the illite NX sample was also measured. BET

is a gas adsorption technique where the quantity of various

gases required to form a monolayer over the entire available

surface of dry particles, including internal surfaces, is mea-

sured (Gregg and Sing, 1982; Bickmore et al., 2002). From

the knowledge of the size of a molecule on the surface, it

is possible to determine the total surface area (Stotal). In this

work, BET surface areas were determined using two differ-

ent gas adsorbates: N2 and H2O (resulting in θN2
and θH2O),

with the latter being the surface area exposed to water. BET

measurements with H2O were limited to 28 % relative hu-

midity with respect to water (RHw) to correctly account for

a monolayer of H2O (Quantachrome Instruments, 2013).

The effect of particle processing, such as removal of hy-

drophilic ions by water, in a water suspension was examined

by ion chromatography (IC). The influence of dust wash-

ing and discharge of soluble materials on IN propensity has

been previously proposed (Welti et al., 2014). More specif-

ically, the authors postulated two different scenarios at dif-

ferent temperatures based on their observations. At tempera-

tures below∼−38 ◦C, the washed dust component may have

enhanced water condensation below water saturation, and a

formed liquid layer presumably may have stabilized the sub-

critical ice embryo entrapped inside the liquid. The authors

proposed this capillary condensation process as a part of con-

densation freezing or homogeneous nucleation based on the

previous observation (Christenson, 2013) and the theoretical

framework (Marcolli, 2014). Above ∼−38 ◦C, on the other

hand, heterogeneous nucleation might have been suppressed

because the liquid layer derived from the deliquescence of

soluble impurities from individual particles may have dimin-

ished accessibility of water vapor to active sites (e.g., local-

ized surface features such as cracks and edges), originally

proposed by Koehler et al. (2010), preventing the ice embryo

formation. In this study, suspended samples were prepared

by stirring illite NX powders (0.1 g in 10 mL of 18.2 M� cm

nanopure water) over 3 weeks. IC (Dionex DX-500 IC Sys-

tem equipped with Dionex CD20 Conductivity Detector) was

used to determine the concentrations of washed out cations

(K+, Ca2+ and Mg2+) as a function of time. A weak solu-

tion of sulfuric acid [5 mL H2SO4 (96 wt %) diluted in 2 L

of Nanopure water] was used as the eluent. The measure-

ments were conducted in three series: every 5 to 10 s (sec-

onds) within the first 2 min (minutes) (ultra-short time se-

ries, USTS), then every 10 min within the first hour after

immersion (short time series, STS) followed by a long time

series (LTS) with cation concentration measurements con-

ducted every 2 days thereafter for a 3-week period.

2.2 Particle size distribution

Size distributions and the Stotal (in m2 cm−3) of both sus-

pended and dry-dispersed illite NX particles were charac-

terized using four size measurement techniques (i.e., aerosol

size spectrometers and light scattering instruments). In par-

ticular, the dynamic light scattering (DLS) size of suspended

illite NX particles (0.05 to 1 mg bulk illite NX sample in

1 mL of double-distilled water) was determined using the

StabiSizer® (Microtrac Europe GmbH, PMX 200CS) over

the range of 0.0008 to 6.5 µm hydrodynamic diameter. A

more detailed description of this instrument and its applica-

tion for studying the size of particles in suspension are ad-

dressed in Hiranuma et al. (2014b), and only a brief discus-

sion is given here. The DLS measurements were carried out

with negligible contribution of multiple scattering due to the

utilized 180◦ backscattering mode. The hydrodynamic diam-

eter, which was comparable to the volume equivalent diam-

eter, is determined using a refractive index of 1.55 to 1.58

for illite and of 1.333 for water, and a viscosity of water of

1.002 and 0.797 mPa s at 20 and 30 ◦C, respectively. From

this metric, the surface area was calculated assuming spheri-

cal particles.

Size distributions of dry polydisperse illite NX parti-

cles were measured at AIDA controlled expansion cloud-

simulation chamber (CECC) and Meteorological Research

Institute (MRI) dynamic CECC (DCECC) prior to the expan-

sion experiments. For AIDA-CECC, de-agglomerated illite

NX particles from a rotating brush disperser (PALAS, RGB

1000) were passed through a series of inertial cyclone im-

pactor stages (D50 ∼ 1 and 5 µm) and introduced to the 84 m3

volume AIDA vessel. Subsequently, a scanning mobility par-

ticle sizer (SMPS, TSI Inc., Model 3081 differential mobil-

ity analyzer, DMA, and Model 3010 condensation particle

counter, CPC) and an aerodynamic particle sizer (APS, TSI

Inc., Model 3321) were used to measure particle size distri-

butions over the range of 0.01 to 15.4 µm volume equivalent

diameter. The assumption of particle sphericity, a dynamic

shape factor (DSF or χ in equations) of 1.49± 0.12 (aver-

age of 10 measurements± standard deviation) and a particle

density of 2.65 g cm−3 were used to obtain the geometric-

based (volume equivalent) diameter from an APS (Hiranuma

et al., 2014b). At MRI-DCECC, a combination of an SMPS

(TSI Inc., Model 3936) and a welas® optical particle counter

(welas-OPC, PALAS, Sensor series 2500) was used to ac-

quire a size distribution for the size range of 0.01 to 47.2 µm

volume equivalent diameter directly from the 1.4 m3 volume

vessel. The same disperser type was used at both chambers

for particle generation, and the upstream cyclone impactors

(D50 ∼ 1 and 2.5 µm) were similarly deployed to filter out

any larger particles and safeguard against injecting these par-

ticles into the vessel. We note that a linear correction factor

of ∼ 2 was applied to convert the optical diameter measured

by the welas-OPC to the APS-inferred volume equivalent di-
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ameter in several studies (Wagner et al., 2011; Hiranuma et

al., 2014a).

The particle number size distribution of dry particles in the

0.3–10 µm diameter range was also measured by a TSI 3330

optical particle sizer (OPS, TSI Inc.; TSI-OPS hereafter).

For particle generation, the illite NX sample was dispersed

using a magnetic stirrer in a 100 mL glass vessel that was

purged with 200 mL min−1 of dry particle-free compressed

laboratory air, and then diluted further in two stages by ap-

proximately 1 : 100 with dry air. Subsequently, the backward

scattering intensity of scattered light from a particle illumi-

nated by a laser (λ= 660 nm) was measured. The instrument

estimated the particle size distribution, assuming spherical

particles, using Mie theory. As a result, the reported size is

a volume equivalent spherical diameter. Additionally, these

dry-dispersed particles were used for the immersion mode

experiments of FRIDGE as described in the supplementary

methods.

2.3 Ice nucleation measurements

The ice nucleation measurement techniques contributing to

this collaborative effort are listed in Table 1. Descriptions

of each measurement technique and their acronyms are

available in Sect. S4. Briefly, four CFDC-type instruments,

one continuous flow mixing chamber, two cloud simula-

tion chambers, one diffusion cell, two levitators, one vertical

wind tunnel, one laminar flow tube and five cold stage-type

systems were employed in the intercomparison. As seen in

Table 1, measurement techniques with the first seven instru-

ments (i.e., ID 1 to 7) and the immersion mode measure-

ments of FRIDGE (ID 12) examined droplets produced from

bulk illite NX samples in suspension, while the rest used dry-

dispersed illite NX powder, sometimes followed by size se-

lection with a DMA. Methods working with suspensions and

those using dry particles employed different ways to deter-

mine the particle surface area, and the influence of these dif-

ferences on the determination of ns was investigated. For in-

stance, CSU-IS was used to investigate the freezing activity

of both bulk suspension and size-segregated particles in sus-

pension. Two cloud expansion chambers, AIDA-CECC and

MRI-DCECC, examined both polydisperse and size-selected

dry illite NX particles. LACIS and IMCA-ZINC measured

immersion freezing of droplets, where each droplet con-

tained a single particle, and examined differently sized dry

particles. The role of IN modes upon the estimation of ns

was also examined across various temperature ranges. The

EDB-based method was used to measure the contact and im-

mersion mode efficiencies of size segregated dry illite NX

particles around −30 ◦C. Immersion freezing results from

IMCA-ZINC were compared to previously reported ZINC

data (Welti et al., 2009) at temperatures below −31 ◦C and

to PINC data for temperatures below −26 ◦C. In the present

study, we derived ZINC’s ns values from the results reported

in Welti et al. (2009). Specifically, ice formation above 105 %

RHw up to the water drop survival line was used to calculate

ns based on given illite NX particle sizes. We note that the

latent heat of condensation has minimal impact on droplet

temperature, such that RHw > 105 % maintains a water su-

persaturating condition for droplet freezing.

FRIDGE investigated ice nucleation of both dry-

dispersed particles on a substrate at fixed temperatures

(−25 ◦C < T <−18 ◦C) with increasing humidity (“default”

deposition mode nucleation) as well as immersed parti-

cles. In the case of immersion freezing experiments with

suspended samples, the cell temperature was lowered by

1 ◦C min−1.

The range of mass concentrations of the bulk illite NX

sample in suspension varied from 3.1× 10−6 wt % (CSU-

IS) to 2.6 wt % (M-WT). For dry-dispersed particle mea-

surements, particle concentrations varied from ∼ 10 cm−3

(AIDA) up to ∼ 9000 cm−3 (MRI-DCECC). Experiments

with M-AL, M-WT, EDB, and IMCA-ZINC were performed

on a single drop basis. The shortest residence time of roughly

1.6 s was used for the laminar flow tube, LACIS, and the

slowest cooling rate of 0.3 ◦C min−1 (time-average cooling

rate over an expansion, which translates to the equivalent up-

draft rate of ∼ 0.5 m s−1) was used in AIDA-CECC. Alto-

gether, immersion freezing was examined across the temper-

ature range from∼−10 to∼−38 ◦C, and over a varied range

of cooling rates, nucleation times and particle concentrations

(summarized in publically accessible data base available at

http://imk-aaf-s1.imk-aaf.kit.edu/inuit/).

2.4 Ice nucleation parameterization

We now describe a method to parameterize surface area-

scaled immersion freezing activities using the size equivalent

ice nucleation active surface-site density based on geomet-

ric size (ns,geo ; Connolly et al., 2009; Niemand et al., 2012;

Hoose and Möhler, 2012). In short, this surface-site density

approach approximates ice crystal formation observed in an

experiment as a function of temperature, thus not accounting

for time dependence. Accordingly, ns,geo can be expressed by

ns,geo (T )=−ln

(
1−

Nice(T )

Ntotal

)(
1

Sve

)
, (1)

in whichNice is the number concentration of formed ice crys-

tals (cm−3), Ntotal is the total number concentration of par-

ticles prior to any freezing event (cm−3), and Sve is the vol-

ume equivalent surface area of an individual particle (m2).

As demonstrated in Niemand et al. (2012), if the activated

ice fraction is small (< 0.1), the Taylor series approximation

can be applied to Eq. (1). Assuming a uniform distribution of

ns,geo over a given Stotal and a size independency of ns,geo , we

can approximate ns,geo as

ns,geo (T )≈
Nice(T )

NtotalSve

=
Nice(T )

Stotal

. (2)

Atmos. Chem. Phys., 15, 2489–2518, 2015 www.atmos-chem-phys.net/15/2489/2015/

http://imk-aaf-s1.imk-aaf.kit.edu/inuit/


N. Hiranuma et al.: A comparison of 17 IN measurement techniques 2495

Table 1. Summary of INUIT measurement techniques and instruments. All acronyms are available in Sect. S4. Note “poly” and “mono”

denote polydisperse and quasi-monodisperse size-selected particle distributions, respectively.

ID Instrument Description Portable ? Reference Investigable T range Ice detected T range for this study

1 BINARY∗ Cold stage-supported droplet assay No Budke and Koop (2015) −25 ◦C < T <∼ 0 ◦C −24 ◦C < T <−15 ◦C

2 CSU-IS Immersion mode ice spectrometer Yes Hill et al. (2014) −30 ◦C < T <∼ 0 ◦C poly: −25 ◦C < T <−11 ◦C

mono: −26 ◦C < T <−20 ◦C

3 Leeds-NIPI Nucleation by immersed particles No O’Sullivan et al. (2014) −36 ◦C < T <∼ 0 ◦C −21 ◦C < T <−11 ◦C

instrument

4 M-AL∗ Acoustic droplet levitator No Diehl et al. (2014) −30 ◦C < T <∼ 0 ◦C −25 ◦C < T <−15 ◦C

5 M-WT∗ Vertical wind tunnel No Szakáll et al. (2009); −30 ◦C < T <∼ 0 ◦C −21 ◦C < T <−19 ◦C

Diehl et al. (2011)

6 NC State-CS Cold stage-supported droplet assay No Wright and Petters (2013) −40 ◦C < T <∼ 0 ◦C −34 ◦C < T <−14 ◦C

7 CU-RMCS Cold stage-supported droplet assay No Schill and Tolbert (2013) −40 ◦C < T <−20 ◦C −32 ◦C < T <−23 ◦C

8 AIDA∗ CECC No Möhler et al. (2003) −100 ◦C < T <−5 ◦C poly: -35 ◦C < T <−27 ◦C

Hiranuma et al. (2014a, b) mono: −34 ◦C < T <−28 ◦C

9 CSU-CFDC Cylindrical plates CFDC Yes Tobo et al. (2013) −34 ◦C < T <−9 ◦C −29 ◦C < T <−22 ◦C

10 EDB∗ Electrodynamic balance levitator No Hoffmann et al. (2013) −40 ◦C < T <−1 ◦C imm.a: −31 ◦C < T <−28 ◦C

contactb: −34 ◦C < T <−27 ◦C

11 FINCH∗ Continuous flow mixing chamber Yes Bundke et al. (2008) −60 ◦C < T <−2 ◦C −27 ◦C < T <−22 ◦C

12 FRIDGE∗ Substrate-supported diffusion and Yes Bingemer et al. (2012) −25 ◦C < T <−8 ◦C defaultc: −25 ◦C < T <−18 ◦C

condensation/immersion cell

imm.d: −25 ◦C < T <−18 ◦C

13 LACIS∗ Laminar flow tube No Hartmann et al. (2011); −40 ◦C < T <−5 ◦C −37 ◦C < T <−31 ◦C

Wex et al. (2014)

14 MRI-DCECC Dynamic CECC No Tajiri et al. (2013) −100 ◦C < T <∼ 0 ◦C poly: −26 ◦C < T <−21 ◦C

mono: −29 ◦C < T <−21 ◦C

15 PINC Parallel plates CFDC Yes Chou et al. (2011); −40 ◦C < T <−9 ◦C −35 ◦C < T <−26 ◦C

Kanji et al. (2013)

16 PNNL-CIC Parallel plates CFDC Yes Friedman et al. (2011) −55 ◦C < T <−15 ◦C −35 ◦C < T <−27 ◦C

17 IMCA-ZINC Parallel plates CFDC No Lüönd et al. (2010) −65 ◦C < T <−5 ◦C imm.e: −36 ◦C < T <−31 ◦C

Stetzer et al. (2008); ZINCf: −33 ◦C < T <−32 ◦C

Welti et al. (2009)

∗ Instruments of INUIT project partners, a immersion freezing, b contact freezing, c default deposition nucleation, d immersion freezing with suspended particles, e immersion freezing with IMCA, f ZINC alone.

In addition, the IN efficiency can be related to the BET-SSA

to estimate BET-inferred ice nucleation surface-site density,

ns,BET . A description of the procedures used to estimate both

ns metrics is given in Hiranuma et al. (2014b). The advantage

of using ns,geo is its applicability to both measurements and

modeling activities due to the assumption of particle spheric-

ity. Conversely, ns,geo cannot be directly obtained through

suspension experiments because the size distribution of a

suspended sample for each experiment is not available; there-

fore, Stotal is determined from BET and the sample mass sus-

pended in water.

In order to convert ns,geo values of all dry-dispersed parti-

cle measurements into ns,BET , the geometric size-based ice-

nucleating mass, nm,geo (g−1), is first calculated from the

IN active surface using either the surface-to-mass conver-

sion factor (in m2 g−1) of 6/Dveρ (size-selected case) or

Stotal/Mtotal (polydisperse case) by

nm,geo (T )=
Nice(T )

NtotalMve

=
6

Dveρ
ns,geo (T )

≈

(
Stotal

Mtotal

)
ns,geo (T ), (3)

where Mve is the mass of a spherical particle of volume-

equivalent diameter (g), Dve is the volume equivalent mid-

point diameter of particles (m), ρ is the particle den-

sity of illite NX (2.65× 106 g m−3), and Mtotal is the to-

tal particle mass concentration (g cm−3). We note that the

DLS size distribution-derived Stotal/Mtotal (i.e., DLS-SSA)

is 6.54 m2 g−1 and use for the measurements with suspended

particles. We also note that the conversion factor ranges from

11.3 to 2.26 m2 g−1 for size-selected particle diameters from

200 to 1000 nm, respectively, where these sizes denote the

range of particle diameters used in the size-selected cases

in the present study. Therefore, ice-nucleating mass can be

scaled to the BET-SSA (θ , 124.4 m2 g−1) to derive ns,BET as

ns,BET (T )=
nm,geo(T )

θ
≈
nm,sus(T )

θ
=

α

Mveθ
, (4)

in which nm,sus is the IN active mass for suspension measure-

ments, α represents the ice activated fraction (=Nice/Ntotal),

which is the direct measurement of suspension experiments

and some of the dry-dispersed particle methods. With an as-

sumption of a uniform BET-SSA, the resulting ns,BET may be

representative of measurements with suspended samples be-

cause minimal corrections (only α and θ) are involved when

compared to that with dry-dispersed particles. Owing to in-

ternal surface area and surface roughness, BET-SSA may be

greater than DLS-SSA (O’Sullivan et al., 2014).

Alternatively, we can also convert ice-nucleating mass de-

rived from suspension measurements, nm,sus , to ns,geo us-

ing DLS-SSA to provide a reasonable comparison to dry-

dispersed particle measurements. However, this process re-
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quires one more step than when using ns,BET (with an ad-

ditional assumption of constant size distribution for all sus-

pensions) and two more steps than when using nm. For our

intercomparison study, we used both ns,BET and ns,geo . Be-

cause fewer conversion factors are involved, ns,BET may be

best suited for suspension measurements, and ns,geo may be

best suited for dry-dispersed particle measurements (Eq. 3 to

4 or vice versa).

The usage of DLS-SSA for the calculation of Stotal/Mtotal

of suspension measurements appears to be reasonable, as this

leads to ns,geo for suspension measurements nearly equiva-

lent to ns,geo for dry-dispersed particles. When Stotal/Mtotal

is derived based on TSI-OPS measurements, a value of

0.49 m2 g−1 is obtained, which is smaller by a factor of about

13 compared to DLS-SSA. This difference may be mainly

due to the fact that dry-dispersed particles are typically prone

to agglomeration (discussed below, i.e., Sect. 3.1) compared

to the measurements with suspended particles. The presence

of fewer agglomerates in suspended particles is shown in

Fig. 1 of Hiranuma et al. (2014b). Since the size distribu-

tion of a suspended sample for each experiment was not mea-

sured, DLS-SSA was used for the data evaluation for suspen-

sion measurements throughout this study.

3 Results

3.1 Illite NX characterization

XRD results from the present and previous studies (Friedrich

et al., 2008; Broadley et al., 2012) of the major minerals in

bulk samples of illite NX are presented in Table 2. The results

show that the bulk illite NX powder is composed of various

minerals: illite, kaolinite, quartz, calcite and feldspar, but the

relative mass of these minerals for this study differs from

previous studies. For example, our measurement shows that

the illite NX sample is composed of∼ 69 wt % illite mineral,

whereas others report a larger amount of illite from 74 to

86 wt %. Similarly, we observed a somewhat different con-

tent of other minerals compared to previous studies as listed

in Table 2 (see also the Supplement Fig. S1). We note that

the fractional values in compositional fingerprints may devi-

ate even within the same batch, as all three XRD measure-

ments deviated from the manufacturer’s data (Table 2). Fur-

thermore, our XRD result indicates that the illite NX sample

contains a smaller quartz fraction (3 %) than illite IMt1 from

the Clay Minerals Society (10 to 15 % quartz according to

the official XRF data and 20 % based on our own measure-

ments).

To complement bulk XRD analysis, the abundances of 13

elements (Pt, K, C, Ca, O, Fe, Mg, Al, Si, P, S, Pb and Ti),

which are commonly identified in illite-rich samples, were

measured by EDX spectroscopy on a single particle basis.

Four representative EDX spectra are presented in Fig. 1. The

presence of Fe and Mg is typical and characteristic for il-

Figure 1. EDX spectra of representative illite NX particles. (a) Typ-

ical illite, (b) calcite-rich mineral, (c) titanium-oxide-rich mineral,

and (d) lead-rich mineral. Scanning electron microscopy images of

characterized particles are shown in subpanels. A schematic repre-

sentation of the illite’s crystal structure (silicon in yellow, aluminum

in black, oxygen in red and potassium in purple) is also shown.

lite NX particles. The observed large amounts of Si and Al

are due to the presence of layered aluminosilicate structures

(i.e., layer of SiO2 and Al2O3). The observed dominant plat-

inum (Pt) signals in all spectra originate from the sputter

coating conducted prior to EDX analyses. Figure 1a shows

the typical illite spectrum, which is similar to the one previ-

ously published in Welton (1984). Illite-rich minerals, which

included impurities of calcite, TiO2 and Pb-P, were located

by the brightness difference in the backscattered electron de-

tector micrograph images. The results are shown in Fig. 1b,

Atmos. Chem. Phys., 15, 2489–2518, 2015 www.atmos-chem-phys.net/15/2489/2015/
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Table 2. X-ray diffraction analyses of the bulk composition of illite

NX powder.

Weight Percentage (wt %)

Mineral This Manufacturer Broadley Friedrich

study Data et al. (2012) et al. (2008)∗

Illite 69 86 74 76

Kaolinite 10 10 7 5

Quartz 3 4 7 < 1

Calcite/Carbonate 3 N/A 2 2

Feldspar 14 N/A 10 4

(Orthoclase/Sanidine)

∗ Friedrich et al. (2008) noted 11 wt % additional impurities, including phlogopite (7.8 wt %), anhydrite

(1.4 wt %), plagioclase (1.1 wt %), and apatite (0.7 wt %).

c and d (inclusion of calcite, TiO2 and Pb-P, respectively).

However, the EDX technique is not automated to detect these

impurities present within the illite NX particles because of

their very small weight fraction. Therefore, the possible ef-

fect of these observed impurities in illite NX upon the ice nu-

cleation activity cannot be evaluated on the basis of its bulk

analysis of the chemical composition. Nonetheless, detection

of non-illite mineral components may reflect the complexi-

ties of natural dust particles, which typically contain multi-

ple sites with differing nucleation abilities. Thus, illite-rich

clay minerals can be used as reference material to mimic the

ice nucleation activity of physically and chemically complex

natural dusts (Murray et al., 2012).

The measured BET-SSA are 124.4 and 123.7 m2 g−1 with

N2 and H2O vapor, respectively, as the adsorbing gas on illite

NX particle surfaces. The similar BET surface areas for both

N2 and H2O vapor gas adsorption suggest that the forma-

tion of a few monolayers of H2O does not alter the surface

morphology or the mineralogical phase of illite NX parti-

cles. For comparison, our measurements of θN2
for illite NX

particles agreed with previously reported data within 20 %

(104.2 m2 g−1; Broadley et al., 2012). Since illite NX parti-

cles have significant internal surface area, BET-derived sur-

face areas can be expected to be larger than those derived

from the laser diffraction technique. Supporting this notion,

an SEM (scanning electron microscopy) image of an illite

NX particle from Broadley et al. (2012) shows how micron-

sized particles are made up of many nanometer-sized grains.

Normalized surface area distributions to the total surface

area concentration measured by four different techniques are

shown in Fig. 2. According to the manufacturer, 95 % (by

mass) of the dry and mechanically de-agglomerated illite NX

particles have a diameter smaller than 650 nm (i.e., D95).

This mass-based particle size is substantially smaller than

that of another type of Arginotec illite (Arginotec, SE-illite,

D95 = 5 µm). Interestingly, all mass size distributions mea-

sured in this study (not shown here) indicate a substantial

mass fraction above 650 nm which is, in all cases, larger

than 5 % (18, 24, 77 and 99.9 % for DLS, AIDA, MRI-

DCECC and TSI-OPS for the FRIDGE immersion exper-

iments, respectively), indicating the presence of agglomer-

Figure 2. Surface area distributions of (a) suspended and (b–

d) dry illite NX particles. Hydrodynamic size-based surface area

distributions are measured in suspension using DLS. The aver-

age (± standard error) of five measurements with different con-

centrations of suspended illite NX powder (0.05, 0.1, 0.25, 0.5

and 1 mg mL−1) is presented in (a). Volume equivalent diameter-

based dry-dispersed particle surface area distributions measured in

the AIDA chamber (mean of 10 measurements± standard error)

and MRI-DCECC (two individual measurements) are shown in (b)

and (c), respectively. Panel (d) shows optical diameter-based parti-

cle surface area distributions measured by a TSI-OPS used for the

FRIDGE immersion mode experiments. Dotted lines represent log-

normal fittings, and corresponding mode diameters are (a) 0.32 µm,

(b) 0.36 µm, (c) 0.62 µm and (d) 4.75 µm. The width-parameters of

log-normal fittings are (a) 0.55, (b) 0.65, (c) 0.95 and (d) 1.10.

ates in the aerosol and suspension phases prepared for the IN

experiments. The surface area distribution of the DLS hy-

drodynamic diameter-based measurement (Fig. 2a) agreed

well with in situ measurements from the AIDA chamber

(Fig. 2b), suggesting the size distributions of dry illite NX
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particles during AIDA experiments were similar to those

of suspension measurements. This observation is consistent

with results presented in Hiranuma et al. (2014b). Briefly,

the authors found agreement between the DLS-based hydro-

dynamic diameter and the AIDA-derived volume equivalent

diameter of hematite particles. As opposed to the AIDA ob-

servation, the wider distributions and the shift in the mode di-

ameters in the MRI-DCECC measurements towards a larger

size (0.62 µm, Fig. 2c) when compared to Fig. 2a and b may

indicate a higher degree of particle agglomeration as a result

of different degrees of pulverization during the particle gen-

eration processes or particle coagulation at the high aerosol

number concentration used for these measurements. A more

pronounced agglomeration effect was observed by the TSI-

OPS measurements (Fig. 2d), such that a surface area dis-

tribution of supermicron-sized particles was obtained. Thus,

different types of dry particle dispersion methods can con-

tribute to varying degrees of agglomeration and the observed

differences in surface area distributions. Though all size seg-

regating instruments used in the present study are well cal-

ibrated, we cannot rule out the effect of measurement tech-

niques themselves on the observed differences in particle size

distribution. In Sect. 4.4 we discuss whether agglomeration

has an effect on the IN activity.

The cation release by illite NX in the aqueous suspension

was measured with IC as a function of time. The suspension

was kept mechanically agitated for 3 weeks. The following

cations were identified in the samples: K+, Ca2+ and Mg2+.

As seen in Fig. 3, IC data clearly demonstrates that roughly

all cations were released into the aqueous environment by

illite NX almost instantaneously. The concentration of the

cations increased rapidly and reached equilibrium within the

first 2 min after immersion of sample into water. Of all the

cations measured, only Ca2+ exhibited a slow concentration

raise on the longer time scales.

3.2 Immersion freezing measurements and

intercomparisons

All ice nucleation spectra with ns,BET(T ) and ns,geo(T ) are

shown in Figs. 4 and 5, respectively. A similar figure with

nm(T ) is also shown in Fig. S2. Furthermore, we compare

the ns data from 17 instruments to 4 literature results. Specifi-

cally, IN spectra reference curves of previously reported illite

NX particles (Broadley et al., 2012, hereafter B12), micro-

cline particles (Atkinson et al., 2013, hereafter A13), ATD

and desert dusts (Niemand et al., 2012, hereafter N12) are

also expressed as both ns,BET(T ) and ns,geo(T ). The conver-

sion between ns,geo(T ) and ns,BET(T ) was performed accord-

ing to (Eqs. 3 and 4). The ns(T ) (m−2 as a function of ◦C)

fits from the reference literature are

Figure 3. Evolution of the cation concentration in aqueous suspen-

sion of 0.1 g illite in 10 mL deionized water with time. The scaling

of the time-axis is different for three different subsections of the

time series (USTS, STS and LTS).

nA13
s,BET = 104

× exp(−1.038(T + 273.150)+ 275.260), (5)

nB12
s,BET = 104

× exp

[(
6.530× 104

)
+

((
−8.215× 102

)
× (T + 273.150)

)
+

(
3.447× (T + 273.150)2

)
+

((
−4.822× 10−3

)
× (T + 273.150)3

)]
, (6)

nN12(ATD)
s,geo = exp(−0.380T + 13.918), (7)

nN12(Dust)
s,geo = exp(−0.517T + 8.934) . (8)

For microcline (K-feldspar), the ns,geo to ns,BET conversion

was performed using a laser diffraction-based surface-to-

mass conversion factor of 0.89 m2 g−1 and an N2 BET-SSA

of 3.2 m2 g−1 (Atkinson et al., 2013). For ATD and nat-

ural dust, we used a surface-to-mass conversion factor of

3.6 m2 g−1, assuming a monodisperse particle size at the

log-normal fit mode diameter of 0.64 µm (Niemand et al.,

2012) and the measured N2 BET-SSA of 34.4 m2 g−1 (this

study). We note that the ATD parameterization is valid only

for−26.7 ◦C < T <−17.7 ◦C. In addition, we also present 14,

0.14 and 0.0014 % scaled A13 nscurves to see if K-feldspar

(microcline) can be used as a scaling factor to determine the

ns(T ) of illite NX.

We do not attempt to completely discuss the immersion

freezing activity of illite NX particles measured by each mea-

surement technique. Instead, brief remarks regarding each
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Figure 4. Intercomparison of 17 instruments using ns,BET . Black or red cross markers are interpolated ns(T ) used for T -binned averaging.

Note that M-AL and M-WT results are presented in (d). In (k), FRIDGE results of default (solid square) and imm.mode (open diamond)

measurements are presented. Both ZINC (solid square) and IMCA-ZINC (open diamond) data are shown in (p). Reference immersion

freezing ns(T ) spectra for illite NX (B12; Broadley et al., 2012), K-feldspar (A13; Atkinson et al., 2013), ATD and desert dusts (Dust) (N12;

Niemand et al., 2012) are also shown (See Sect. 3.2).

method are summarized below. The detailed discussion of

the methods intercomparison follows in Sect. 3.3.

3.2.1 BINARY

This recently developed microliter droplet assay technique

demonstrated its capability of measuring immersion freezing

of clay minerals in the temperature range of −15 to −24 ◦C.

Similar to most of the other suspension-based techniques, BI-

NARY identified a steep ns(T ) increase, which started just

below −20 ◦C. The BINARY ns(T ) spectrum was derived

by compiling measurements with varied illite NX mass con-

centrations over 2 orders of magnitude (0.1 to 10 mg mL−1,

see the supplementary methods). Immersion freezing effi-

ciency of illite NX particles collapsed into a single ns(T )

spectrum, i.e., IN efficiency does not depend on suspended

particle mass for the concentration range studied here. This

observation is a check for consistency and it implies that ice

nucleation is indeed triggered by suspended illite NX parti-

cles, and neither by impurities contained in the water used

for dilution nor at the glass surface supporting the droplets.

If IN efficiency did depend on suspended particle mass, dif-

ferent ns(T ) spectra would result from the various illite NX

concentrations, which are shifted by the respective dilution

factor.

3.2.2 CSU-IS

This new immersion freezing device was used to investi-

gate the freezing activity of both bulk suspension and size-

segregated particles in suspension. A new approach was em-

ployed for size-selected measurements, wherein 500 nm mo-

bility diameter size-selected particles were collected on a Nu-

clepore filter and then rinsed from it for the immersion freez-
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Figure 5. Geometric size-based ice nucleation active surface-site density, ns,geo , of 17 measurement techniques. Black or red cross markers

are interpolated ns(T ) used for T -binned averaging. Note that M-AL and M-WT results are presented in (d). In (k), FRIDGE results of

default (solid square) and imm.mode (open diamond) are presented. Both ZINC (solid square) and IMCA-ZINC (open diamond) data are

shown in (p). Reference immersion freezing ns(T ) spectra are provided as in Fig. 4.

ing measurements. The results suggest size independence of

ns within the experimental uncertainties (a combination of

binomial sampling error and the uncertainty of conversion

of aerodynamic particle diameter to mass) for the range of

examined size (500 nm vs. bulk) and mass concentrations

of bulk illite NX powder in suspensions from 3.1× 10−6 to

0.5 wt %, for non-size-segregated particles, and 2.2× 10−5

to 4.4× 10−4 wt % for size-segregated particles.

3.2.3 Leeds-NIPI

This suite of cold stage instruments has the capacity

to operate using droplets with volumes in the microliter

to picoliter range. This enables high resolution immer-

sion freezing analysis for a wide range of temperatures

from higher (−22 ◦C < T <−11 ◦C) to lower temperatures

(−37 ◦C < T <−26 ◦C). The highest freezing temperatures

are attained with the largest droplets, which contain the

largest surface area of illite NX. Combined with the previ-

ous parameterization reported in Broadley et al. (2012), the

Leeds-NIPI data follows the overall ns(T ) spectrum defined

by the bulk of the instruments. This suggests that immersion

freezing efficiency, inferred by ns(T ), of illite NX particles

is dependent on neither droplet volume nor mass of illite

NX particles in suspension (i.e., wt % 0.1 or 1 %); instead

the freezing efficiency only depends on the surface area per

droplet. Together with CSU-IS, these two instruments pro-

vided data points for temperature as high as ∼−11 ◦C, esti-

mating a similar lower-limit of ns,BET values of ∼ 10 m−2.

3.2.4 M-AL and M-WT

Both methods examine individual drops that are freely sus-

pended without any contact with walls or substrates. In M-

WT drops are floated at their terminal velocities in a lam-

inar air stream, in which conditions of ventilation and heat
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transfer are similar to those of droplets falling through the

atmosphere. Both M-AL and M-WT techniques analyzed the

freezing efficiency of drops containing polydisperse illite NX

particles in the temperature range between −14 and −26 ◦C.

The ns values agree reasonably well with substrate-supported

suspension experiments (with the exception of FRIDGE ex-

periments), implying that the surface making contact with

the substrate has a negligible effect on immersion freezing

for our experimental conditions.

3.2.5 NC State-CS

Extensive experimental conditions were realized by NC

State-CS (Wright and Petters, 2013; Hader et al., 2014).

Unique aspects of this instrument are the sampling of drops

within a squalene oil matrix that allows for experiments

using cooling rates as slow as 0.01 K min−1 and an auto-

mated freeze detection algorithm that allows for the rapid

processing of more than 1000 possible drops per experiment

to improve sample statistics. Drops containing ∼ 0.0001 to

1.0 wt % of the illite NX test sample were studied at a cooling

rate of 1 K min−1 to find the immersion freezing ability. A to-

tal of nine immersion mode freezing experiments, spanning a

range of drop volumes from ∼ 400 picoliter to 150 nanoliter,

were performed. Using this instrument a wide range of tem-

peratures was investigated (−34 ◦C < T <−14 ◦C) yielding

ns(T ) values ranging from 102 to 1010 m−2. The data from

the nine individual runs collapsed into a single ns(T ) spec-

trum suggesting that the mass loading of dust in the drop did

not affect the measurements for the wt % values investigated.

At the high T end (T >−20 ◦C), the data are in reasonable

quantitative agreement with the CSU-IS measurements. At

the low T end (T <−20 ◦C), the data are in agreement with

the B12 reference spectrum.

3.2.6 CU-RMCS

The University of Colorado (CU)-RMCS examined the

freezing abilities of droplets containing 1.0 wt % illite NX.

CU-RMCS detected the warmest immersion freezing of illite

NX particles at about −23 ◦C under the experimental condi-

tions used in the present work (see the Supplement for fur-

ther details). Results for −32 ◦C < T <−23 ◦C are from six

different experiments using four different droplet size bins:

10–20, 20–60, 60–120, and 120–200 µm (lateral diameter).

These droplet sizes correspond to a variation in droplet vol-

ume from ∼ 0.3 picoliter to 2.5 nanoliter.

3.2.7 AIDA

The AIDA cloud simulation chamber generates atmospher-

ically relevant droplet sizes (several µm in diameter, vary-

ing with cooling rates), and therefore closely simulates

mixed-phase cloud conditions. Ice-nucleating efficiencies of

both polydisperse and quasi-monodisperse illite NX particles

were investigated in this study. ns of DMA size-selected il-

lite NX particles (200, 300 and 500 nm mobility diameter)

agreed well with that of the polydisperse population for im-

mersion freezing experiments, within previously reported un-

certainties (T ± 0.3 ◦C and ns± 35 %; Steinke et al., 2011).

Thus, a negligible size dependency of ns for “submicron”

dry illite NX particles for temperatures below −27 ◦C was

found. Previously, Hiranuma et al. (2014a) demonstrated the

size independence of the ns value using two different sizes

of submicron hematite particles (200 and 1000 nm volume

equivalent diameter) based on AIDA deposition mode nucle-

ation experiments. Such a similarity might remain true for

the immersion mode freezing of mineral dust particles that

are smaller than 1 µm diameter.

3.2.8 CSU-CFDC

This CFDC provided data for condensation/immersion freez-

ing at around −21.2, −25.1 and −29.7 ◦C (a total of eight

data points with two, two and four points at around each

temperature, respectively), which extends to a warmer region

than the AIDA measurements. As demonstrated in DeMott

et al. (2015), higher RHw values were required for full ex-

pression of immersion freezing in CSU-CFDC. The use of

105 % RHw in the CFDC has been shown to underestimate

INP activity for natural dusts by up to a factor of 3, but is a

necessary compromise. Comparably, the CSU-CFDC results

agreed well with the AIDA measurements within a factor

of 3 in ns,geo estimation (AIDA ns > CSU-CFDC ns; DeMott

et al., 2015). All the CFDC measurements were conducted

with 500 nm mobility diameter size-selected particles, as dis-

cussed in the supplementary methods.

3.2.9 EDB

With EDB, both the contact and immersion mode freezing

efficiencies of illite NX particles were investigated. The con-

tact nucleation mode ns were clearly higher than the immer-

sion mode ns (by more than 1 order of magnitude in terms

of ns,geo , Fig. 5i). This was in part due to the fact that immer-

sion freezing experiments were conducted only when illite

NX particles were not frozen via contact nucleation but re-

mained immersed in a supercooled droplet in the EDB cell

(see the Supplement).

3.2.10 FINCH

The immersion freezing results from FINCH showed the

highest ns values in the −22 to −27 ◦C temperature range

out of all of the other instrument results. All the FINCH

measurements were conducted with 500 nm mobility diam-

eter size-selected particles. Two possible reasons for high

ns values when compared to the other measurements are:

(1) an overestimation of nsdue to excess Nice and/or un-

derestimated Stotal or (2) a large temperature-uncertainty. It

is noteworthy that the total INP concentration was kept be-

low 140 L−1 in order to avoid saturation limitation due to
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a high number of growing ice crystals (DeMott et al., 2011).

A constant total concentration of particles continuously pass-

ing through the chamber was maintained at 1.07± 0.17 cm−3

(average± standard deviation).

3.2.11 FRIDGE

FRIDGE data, which cover both measurements of dry and

immersed particles with the same instrument but with differ-

ent sample processing, lie within the upper edge of the bulk

of other ns data points. There are a few important implica-

tions from the FRIDGE results. First, on average, the mea-

surements with dry particles in the “default” setting showed

more than an order of magnitude higher ns in comparison to

the immersed particles in FRIDGE experiments (both ns,BET

and ns,geo , Figs. 4 and 5) at −25 ◦C < T <−18 ◦C. For in-

stance, FRIDGE experiments in the pure immersion mode

showed much lower ns than that with the default setting

(i.e., combined deposition and immersion mode), but agreed

with other immersion data sets. Second, a sudden increase in

ns(T ) was found for the measurements with immersed par-

ticles at ∼−20 ◦C, suggesting a dominant activation around

−20 ◦C. This transition is a unique behavior only found with

the FRIDGE’s IN detecting sensitivity. A temperature shift

(i.e., shifting the data ∼ 7 ◦C lower) results in FRIDGE data

overlapping with the bulk of other data and may offset dis-

crepancies. However, other mechanistic interpretations (e.g.,

contribution of agglomeration) are also plausible causes of

this discrepancy. More detailed discussions of the role of ag-

glomerates upon ns and sample processing are available in

Sects. 4.4 and 4.5.

3.2.12 LACIS

With the shortest instrument residence time (∼ 1.6 s), LACIS

measured immersion mode freezing of illite NX particles

for three different mobility diameters (300, 500 and 700 nm)

from −31 ◦C down to the homogeneous freezing tempera-

ture. Similar to AIDA results, a size independence of ns of

submicron illite NX particles was observed within defined

experimental uncertainties (see the supplementary methods).

Further, without any data corrections, the results of LACIS

reasonably agreed with AIDA measurements. Furthermore,

though there is no overlapping temperature range for LACIS

and CSU-CFDC in the present study, consistency between

data from LACIS and CSU-CFDC for other clay minerals

(i.e., different kaolinite samples) has been described previ-

ously (Wex et al., 2014). The results from both instruments

agreed well with each other from a data evaluation based on

ns, and this agreement was even improved when the differ-

ent residence times in LACIS and the CSU-CFDC were ac-

counted for (i.e., when nucleation rate coefficients were com-

pared). Furthermore, a size independence of the immersion

mode freezing was seen for Fluka-kaolinite particles with

mobility diameters of 300 and 700 nm in Wex et al. (2014),

and for illite NX particles when comparing particles with

mobility diameters of 500 nm to bulk material (Augustin-

Bauditz et al., 2014).

3.2.13 MRI-DCECC

Comparison between polydisperse and size-selected (300 nm

mobility diameter) measurements in this cloud simulation

chamber demonstrated the size independency of ns for

submicron illite NX particles for slightly higher tempera-

tures (up to −21 ◦C) than AIDA results. Interestingly, MRI-

DCECC data exhibited at least an order of magnitude higher

ns values than most other suspension measurements. We

note that only negligible freezing events were detected above

−21 ◦C even with a ∼ 9000 cm−3 number concentration of

polydisperse illite NX particles in part due to the detection

limit of the welas® optical counter of Nice = 0.1 cm−3.

3.2.14 PINC

PINC provided data for immersion freezing at around−25.4,

−30.2 and −34.6 ◦C (a total of nine data points with one,

four and four points at around each temperature, respec-

tively). The estimated nsvalues are in agreement with other

measurements for the test range of −35 ◦C < T <−25 ◦C af-

ter applying a residence time correction of about a factor of

3. The data are for ice nucleation onto 500 and 1000 nm mo-

bility diameter illite NX particles; therefore, an OPC thresh-

old size of 2 µm for ice detection is used. The impactor used

for sampling particles into PINC was characterized for size-

resolved particle losses and was found to have a cutoff (D50)

of 725 nm mobility diameter. As such, when determining

ns,geo the particles losses (25 to 60 %, see the Supplement for

more details) were taken into account for calculating acti-

vated fractions. We note that ns,geo increased after correcting

the data for particle losses, resulting in agreement between

the data from PINC and data from LACIS, AIDA and UC-

RMCS in the temperature range from −25 to −35 ◦C.

3.2.15 PNNL-CIC

The IN efficiency of illite NX particles in the immersion

mode in the temperature range of −35 ◦C < T <−27 ◦C was

observed to increase at lower temperatures. Estimated ns val-

ues were somewhat higher in this temperature range when

compared to those from most of the other measurements.

Data were obtained at conditions where PNNL-CIC was op-

erated at 105 % RHw at three different temperatures. Dust

particles greater than ∼ 1 µm (50 % cut size) were removed

before they were size-selected and transported to the PNNL-

CIC. The OPC detection threshold was set ≥ 3 µm; see the

Supplement for more details.
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3.2.16 IMCA-ZINC

Coupled with IMCA, ZINC showed reasonable agreement

with AIDA and PNNL-CIC. This reproducibility verified the

performance of the IMCA-ZINC combination, which was

not tested during ICIS-2007 (DeMott et al., 2011), perhaps

due to the similarity in the experimental conditions (i.e., par-

ticle generation) to the other two methods. We also note that

the residence time in ZINC is about a factor of 3 longer than

that in PINC. The IMCA-ZINC measurements in comparison

to the measurements with ZINC alone (i.e., a combination of

deposition nucleation, contact freezing, condensation freez-

ing, surface condensation freezing and immersion freezing)

is discussed in Sect. 4.5 in more detail.

Overall, as described above (Sects. 3.2.1 to 3.2.6), sus-

pension experiments with cold stage devices and levita-

tion techniques provide IN measurements under more con-

trolled (with respect to droplet size, concentration and mass

of particles) conditions and a wider temperature range (up

to −11 ◦C) than comparable dry-dispersed particle experi-

ments. The resulting nsvalues from these suspension exper-

iments are also independent of the total number of droplets

and suspended dust particle mass.

The estimated nsvalues of dry test particles below

−25.5 ◦C are in reasonable agreement with a previous study

(Broadley et al., 2012) at temperatures below −25 ◦C. Fur-

thermore, the strong temperature dependence and size inde-

pendence of ns may suggest a uniform distribution of freez-

ing sites over the total surface of illite NX particles in the im-

mersion mode in this temperature range. Specifically, AIDA

and MRI-DCECC have shown size-independent ns values for

submicron dry-dispersed particles. Overall, compared to sus-

pension measurements, dry-dispersed particle measurements

showed higher ns values. For example, FINCH is the only in-

strument which showed higher ns values than the parameter-

ization by Niemand et al. (2012) for ATD. Likewise, AIDA

results indicated slightly higher ns values than CSU-CFDC’s

results. The lower ns of CSU-CFDC may be a consequence

of underestimation of Nice, possibly due to its constrained

RHw (at 105 %) and/or the disturbance of aerosol lamina be-

tween two plates in a CFDC (DeMott et al., 2015).

3.3 Intercomparisons based on the slope parameter of

ns(T ) spectra

A compilation of 17 ns spectra from 17 instruments in a tem-

perature range between −10.1 and −37.5 ◦C is presented in

Fig. 6. For both the geometric area-based and the BET area-

based ns, the differences among measurements can be more

than 1 order of magnitude at any given temperature. Diver-

sity is especially pronounced for several orders of magnitude

in ns at −27 ◦C≤ T ≤ −18 ◦C, where the results from sus-

pension measurements and a majority of dry measurements

coexist (see the investigated T range for each technique in

Table 1). Another notable feature of this specific tempera-

ture range in Fig. 6 is the coincidence of the steepest slope

in the spectrum (i.e., the absolute value of 1log(ns)/1T

or |1log(ns)/1T | in log (m−2) ◦C−1, hereafter denoted as

1log(ns)/1T ) when compared to other temperature ranges.

For instance, ns increases sharply at temperatures colder than

−18 ◦C to be nearly parallel to the A13 parameterization

down to −27 ◦C, where it starts leveling off and is eventu-

ally overlapping with the N12 parameterization at the low

temperature segment.

Correspondingly, the overall trend of the spectrum is

traced by the measurements from NC State-CS alone

(Fig. 4e). Moreover, the slopes of the spectrum for three

sub-segments (−34 ◦C < T <−27 ◦C, −27 ◦C < T <−20 ◦C,

and −20 ◦C < T <−14 ◦C) can be calculated from interpo-

lated data and compared to N12 and A13 parameterizations.

As expected, the steepest slope in the spectrum (= 0.66) of

the NC State-CS data was found in the−27 ◦C < T <−20 ◦C

range, which was similar to that of the A13 parameteriza-

tion (0.45 for T >−25 ◦C). However, smaller slope values

are found for the other two segments (0.18 for T <−27 ◦C

and 0.29 for T >−20 ◦C), which are comparable to the

temperature-independent N12 slopes (0.17 for ATD and 0.22

for Dust) and the B12 slope (0.25 for −35 ◦C < T <−27 ◦C),

suggesting that a dominant fraction of INP contained in

our test dust becomes ice active in immersion freez-

ing at −27 ◦C < T <−20 ◦C. In addition, FRIDGE immer-

sion mode measurements also show a sharp decrease in

1log(ns)/1T (from 0.59 to 0.25, Figs. 4k and 5k) for the

measurements with immersed particles at ∼−20 ◦C. Simi-

lar observations are made by most of the other suspension

measurement techniques. In short, most suspension meth-

ods capture the steepest segment of the ns(T ) spectral slopes

(1log(ns)/1T ) at −27 ◦C < T <−20 ◦C, where the slope is

nearly parallel to the A13 parameterization. One exception

is CU-RMCS (Fig. 4f). The highest possible freezing tem-

perature investigated by this experimental system was about

−23 ◦C with ∼ 2.5 nanoliter droplets containing 1.0 wt % il-

lite NX (see the supplementary methods). Hence, CU-RMCS

did not capture the transition in 1log(ns,BET)/1T at around

−20 ◦C, but the steep slope of the spectrum (= 0.36) vali-

dated the high density of IN active sites below −23 ◦C. The

error in temperature for this technique is always ±0.5 ◦C,

based on freezing experiments without any foreign sub-

stances in supercooled drops (i.e., homogeneous freezing ex-

periments).

Similarly, dry-dispersed particle measurements also ex-

hibit scattered data for their measured temperature ranges.

Both agreements and equally important disagreements were

observed. First, the agreements are summarized. AIDA data

show that the values of 1log(ns,geo)/1T (= 0.22, Fig. 5g)

are identical for both polydisperse and size-selected mea-

surements, perhaps suggesting a uniform distribution of ac-

tive sites over the available Stotal of illite NX in this study.

Similarly, IMCA-ZINC’s 1log(ns,geo)/1T (= 0.24, Fig. 5p)

derived from 200, 400 and 800 nm mobility diameters is vir-
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Figure 6. Immersion freezing ns(T ) spectra of illite NX particles from 17 instruments calculated as a function of the BET (a) and geometric

(b) surface areas. Reference immersion freezing ns(T ) spectra are provided as in Figs. 4 and 5. Dry-dispersed particle (red markers) and

suspension (blue markers) results for ns,BET and ns,geo are shown in (c) and (d), respectively, to highlight the difference between dry particle

and suspension subsets.

tually identical to the slope estimated from AIDA measure-

ments. PINC estimated 1log(ns,geo)/1T (= 0.26, Fig. 5n)

values are in reasonable agreement with AIDA and IMCA-

ZINC and N12 parameterizations at temperatures below

−25 ◦C. From the CSU-CFDC results, 1log(ns,geo)/1T de-

rived from interpolated data is 0.40 (Fig. 5h). Considering the

AIDA and CSU-CFDC data, the ns(T ) spectrum depicts sim-

ilar trends (i.e., ns or temperature deviation around −27 ◦C)

compared to those seen in the NC State-CS results (Fig. 5e)

and is also parallel to the A13 curve (slope = 0.45) down

to temperatures around −27 ◦C and is parallel to the N12

Dust curve (slope= 0.22) for the lower temperature segment.

LACIS measurements show that 1log(ns,geo)/1T (= 0.19,

Fig. 5l) is also in agreement with that from AIDA, verifying
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a deteriorated freezing ability of illite NX particles in the in-

vestigated temperature range. EDB was used to examine both

the contact and immersion freezing modes. Nonetheless, the

slopes of the spectra for both modes (0.11 for immersion

mode freezing and 0.16 for contact mode freezing, Fig. 5i)

are similar to the N12 ATD curve (slope= 0.17). From the

fact that the value of 1log(ns,geo)/1T of FINCH (= 0.27,

Fig. 5j) above −27 ◦C is similar to that of the N12 dust pa-

rameterization (whereas this relationship would be expected

below −27 ◦C), we suspect that a temperature uncertainty

may be the main cause of the observed deviation of its data

from others. Lastly, at −35 ◦C < T <−27 ◦C, PNNL-CIC’s

1log(ns,geo)/1T (= 0.19, Fig. 5o) agreed well with that of

the N12 dust parameterization in the same temperature range.

Next, the disagreements between dry-dispersed particle

and suspension measurements are discussed. Specifically, the

MRI-DCECC results show lower values of 1log(ns,geo)/1T

(= 0.29) up to −21 ◦C as compared to the suspension

measurements. Additionally, in the temperature range from

−29 ◦C < T <−21 ◦C, the MRI-DCECC data show higher

values of ns than those observed in suspension measure-

ments. This relatively constant 1log(ns)/1T value along

with higher nsvalues through the range contrasts with the ob-

served sharp transition in 1log(ns)/1T in suspension mea-

surements. We note that MRI-DCECC experiments may have

been carried out in the presence of a high degree of agglom-

eration (Fig. 2c and d). Hence, particle processing (i.e., dry-

ing and suspension) may not be the only factor causing this

difference and other contributions cannot be ruled out (see

Sect. 4).

To conclude, the results from suspension and dry mea-

surements suggest evidence that the ns of illite NX particles

derived from immersion freezing is independent of or only

weakly dependent on droplet size, mass percent of illite NX

sample in suspension and droplets, particle size of the tested

illite NX and cooling rate during freezing in the range of

conditions probed; see the Supplement for more detailed in-

formation regarding experimental conditions for each instru-

ment. Overall, the sample processing (i.e., dry vs. suspension

sample) may have an effect on the immersion freezing effi-

ciency of illite clays. A more detailed discussion will follow

in Sect. 4 below.

4 Discussion

For detailed comparison of methodologies, the immer-

sion freezing properties of illite NX particles in a wide

range of temperatures is further discussed by comparing

ns(T ) spectra from all 17 instruments (Sect. 4.1). Specifi-

cally, we present T -binned average data (i.e., 1 ◦C bins for

−37 ◦C < T <−11 ◦C). A moving average (where original

data points are finer than 1 ◦C) or a Piecewise Cubic Her-

mite Interpolating Polynomial function (where original data

points are coarser than 1 ◦C) was used for data interpolation.

All data from the 17 instruments, as shown in Figs. 4 and 5,

were interpolated.

We also discuss potential reasons for the diversity ob-

served from intercomparisons of dry and suspension mea-

surement techniques. Both systematic errors (Sect. 4.2) and

mechanistic uncertainties (Sects. 4.3 to 4.6) are qualitatively

evaluated to understand the measurement uncertainties of

such techniques. Some factors may introduce diversity in ns,

whereas others may shift activation temperatures horizon-

tally to match the ns values from other instruments, perhaps

biasing the overall accuracy and precision of instruments.

Here we address the relative importance of those factors with

respect to their effect on the estimation of ns.

4.1 Dry vs. suspension ns(T ) data

The multiple exponential distribution fits (also known as

the Gumbel cumulative distribution function) for T -binned-

ns(T ) data are shown in Fig. 7. The fits for T -binned max-

ima and minima ns from 17 measurement techniques are pre-

sented as pink shaded areas. All fits presented in this fig-

ure are derived using parameters shown in Table 3. As can

be inferred from the table, a higher correlation coefficient

(r) was found when intercomparing the suspension measure-

ments as compared with intercomparing the dry-dispersed

methods, suggesting reasonable agreement and consistency

for the results from immersion freezing studies with suspen-

sions. Interestingly, a higher r for ns,geo than ns,BET was found

for dry-dispersed particle measurements as compared to the

suspension measurements. The use of more conversion fac-

tors to estimate ns,BET (i.e., from Eqs. 3 and 4) may introduce

uncertainties and discrepancies between these measurement

techniques. It is also noteworthy that the T -binned ensem-

ble maximum and minimum values are largely influenced by

dry-dispersed particle and suspension results, respectively,

implying the previously discussed discrepancy between these

two techniques.

It is observed that the largest deviation between the max-

ima and minima in the horizontal and vertical axes, cor-

responding to HorMax−Min and VerMax−Min, respectively,

shown in Fig. 7, is similar for both ns,BET (Fig. 7a) and ns,geo

(Fig. 7b). Nevertheless, ns,BET is representative of measure-

ments with suspended samples because fewer corrections

and assumptions are involved for its estimation when com-

pared to that with dry-dispersed particles. Hence, ns,BET may

be a good proxy for comparing IN efficiencies of dust par-

ticles from various instruments. We also report the abso-

lute values of 1log(ns)/1T for four T -segregated segments

based on T -binned Lin. Avg. (multiple exponential distribu-

tion fit to the T -binned average data in the linear space), T -

binned Max. (fit to the T -binned maxima in the linear space)

and T -binned Min. (fit to the T -binned minima in the linear

space) in Fig. 7 (i.e., T1 to T4). The slopes are comparable

to the slope of the A13 parameterization in the T1 to T3 seg-

ments (−11 to −27 ◦C), while the slope in the T4 segment is
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Table 3. List of the Gumbel cumulative distribution fit parameters to the ns,BET and ns,geo for T -binned ensemble data set fitted in the

linear space [All (lin)], ensemble data set fitted in the log space [All (log)], ensemble maximum values (Allmax), ensemble minimum values

(Allmin), suspension subset fitted in the linear space [Sus (lin)], suspension subset fitted in the log space [Sus (log)], dry-dispersed particle

subset fitted in the linear space [Dry (lin)] and dry-dispersed particle subset fitted in the log space [Dry (log)]. Note that Allmax and Allmin

are fitted in the linear space. The correlation coefficient, r , for each fit is also shown. T is in ◦C.

Fitted data set Fitted T range Fit parameters [ns,BET(T )=

exp(a · exp(−exp(b · (T + c)))+d)]

a b c d r

All (lin)∗ −37 ◦C < T <−11 ◦C 23.82 0.16 17.49 1.39 0.60

All (log)∗ −37 ◦C < T <−11 ◦C 22.00 0.16 20.07 3.00 0.80

Allmax
∗

−37 ◦C < T <−11 ◦C 24.72 0.15 17.27 1.56 0.63

Allmin
∗

−37 ◦C < T <−11 ◦C 21.86 0.16 22.73 2.70 0.94

Sus (lin) −34 ◦C < T <−11 ◦C 24.38 0.14 19.61 1.89 0.99

Sus (log) −34 ◦C < T <−11 ◦C 24.28 0.14 21.19 2.70 0.99

Dry (lin)∗ −37 ◦C < T <−18 ◦C 27.35 0.07 16.48 3.19 0.59

Dry (log)∗ −37 ◦C < T <−18 ◦C 26.22 0.07 16.27 3.31 0.72

Fitted data set Fitted T range Fit Parameters [ns,geo(T )=

exp(a· exp(−exp(b · (T + c)))+d)]

a b c d r

All (lin)∗ −37 ◦C < T <−11 ◦C 25.75 0.13 17.17 3.34 0.73

All (log)∗ −37 ◦C < T <−11 ◦C 22.93 0.16 20.31 5.72 0.80

Allmax
∗

−37 ◦C < T <−11 ◦C 25.72 0.15 16.39 3.52 0.75

Allmin
∗

−37 ◦C < T <−11 ◦C 22.16 0.16 22.13 5.64 0.98

Sus (lin) −34 ◦C < T <−11 ◦C 22.72 0.16 19.52 5.50 1.00

Sus (log) −34 ◦C < T <−11 ◦C 22.64 0.16 20.93 5.92 0.98

Dry (lin)∗ −37 ◦C < T <−18 ◦C 29.38 0.05 16.49 7.19 0.64

Dry (log)∗ −37 ◦C < T <−18 ◦C 27.92 0.05 13.25 6.32 0.83

∗ To derive the fits that are representative for immersion mode freezing, we excluded EDB (contact) and

ZINC data.

similar to those of the N12 parameterizations. These results

are consistent with the results described in Sect. 3.3. Further,

VerMax−Min for roughly 3 orders of magnitude with respect to

ns is observed in a temperature region around ∼−20 ◦C for

both ns,BET(T ) and ns,geo(T ) spectra. Such high nsvariability

was expected due to the contribution from MRI-DCECC,

FINCH and FRIDGE measurements, which may have in-

fluenced the overall fit in that temperature range. Likewise,

our HorMax−Min shows that the 17 measurements are in rea-

sonable agreement within 7.8 ◦C (−36.8, −33.0, −29.0 ◦C

(min, log fit, max)) at ns,BET of 5.2× 109 m−2 and 7.5 ◦C

(−36.7, −32.8, −29.2 ◦C (min, log fit, max)) at ns,geo of

1.5× 1011 m−2.

T -binned ns,BET(T ) and ns,geo(T ) spectra are presented in

Fig. 8a and b, respectively. In this figure, panels i, ii and

iii show T -binned data averaged in the linear space of all

17 instruments, all suspension type measurements, and all

measurements that involved dry particles, respectively, while

panel iv shows a comparison between suspension and dry-

particle measurements. We note that the data from “EDB

(contact)” and “ZINC” (Welti et al., 2009) were not used for

generating T -binned data since our focus was on immersion

mode freezing. We also note that the ns results from nine IN

measurement techniques provide ns data at−23 and−24 ◦C,

where we find an abrupt increase in1log(ns)/1T and ns de-

viations. Investigated T ranges for each instrument are listed

in Table 1.

As described in Sect. 3.2, suspension measurements pos-

sess sensitivity at high temperatures (up to −11 ◦C), indi-

cating that their ability to control the concentration or di-

lution of suspension over a wide range is of great advan-

tage in detecting rare INPs. Moreover, suspension experi-

ments with small picoliter or nanoliter droplets allow mea-

surements right down to the homogeneous freezing limit

(∼−37 ◦C; Koop et al., 2000). In turn, suspension meth-

ods with microliter droplets may run into “background prob-

lems” at temperatures below about −20 to −25 ◦C for sam-

ples that do not contain many IN active at these temperatures,

because then impurities contained in the water may trigger

freezing. Conversely, dry aerosol methods lack sensitivity

for detecting rare IN at high temperatures because of their

low sample volume. These dry particle measurements are in

general good for low temperature measurements, where the

number of particles nucleating ice increases and instruments
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Figure 7. The ns parameterization, based on the BET (a) and geometric (b) surface areas, as a function of tem-

perature (T ). The multiple exponential distribution fit in the linear space (T -binned Lin. Avg.) is expressed as

ns,BET(T )= exp(23.82× exp(−exp(0.16× (T+ 17.49)))+ 1.39) or ns,geo(T )= exp(25.75× exp(−exp(0.13× (T+ 17.17)))+ 3.34).

The same fit in the log space (T -binned Log. Avg.) is expressed as ns,BET(T )= exp(22.00× exp(−exp(0.16× (T+ 20.07)))+ 3.00) or

ns,geo(T )= exp(22.93× exp(−exp(0.16× (T+ 20.31)))+ 5.72). Note that ns and T are in m−2 and ◦C, respectively. The maximum

deviation between maxima and minima in horizontal axis (in T , ◦C) and vertical axis [in log(ns,max /ns,min)] corresponds to HorMax−Min and

VerMax−Min, respectively. All fit parameters are shown in Table 3.

have higher ice detection efficiencies. For temperatures be-

low −27 ◦C, our T -binned fits exhibit a reasonable agree-

ment with the suspension experiments reported by Broadley

et al. (2012). Furthermore, dry-dispersed particle measure-

ments show higher ns values when compared to suspension

measurements above about −27 ◦C (Fig. 8iv). We will dis-

cuss possible explanations for the observed diversity of data

from different techniques in detail below.

In addition, T -binned ns,BET(T ) and ns,geo(T ) spectra aver-

aged in the log space are presented in Fig. S3. Similarly, we

also present T -binned ratios of the individual measurements

to the log fit of the data [All (log), Sus (log) or Dry (log) from

Table 3] across the temperature range covered for all the mea-

surement techniques (−37 ◦C < T <−11 ◦C) in Figs. S4–S8.

These figures provide intercomparisons of the ns deviations

across the various techniques employed in this study.

4.2 Limitations of instrument types

Groups participating in this study used different experimen-

tal setups to measure immersion freezing efficiencies of il-

lite NX test samples. As a consequence, various experi-

mental procedures, such as particle generation, particle size-

segregation, Stotal estimation, ice crystal detection or count-

ing, ice crystal detection size limits for OPCs or CCDs, and

particle loss at the inlet and/or in the chamber can potentially

yield substantial systematic uncertainties in the estimation of

ns. Below we qualitatively discuss potential errors and lim-

itations involved in each instrument-type (cold stage, levita-

tor, CECC and CFDC).

Limitations of substrate-supported optical microscopy and

cold stage experimental setups may come from inhomo-

geneous cooling of the substrate and the surrounding me-

dia, the effects of RH changes surrounding the drops for

non-substrate-supported cold stage setups, potential contam-

ination during sample preparation and measurements (e.g.,

particle processing in a solvent) and/or uncontrollable heat

transfer between the cold plate surface and the particle sub-

strate (e.g., FRIDGE).

Levitator techniques require extensive pre-

characterization of physicochemical properties. Fur-

thermore, since the overall system characterization is more

complex and labor intensive, only specific subsets (i.e.,

suspended samples or reference particles) can be examined

using this method.

The development of AIDA-CECC allows the simulation

of atmospherically representative cloud parcel formation and

evolution (Möhler et al., 2003). Therefore, it is an advan-

tage of CECC that the parameterization derived from its

experiments can be most readily extended to atmospheric

conditions (Niemand et al., 2012). Development of large

(up to 84 m3, i.e., AIDA) and/or temperature-controlled

dynamic cloud simulation chambers (e.g., MRI-DCECC;

Tajiri et al., 2013, a design which follows from DeMott

www.atmos-chem-phys.net/15/2489/2015/ Atmos. Chem. Phys., 15, 2489–2518, 2015
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Figure 8. T -binned ns,geo (a) and ns,BET (b). T -binned data (i.e., average in the linear space with 1 ◦C bins for−37 ◦C < T <−11 ◦C) of ns(T )

spectra are presented for (i) All interpolated data set (All), (ii) suspension measurements (Sus), (iii) dry-dispersed particle measurements

(Dry), and (iv) comparison between Sus and Dry. Red sticks represent maxima (positive direction) and minima (negative direction) and black

sticks represent ±standard error. Literature results (B12, A13, and N12) are also shown.

and Rogers, 1990) enabled the exploration of heteroge-

neous ice nucleation properties of typical particulate sam-

ples in a wide range of particle concentrations, temperatures

(−100 ◦C < T < 0 ◦C), cooling rates and nucleation times.

However, the utilization of such an instrument to correctly

measure the totality of INPs with a reasonable detection sen-

sitivity (< 0.1 L−1), both in the lab and field settings, has not

yet been realized due to CECC’s limitations. These limita-

tions include ice losses by settling (e.g., DeMott and Rogers,

1990) over the relatively long expansion periods in the con-

fined vessel and internal turbulence during the expansion

leading to heterogeneously supersaturated water vapor and

temperature fields. These artifacts can bias IN measurements.

CFDCs are the most widely used technique to measure

INPs in the atmosphere, but their inability to quantify INPs

at high temperatures is an issue that exists due to the physi-

cal principals of operation, the limited sample volume (typi-

cally 1 to 2 L min−1) and background frost formation in the

Atmos. Chem. Phys., 15, 2489–2518, 2015 www.atmos-chem-phys.net/15/2489/2015/
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chamber over periods of operation. Based on the operational

equations in Rogers (1988), the warmest operating tempera-

ture of a CFDC is approximately −6.5 ◦C, controlled by the

fact that the warmest wall cannot exceed 0 ◦C. Low sample

volumes necessitate integration over longer sample periods

and result in a general lower detection limit of 0.2 L−1 of

sampled air, absent any particle pre-concentration (Prenni et

al., 2009). According to Tobo et al. (2013), the highest tem-

perature that can be achieved in a CFDC is −9 ◦C. Above

this threshold, temperature and ice saturation conditions can-

not be maintained in the chamber. Rogers et al. (2001) and

other papers since have identified measurement issues due to

frost emanating from the walls of the chamber when the dew

point temperature of the sample air is not effectively con-

trolled, although this appears to be an operational issue that

can be mitigated if monitored properly, and will be most ob-

trusive for atmospheric sampling scenarios.

4.3 Stochastic nature of freezing and time dependence

The longstanding discussion of the stochastic theory (i.e.,

the freezing process is time-dependent) vs. the determinis-

tic approximation (i.e., freezing occurs at specific tempera-

ture and humidity conditions) of heterogeneous freezing has

introduced another complication towards complete under-

standing of heterogeneous ice nucleation in the atmosphere

(Vali, 2014). Many studies have attempted to characterize ice

nucleation based on the classical nucleation theory (CNT),

which incorporates a nucleation rate (Murray et al., 2012;

Kashchiev, 2000; Mullin, 2001). In this treatment, the ice

nucleation process is always of a stochastic nature (i.e., time-

dependent; Bigg, 1953; Vali, 1994, 2014). According to the

nucleation rate approach, the heterogeneous ice nucleation

rate is strongly sensitive to INP size and the kinetic activa-

tion energy of the ice embryo on the nucleating site/surface

at a specific temperature (Khvorostyanov and Curry, 2000;

Fletcher, 1962). A few variants of the CNT-based approaches

have been developed over the past few decades. These ap-

proaches assume uniform surface characteristics and only

one ice nucleation probability (i.e., a single contact angle),

nominally categorized as the single component nucleation

rate approach (e.g., Bigg, 1953). Several recent studies have

applied a probability density function (PDF) of contact an-

gles and active sites over the INP surface in CNT, or in

other words described a distribution of nucleation efficien-

cies, bridging the gap between the stochastic theory and the

deterministic treatment (Marcolli et al., 2007; Lüönd et al.,

2010; Kulkarni et al., 2012; Niedemeier et al., 2011; Wright

and Petters., 2013; Broadley et al., 2012).

The deterministic or time-independent singular approxi-

mation has been developed as an alternative option to quanti-

tatively understand atmospheric ice nucleation. The concept

was first developed by Levine (1950), while the term “active

sites” per surface area was introduced by Fletcher (1969).

More recently, Connolly et al. (2009) introduced the ns den-

sity parameterization (see Sect. 2.4). This specific approach

neglects the time dependence of freezing, and assumes that

a characteristic condition (e.g., temperature) must be met to

nucleate ice. The semi-deterministic forms of the singular ap-

proach have a cooling rate dependence incorporated (Vali,

2008; Herbert et al., 2014). Predicting ice nucleation from

a singular perspective does not require a vast knowledge of

particle-specific parameters (e.g., surface composition, struc-

tures, surface tension and solubility) that are particular to

each ice nucleus and, therefore, enables ice nucleation pa-

rameterization to be relatively simple and efficient compared

to the CNT-based approaches (Murray et al., 2011).

The assumption that the time dependence of the freezing

of droplets is of secondary importance when compared to

temperature dependence is supported by a recent modeling

sensitivity study that shows that common INPs are substan-

tially more sensitive to temperature than to time (Ervens and

Feingold, 2013). Furthermore, while Broadley et al. (2012)

shows that freezing by illite NX is time-dependent through

isothermal experiments, the shift in freezing temperature on

changing cooling rates by an order of magnitude is less than

0.6 ◦C, which is within the experimental uncertainty. A simi-

lar observation of weak time dependence of immersion freez-

ing for various types of suspended samples, inferred by com-

paring the results with varied cooling rates from 0.01 to

1 ◦C min−1, is reported by Wright et al. (2013).

In the context of dry-dispersed measurements, the sensi-

tivity of the ice nucleation to a possible time dependence,

and the respective influence on ns, was examined to further

discern its importance and uncertainty. Specifically, a contact

angle distribution was fitted to the LACIS measurements and

was used, together with the soccer ball model (SBM; Nie-

dermeier et al., 2011, 2014), to simulate frozen fractions for

different residence times varying over 4 orders of magnitude

(i.e., 1, 10, 100 and 1000 s residence time). These frozen frac-

tions were then used to calculate ns, shown as lines in Fig. 9.

More specifically, frozen fractions for 500 nm diameter il-

lite NX particles were calculated based on SBM to obtain

ns(T ) spectra. To accomplish this, a contact angle distribu-

tion was used which was derived based on LACIS data for

the illite NX particles as shown in this work, resulting in val-

ues of 1.90 rad for the mean and 0.27 rad for the width of the

contact angle distribution. Frozen fractions were obtained for

ice nucleation residence times of 1, 10, 100 and 1000 s. An

increase in the residence time by a factor of 10 resulted in

a shift of approximately 1 ◦C towards higher freezing tem-

peratures. This is similar to the results found in a previous

study by Welti et al. (2012) for measurements of kaolinite-

rich clay minerals. Indeed, ns,geo data obtained from AIDA

agree within the measurement uncertainty with LACIS data

without accounting for time dependence. These results sug-

gest that time dependence of immersion freezing for illite

NX particles can be neglected as a factor in the comparisons

shown in Figs. 4, 5 and 6. They also imply that the immer-

sion freezing nature of illite NX is only slightly dependent on
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Figure 9. Soccer ball model analysis for time dependency of im-

mersion freezing of illite NX particles. Comparison to LACIS mea-

surements in ns,geo space is also shown. Error bars represent ex-

perimental uncertainties (T ± 0.3 ◦C and ns± 28 %). The subpanel

shows a section of T (−31 to −38 ◦C) and ns,geo (1.2× 1010 to

5.1× 1011 m−2) space without error bars. A shift in the residence

time from 1s to 10 s shifts ns (as well as nm, not shown) towards

higher temperatures by about 1 ◦C.

cooling rate across a wider range of temperatures (as com-

pared to a −26 to −37 ◦C range as shown in Broadley et al.,

2012), regardless of the sample preparation process.

4.4 Potential effect of agglomerates

As seen in the particle surface area distributions (Fig. 2)

and agglomerated-fractions based on a relative comparison

to D95, aggregates are rather persistent and dominant for

most of the dry-dispersed particle measurements. Since dry

aggregates can have large “supermicron” sizes, they may

have different IN propensities and efficiencies (Wheeler et

al., 2014) as compared to the smaller sizes investigated in

the present study (i.e., up to 1000 nm from PINC). Further,

the degree of agglomeration may conceivably affect the sur-

face area exposed to liquid water when suspended in super-

cooled droplets. Hence, an overall quantification of the effect

of agglomerates is difficult. Moreover, the degree of agglom-

eration seems to vary from experiment to experiment, intro-

ducing diversity on the estimation of Stotal of particles and

ns for dry-dispersed particle measurements. For instance, a

combination of several methods for particle dispersion and

subsequent particle size selection was employed for particle

generation from illite NX samples. Further, most of the dry

dispersion techniques used upstream impactors to filter out

large agglomerated particles and avoid counting these large

particles as INPs. The different types of dispersion meth-

ods, impactors and size segregating instruments used in the

present work are listed in the Supplement Table S1. These

different aerosol generation processes may have caused dif-

ferent degrees of agglomeration. This may in part explain

why ns measurements obtained using dry dispersion tech-

niques deviated from those using suspension measurements.

Further quantification of the influences of different meth-

ods for particle dispersion, size-segregation and particle im-

paction/filtration on the estimation of Stotal and ns is an im-

portant topic for future works.

In contrast, in suspension experiments, illite NX samples

were directly suspended in water. Despite no pre-treatments

(e.g., pre-impaction or size segregation), suspended parti-

cles appeared adequately de-agglomerated (Fig. 2a). Though

the number of immersed particles can vary from droplet to

droplet and the random placement of particles in the drop

may have an effect on the ns values, the ns spectra from

suspension measurements are in reasonable agreement with

slight deviations even over a wide range of wt % of illite

NX samples (Figs. 6, 8, S4–S8). Thus, the influence of the

random placement of particles in the drop and agglomera-

tion on the ns estimation for suspension measurements seems

small. To support this, Wright and Petters (2013) and Hader

et al. (2014) simulated the role of a statistical distribution

in drops. The authors demonstrated that the random compo-

nent due to drop placement seemed to be small relative to

the statistical variation due to nucleation probability. Hence,

assuming the degree of agglomeration or flocculation is sim-

ilar in all suspension samples, the degree of agglomeration

and the random placement of particles in the drop may lead

to less pronounced deviations in ns when compared to dry-

dispersed measurements.

4.5 Nucleation mode dependence

While all suspension methods only measured immersion

mode freezing of the illite NX particles, a contribution of

other nucleation or freezing modes cannot be ruled out for

dry-dispersed particle measurements. Hence, we now discuss

inferences in the present experiments regarding the mode de-

pendency of the ice nucleation ability of illite NX particles.

Figure 10a and b show the comparison of ns derived from the

two different operation types of FRIDGE measurements. For

instance, ‘default mode’ considers deposition mode nucle-

ation and immersion mode freezing of dry particles in which

RHw is scanned upwards and ‘imm.mode’ counts immer-

sion freezing of suspended particles in which the particles

are first washed into droplets and then placed on the sub-

strate. With these two different operational modes, FRIDGE

investigated the ice nucleation ability of both dry and droplet

suspended particles deposited on a substrate (see the supple-

mentary methods). FRIDGE scans RHice and RHw (low to

high) at a constant temperature. During such scans an abrupt

increase in an activated ice fraction near water saturation

as well as the highest Nice is typically observed. We con-

sider ice crystals formed at the highest RHw (near 100 %

RHw) as a measure of immersion Nice from dry-dispersed
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particle measurements in this study. Some default runs of

FRIDGE show much higher ns,BET values compared to the

immersion mode runs. This difference may be a consequence

of the different IN efficiencies of nucleation modes (deposi-

tion+ immersion vs. immersion alone) in the examined tem-

perature range (−25 ◦C < T <−18 ◦C), the different sample

preparation processes (dry or suspended sample), effects of

agglomeration or a combination of the three. We note that a

major difference between the two measurement setups is the

pressure within the instrument. For instance, default condi-

tions involve processing at a few hPa of water vapor while

the immersion measurements are conducted at atmospheric

pressure. In addition, corrective post-analysis of droplet/ice

separation was taken into account in this study, so that errors

from counting large droplets as ice crystals were successfully

removed. Interestingly, our comparison suggests that ns val-

ues derived from the FRIDGE default mode seem similar to

those from MRI-DCECC, in which experiments were carried

out with a high degree of particle agglomeration (Fig. 2c).

Some other variations on applied methods suggest nucle-

ation mode effects on the IN efficiency of illite NX parti-

cles at lower temperatures (Fig. 10c and d). For instance,

the comparison between ZINC and IMCA-ZINC show about

an order of magnitude diversity in ns,BET beyond experimen-

tal uncertainties at −33 ◦C, suggesting a mode-dependent

IN efficiency of clay minerals at this temperature. This ob-

servation is consistent with a statement that the immersion

freezing parameterization from CNT may not reliably predict

the activated fraction observed at RHw > 100 % as observed

from condensation freezing (Welti et al., 2014). However,

this is in contrast to observations indicated by PNNL-CIC

below −25 ◦C and to results presented in Wex et al. (2014),

where ns,geo obtained from kaolinite measurements made

with LACIS and the CSU-CFDC (at 104 % > RHw > 106 %

for the latter) agreed well. When a freezing point depres-

sion is taken into account, even data obtained with the CSU-

CFDC for water-vapor-sub-saturated conditions is in agree-

ment with data obtained from both LACIS and CSU-CFDC

at water-vapor super-saturated conditions. Concerning data

presented here, PNNL-CIC and IMCA-ZINC measure con-

densation/immersion and purely immersion mode freezing

efficiency of particles, respectively, and are in reasonable

agreement within experimental uncertainties (Fig. 10c and

d). Thus, the observed inconsistencies between methods

should be subject to further methodological improvements

to provide accurate data as a basis for model parameteriza-

tion. Similar heterogeneous ice nucleation mode-dependent

observations were made by our EDB experiments. We ob-

served that ns values derived from contact freezing experi-

ments were higher than those derived from immersion exper-

iments (Fig. 10c and d). As described in the supplementary

methods, immersion mode experiments were performed for

the droplets, which were not activated via contact freezing.

4.6 Effect of mineralogical properties: which

component of illite NX nucleates ice?

Atkinson et al. (2013) suggested that the mass fraction of

K-feldspar in a sample can be used as a scaling factor to es-

timate the ns values of other K-feldspar containing dust and

soil samples. O’Sullivan et al. (2014) showed that this scal-

ing rule could be used as an approximate predictor for the ns

of soil samples once the biological ice-nucleating particles

were deactivated. However, inspection of Fig. 6 reveals that

the line based on 14 % feldspar (assuming all microcline) sig-

nificantly over predicts the ns values for illite NX. There are

a number of reasons why this might be.

The K-feldspar sample used by Atkinson et al. (2013) was

the British Chemical Standard Chemical Reference Mate-

rial (BCS-CRM) number 376/1 and X-ray diffraction anal-

ysis shows that the crystal structure is consistent with that of

microcline. Microcline is one possible form of a K-feldspar

and, as discussed above, other feldspars are sanidine and or-

thoclase, which have distinct crystal structures. The ice nu-

cleation abilities of sanidine and orthoclase are not yet pub-

lished, but given that they have different crystal structures,

they may have different nucleating abilities. Unfortunately,

the X-ray diffraction analysis of illite NX is unable to iden-

tify the K-feldspar(s) present in illite NX, although the min-

eralogical analysis conducted as part of this study concluded

that there was no detectable microcline in illite NX. Hence,

one explanation for the K-feldspar scaling rule not working

for illite NX is that there is only a trace of the strongly ice ac-

tive microcline present in illite NX. For suspension measure-

ments, only the 0.0014 % microcline parameterization repro-

duces the slope and magnitude of the illite NX data in Fig. 6,

but this quantity of microcline is well below the detection

limit of the X-ray diffraction technique. Perhaps, in the case

of illite NX, it may not be the feldspar which triggers nu-

cleation, but instead it could be another mineral present in

this sample. For example, Atkinson et al. (2013) found that

a quartz sample nucleated ice more efficiently than the clay

minerals, but less efficiently than the feldspar samples they

used. At about −28 ◦C, they reported an ns of ∼ 1010 m−2.

The X-ray analysis in this study revealed the presence of 3 %

quartz, hence we would predict an ns of 3× 108 m−2, which

is consistent with the illite NX data. Finally, an alternative

explanation is that the surfaces of K-feldspars are chemically

altered in illite NX. The surfaces of feldspars are known to

transform to an amorphous silicate which can then recrys-

tallize as a clay if exposed to an acidic environment. Wex

et al. (2014) suggested that it was the acid processing of K-

feldspar which deactivated Fluka-kaolinite. It is feasible that

the surfaces of feldspar grains in illite NX have at some point

become deactivated. More quantitative investigations of the

acid processing of both reference and atmospherically rel-

evant materials, and of acid processing’s influence on their

respective immersion mode ice nucleation efficiencies, are

needed.
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Figure 10. Examination of mode dependency of heterogeneous ice nucleation of illite NX particles. A comparison of FRIDGE (default) and

FRIDGE (imm.mode) in ns,BET and ns,geo are shown in (a) and (b), respectively. (c) and (d) show a comparison between EDB (contact),

EDB (imm.), ZINC, IMCA-ZINC, and PNNL-CIC data in ns,BET and ns,geo , respectively.

Recently, re-partitioning of soluble components of both

swelling and non-swelling clay minerals and their effect on

cloud condensation nucleation activity was reported (Sulli-

van et al., 2010; Kumar et al., 2011; Garimella et al., 2014).

To address a potential importance of this effect on the ice-

nucleating activity of illite NX in the wet dispersion exper-

iments, we have measured the concentration of cations re-

leased by the illite NX sample placed into deionized water as

a function of time, as described in Sect. 3.1 (i.e., Fig. 3).

It is instructive to compare the quantity of cations released

by illite NX into an aqueous environment with the value of

the cation exchange capacity (CEC) for illite, which is known

to be 25 to 40 cmol kg−1(Meunier and Velde, 2004). CEC

is defined as the amount of cations retained by all the neg-

ative charges in 100 g of clay immersed in water at pH 7

(e.g., see Meunier, 2005). Per this definition, CEC describes

the total quantity of exchangeable cations, including inter-

layer cations which are in fact not accessible for substitu-

tion in non-swelling clays. The molar fraction of external

cations, located on the basal planes of the crystals and on

the crystal edges is roughly evaluated for illites as 20 % of

the total CEC, yielding 5 to 8 cmol kg−1 (Wilson, 2013). Re-

markably, the total amount of all cations (K+, Mg2+ and

Ca2+) released within the first hour by illite NX, if recalcu-

lated with account for cation valence and for the actual mass

of illite in the aqueous suspension (0.1 g), gives the num-

ber 7.5 cmol kg−1, which corresponds nicely with the up-

per bound of the external CEC (8 cmol kg−1). Furthermore,

Grim (1953) has shown that the CEC of illite increases with

decreasing size of the clay particle size, with the upper bound

(∼ 40 cmol kg−1) being characteristic for illite with a parti-

cle size below 100 nm. This is again consistent with the very

small size of particles in illite NX.

These findings have two potential implications for the

measurements of illite NX ice-nucleating efficiency obtained

with different instruments. First, in the methods where dry il-

lite NX particles are activated to droplets prior to cooling, the

concentration of cations released into the water surrounding

the particles is still far from the equilibrium and is a func-

tion of the residence time (e.g., ∼ 2–3 s for LACIS, ∼ 4 s for
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PINC, ∼ 12 s for PNNL-CIC, and over the range of several

tens of seconds to a few minutes for AIDA depending on ini-

tial chamber T and RH). At the same time, the amount of ex-

ternal cations retained on the surface of illite particles deter-

mines the charge properties, such as charge distribution land-

scape and zero charge point. A potential importance of the

surface charge of hematite particles for their IN activity was

suggested recently in Hiranuma et al. (2014b). These consid-

erations, however speculative, might shed some light on the

observed scattering of experimentally measured values of ns.

Second, for the freezing measurements where the illite-rich

sample was suspended in water prior to cooling, all acces-

sible external cations were already released into the aque-

ous environment. In these cases the concentration of cations

in the droplets is a function of mass concentration of illite

in suspension. To access high freezing temperatures, high

concentrations of illite are needed in the droplet assay tech-

niques, resulting in the possibility that not all cations are re-

leased into solution due to the inhibition of the ion exchange

process. Again, this would change the surface charge distri-

bution and potentially affect the ice-nucleating efficiency of

illite particles. If wet particle generation (dispersion of aque-

ous suspension by means of a pressurized air atomizer) is

used, the redistribution of cations between suspended parti-

cles may be an issue, as suggested by Garimella et al. (2014)

for the case of CCN experiments. Further studies of samples

without modification or ageing after dry dispersion or wet

suspension are needed to get a better idea of the method in-

tercomparison.

5 Conclusions

The framework of the present work is designed to advance

the existing state of knowledge regarding IN measurement

techniques. After ICIS-2007, there has been an increase in

new instrument development, especially off-line, substrate-

supported cold stage techniques, and modifications of exist-

ing online techniques. Concepts to formulate area-scaled IN

efficiency with ns parameters have also since been introduced

to the community. These improvements are comprehensively

evaluated in this work.

The partners of the INUIT group and external partners

have for the first time identified and shared a reference min-

eral dust sample (illite NX) in order to obtain a comprehen-

sive data set for evaluating immersion freezing properties of

atmospherically relevant particles across a wide range of par-

ticle concentrations, temperatures, cooling rates and nucle-

ation times. Illite NX samples were extensively character-

ized for their physicochemical properties before they were

distributed to INUIT partners and collaborators. Both bulk

and single particle elemental composition analyses were con-

ducted by XRD and EDX analyses, respectively.

A total of 17 IN measurement techniques were intercom-

pared based on their immersion freezing measurements. Our

intercomparison exercise provided unique results that would

not have been achieved by individual investigators in isola-

tion. Both consistencies and discrepancies among the instru-

ments have been identified. Our results suggest that the im-

mersion freezing efficiency (i.e., ns) of illite-rich clay min-

erals is relatively independent of droplet size, mass percent

of illite NX sample in droplets for the methods examining

suspensions, physical size of illite NX particles for the meth-

ods examining dry-dispersed particles and cooling rate dur-

ing freezing within typical experimental uncertainties, veri-

fying the premise of the ns concept (i.e., size independency

for submicron illite NX particles, strong temperature depen-

dency and weak time dependency of immersion freezing for

illite-rich clay mineral particles).

Furthermore, comparisons of the suspension subsets

against the dry-dispersed particle techniques were per-

formed. Dry samples alone showed higher ns values com-

pared to the pre-suspended samples above −27 ◦C. A possi-

ble explanation for this deviation (i.e., ns from dry-dispersed

methods > ns from suspension methods) may be the surface

modification of the illite NX particles (e.g., due to ion disso-

lution effects in the aqueous suspension).

Comparisons of the absolute values of1log(ns)/1T as an

ice activation parameter suggest that the predominant freez-

ing sites of illite NX particles exist in a temperature range

between −20 and −27 ◦C for suspension experiments. In

comparison to previous measurements, our synergetic work,

which covers a wide temperature range, shows a similar re-

sult to the Broadley parameterization (B12), and our overall

fit for the low temperature region below −27 ◦C also agrees

with the Niemand parameterization (N12).

Overall accuracy and precision of the IN measurement

techniques was examined by evaluating T -binned (i.e., 1 ◦C

bins) ns(T ) data derived from all 17 instruments for the

temperature range from −11 to −37 ◦C. Our analysis re-

vealed that discrepancies among measurements were within

about 8 ◦C in terms of temperature and up to 3 orders of

magnitude with respect to ns. This diversity is much larger

than the individual uncertainties of each instrument, suggest-

ing that all instruments may be reasonably precise but it is

still difficult to find overall accuracy of current IN measure-

ment techniques, at least while using illite NX as the stan-

dard and allowing partners to investigate it independently.

In addition, two different ns metrics, ns,geo and ns,BET , were

compared, and we found that ns,BET is a better proxy for

suspension-based IN measurements, while ns,geo is better for

dry-dispersed particle measurements.

Other than the intercomparison aspects described above,

several important implications were inferred from our study

and enhanced our basic knowledge of immersion freezing.

First, the existence of only a comparably small contribu-

tion of time dependence to the intercomparison was rec-

onciled by the SBM simulation. Specifically, a change of

the residence time, from 1 to 10 s, shifts ns values towards

higher temperatures by only about 1 ◦C. Second, several
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nucleation modes and their contribution to nucleation ef-

ficiency were also evaluated. A comparison among EDB,

ZINC and IMCA-ZINC below −25 ◦C implied some mode

dependencies. Likewise, a mode dependency was also pro-

nounced based on FRIDGE results at temperatures above

−25 ◦C. Third, immersion freezing experiments were per-

formed with both polydisperse and size-selected illite NX

particles for the AIDA-CECC, MRI-DCECC and CSU-IS

measurements, and size independence of ns for immersion

freezing of submicron illite NX particles (DMA size-selected

200, 300 and 500 nm diameter) was also demonstrated. Fi-

nally, our observations show that temperature is the major

variable influencing the immersion freezing of illite NX par-

ticles, as the ns values in general increase while temperature

decreases. In addition, our results of ns and absolute values

of 1log(ns)/1T distributions across a wide range of tem-

peratures imply that clay minerals may contain various freez-

ing activation energies, and the immersion freezing nature of

clay minerals (e.g., illite NX) in a wide range of tempera-

tures cannot be fitted by simple exponential functions but are

governed by a hybrid of multi-exponential functions (a com-

bination of scaled A13 and N12 parameterizations).

Though we shared identical test samples with each other, it

is still difficult to compare ns results because sample prepa-

ration techniques and measurement methods (e.g., particle

dispersion and size distribution characterization) differ from

group to group, which can result in different degrees of ag-

glomeration or different nucleation modes. Therefore, a con-

tinued investigation to obtain further insights into consisten-

cies or diversity of IN measurement techniques from an ex-

perimental perspective is important to explore freezing con-

ditions for specific compositions and more atmospherically

relevant particles (e.g., soil dusts and long range transported

weathered dusts). In parallel, an empirically constrained

model including parameterizations of immersion freezing

that correctly and efficiently represent particle-specific ex-

perimental data is also in high demand for overall predic-

tions of current and future climate. We demonstrated that

the ns formulation offers a simplified expression for quan-

titatively parameterizing immersion freezing. Further devel-

opments of more simplified (efficient but accurate) descrip-

tions, constrained by more accurate IN counting techniques,

of governing atmospheric IN processes are needed.
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