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Characterisation targets usually include a set of physical coloured samples. A 

characterisation model can be derived between the colorimetric values (tristimulus values) 

and camera responses (RGB values) taken from an imaging device such as a digital camera 

capturing the colours in the target. The performance of such model is highly dependent 

upon the number of colours and the colour region in the characterisation target. An ideal 

characterisation target should provide accurate model prediction without requiring too 

many samples. In this paper, a computational method is presented for colour selections to 

train a camera characterisation model based on a fourth-order polynomial model including 

35 terms. Comparing with the available methods the newly developed method performed 

the best. Furthermore, this method was applied to propose generic targets in terms of 

colorimetric values. These targets should work reasonably well for a wide range of 

materials. 
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Introduction 

With the rapid development of digital technologies, the images obtained from digital cameras 

have been used for colour communication in the global supply chain. Specifying colours based 

on digital cameras have become popular in imaging area since its application is not limited by the 

form and size of the object measured comparing with traditional colour measuring instruments 

such as spectrophotometers. A characterisation model is frequently used to perform this task via a 

transformation between two colour spaces, e.g. for a digital camera, the output RGB values is 

transformed to CIE colorimetric values, such as XYZ or CIELAB [1]. The model is developed 

based on the two sets of data (colorimetric values and camera responses) from a characterisation 

target. Therefore, it is essential to include right colours in the characterisation target which can be 

used for deriving a reliable camera model.  

Generally, when more colours are included in the target, the model can predict with better 

accuracy. However, a large number of colours requires more colour measurement efforts (time-

consuming) and increases the cost for production. Characterisation target is also useful for 

industries that are involved with painting, coating or dying surface manufacturers where only one 

material is used. For example, paint manufacturers are only concerned with the colour quality on 

paint samples. In this case, accurate colour measurement for paint sample is important and a 

target chart consisted of paint samples will allow good characterisation performance. The aim of 

this research is to development generic methods to select a minimum number of colours 

necessary to construct a characterisation target, for which the characterisation model developed 

from the target can have high efficiency and achieve high model accuracy. 
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Camera Characterisation Model 

The characterisation model is defined as a mathematical model based on a set of equations.  

Most of the characterisation models are constructed by first measuring the camera responses and 

colorimetric values of a characterisation target which has the same material to be characterised, 

say paint, and then by determining the mathematical model in order to transform colours between 

the two sets of the data [2]. There are three main approaches for digital camera characterisation: 

look-up table (LUT), neural network and polynomial models. The LUT method requires a lot of 

samples to reduce the interpolation errors [1]. Cheung et al. [3] compared neural network and 

polynomial transforms, and the results showed that the techniques were capable of producing 

almost identical results when properly used. The neural networks can be difficult and time-

consuming to train. Therefore, in this study, the polynomial regression was chosen as the camera 

characterisation model. This polynomial regression consists of a series of coefficients determined 

by regression from a set of samples including camera responses (RGB) and colorimetric values 

(XYZ) [4]. The generic formula of the polynomial model is given in Eq. (1): 
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  Eq. (1) 

where Xk, Yk and Zk are the CIE tristimulus values of the kth sample, Rk, Gk and Bk are camera 

signals of the kth 
sample, K is the number of samples in the characterisation target; n is the order 

of the polynomial and 1j , 2j , 3j  are nonnegative integer indices; 
321 ,,, jjjXm , 
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321 ,,, jjjYm ,
321 ,,, jjjZm are the model coefficients to be determined. Eq. (1) can be expressed in 

matrix form as given in Eq. (2). 

 kk Mfg   Eq. (2) 

where fk is the kth
 camera response vector formed by given RGB vector; gk is the kth

 tristimulus 

values vector obtained by physical measurement using a spectrophotometer; M is the mapping 

matrix to transform fk to the vector gk of tristimulus values. The least squares method [5] can be 

used for determining the matrix M based on the known camera response vector fk and the 

corresponding measured tristimulus values gk from the training set. Letting  

 1 2 1 2[ , ,..., , ],  and [ , ,..., , ]K KG g g g F f f f   Eq. (3) 

results in a matrix equation: 

 G MF  Eq. (4) 

where M is 3 by N matrix, and F is N by K matrix and G is 3 by K matrix; N is depended on the 

order n, for instance, when n = 4, N is 35.  

 

In the above matrix equation, the matrices G and F are known and M is unknown. Note that 

the linear system of equation G=MF may have no solution if K>N, or may have many solutions if 

K<N. In fact when K=N, it may have a unique solution, or no solution or many solutions 

depending on the conditions of the matrix G and F. In general, the least squares solution is 

required, which is modelled as: 

 2Minimise: || ||MF G  Eq. (5) 
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Here 2|||| q is the 2-norm of the q vector [5]. The above solution can be written by 

 M GF   Eq. (6) 

where F   is the pseudo or generalised inverse of the matrix F. when K=N and problem (Eq.(5)) 

has a unique solution, F  becomes the normal inverse 1F  of the matrix F. If the problem 

(Eq.(5)) has many solutions, the above solution is the minimum norm solution. 

 

  It is noted the size of the column vector fk is determined by the order n of the polynomial 

according to Eq. (1).  The order of the polynomial model used for camera characterisation affects 

the performance. This was first determined. The models with different orders were trained by the 

colours in the full Munsell atlas (1562 colours) and tested by the full GretagMacbeth 

ColorChecker
®
 DC (MCDC) chart (170 colours). The details of the datasets will be introduced 

later. 

 

Figure 1: Effect of the complexity of polynomial models on training and testing 

performance.  

Figure 1 shows the training and testing performances with the increase of the complexity of 

polynomial models. The black bars indicate the model trained and tested by the Munsell samples. 

The grey bars indicate the model trained by the Munsell samples and tested by the MCDC 

samples. It can be seen that the accuracy of training performance increased with the complexity 

of the model. For testing performance, the best performance was obtained with a fourth-order 

polynomial model. In general, as the complexity of the model increases the training performance 

increases consistently whereas the testing performance will reach a maximum and subsequently 

decrease as the model over-fits the training data. In this work, it is found a fourth-order 
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polynomial model provided a satisfactory performance with both training and test datasets. Li et 

al. [6] also found that the polynomial performed the best using camera data with a fourth-order 

polynomial model. Eq. (7) shows the model resulting the camera response vector fk with a 35 by 

1 vector: 
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 Eq. (7) 

where t is the transpose of the vector. 

Colour Selections for the Training Target 

It is suggested that the number of samples and their colour distribution have a large impact on 

model accuracy [7]. The efficiency of the characterisation process can be improved by reducing 

the number of samples in the training dataset. The existing methods [8; 9; 10] used to select the 

samples are introduced in this section. Finally, a new method will be proposed. 

 

Hardeberg Method 

Hardeberg and co-workers [10; 11] proposed a method to select a set of reflectance samples 

from Munsell patches [12] for the estimation of camera spectral sensitivity. They claimed that the 

chosen spectra in reflectance space were as different as possible from each other. The first 

sample rs1 selected is the spectral reflectance function with maximum root mean square value as 

defined in Eq. (8): 
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where K is the number of samples in the full set and n is the number of elements in a measured 

reflectance vector r. The second sample rs2 is obtained by minimising the condition number of 

the matrix [rs1 rs2]; i.e. to select the ratio of the largest to the smallest non-zero singular value. 

The equation is expressed in Eq. (9).  
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where wmax and wmin represent the maximum and minimum non-zero singular values of the matrix 

[rs1 rs2] respectively. The ith
 sample could be selected in the similar way:   
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 Eq. (10) 

MAXMINC Method  

By choosing the samples which are as different to each other as possible, Cheung and 

Westland [8] developed another method to select colours using 1269 Munsell samples [12] for 

camera characterisation. In their method, named MAXMINC, the colorimetric values (C) were 

used to define colours closest to its neighbours (MIN) in sets of predetermined sets based on the 

maximal difference (MAX).  

The first sample selected was the sample having the largest variance of spectral reflectance 

suggested by Cheung and Westland [8]  They compared the model performance with the first 

samples to have maximum and minimum spectral variance. In general, the former performed 
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better. The use of the sample with the greatest variance in spectral reflectance as the first sample 

(likely to be a highly chromatic colour) would result in the larger colour difference for the 

subsequently colours selected. Hence, the sample with greatest variance was used as the first 

sample in the present study. Supposing that there were K samples in the pool and m samples had 

been selected, the (m+1)th
 sample is desired to be selected from the remaining K-m samples in the 

pool without replacement. For the MAXMINC method, the (m+1)th
 sample whose nearest 

neighbour was as far as possible is determined according to the maximum value of Sj shown in 

Eq. (11).  

 
,

1
min

m

j j k
k

S E

     Eq. (11) 

whereġǻEj,k is the Euclidean distance between the jth
 samples ( {1,2,..., }j K m  ) in the database 

and the kth
 sample ( {1,2,..., }k m ) which was already selected. In implementing the method in 

this study, the Euclidean distances were calculated from the colour differences in CIELAB space 

as the original work. 

The Colour Difference Iteration (CDI) Method 

A new method named Colour Difference Iteration (CDI) is derived here to achieve high 

colour accuracy in terms of colour differences. During the selection process, a source dataset 

including XYZ and RGB are first provided. The number of samples in the source dataset and the 

training dataset, which are the samples selected from the source dataset are known.  

Figure 2 shows the workflow for sample selection. K is the number of samples in the source 

dataset. The value m is predefined as the number of samples to be selected from the source 

dataset. In step 1, m equals to zero. Since there are K samples, each sample is a candidate. Each 
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of the K samples is first used to train a characterisation model. Thus, K models are obtained. 

Each model is then applied to predict the colour accuracy of the full source dataset in terms of 

CIEDE2000 colour difference (ǻE00) [13] under D65/10 condition. From each prediction, the 

model performance is obtained in terms of mean colour difference. For example, S2 is selected 

and is denoted P1 in Figure 2, because E2 is the smallest. 

 

Figure 2: A schematic diagram showing the CDI method selecting characterisation samples. 

Next step is the selection of the second sample which should provide the best combination 

with P1 according to the performance. In order to avoid selecting P1 twice, the previously 

selected sample P1 is removed from the source dataset and m equals to one. Once again, each 

remaining sample from the source dataset combined with the already selected sample P1 in turns 

are used for training the model. It results in K-1 models. Again, each model is used to predict the 

full source dataset. From the predictions, the sample combined with already selected sample P1 

with the smallest colour difference will be selected. The same process will be repeated until it 

reaches the desired number of samples. Therefore, the new method named as colour difference 

iteration (CDI) method. The CDI method is simple and easy to implement. It was found from 

many tests that the first sample (P1) chosen was the lightest neutral colour in the source dataset 

with a ǻE00 about 15. This suggests that the lightest neutral colour should be included in the 

source dataset. Otherwise, the characterisation model�s performance could be deteriorated. 

Note that the model coefficients in Eq. (1) derived using one or few samples cannot be 

uniquely determined. When using an individual sample to determine matrix M in Eq. (2), there 

are many matrices M satisfying Eq. (2). Constraint must be added since the unknown model 

parameters are used as multipliers. It is better if these parameters are not too large in magnitude 
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in order to reduce noise propagation and to prevent local oscillation in prediction. Therefore, the 

minimum norm of the unknowns is considered as a constraint [4].ġ The norm here used is the 

square root of the sum of squared unknowns. In the proposed method, the pseudo or generalized 

inverse is defined in Eq. (6). Hence, regardless of the number of samples used, the matrix M with 

minimum norm is obtained, resulting in a unique solution in each case. One may argue that this 

may not be the best solution. Although the method may not be proven to be optimal it allows 

satisfactory performance based on the fourth-order polynomial model and the collected data 

according to the testing result which will be presented in the following sections. 

Data Collections 

Three sets of samples were used: the Munsell book of Color having 1562 glossy paint chips 

[14; 15], the Professional Colour Communicator (PCC) consisting of 1063 textile samples [16] 

and a GretagMacbeth ColorChecker
®
 DC (MCDC) including 240 colour patches. A Nikon D80 

digital camera was used for imaging the samples. On the other hand, an X-Rite CE7000A 

spectrophotometer was used to measure all the test samples using the small aperture, specular 

inclusion and UV exclusion conditions. 

Munsell Book of Color 

The Glossy version
®

 of the Munsell Book of Color [14; 15] includes 1562 paint chips. Each 

chip is specified by three Munsell attributes (Munsell Hue, Munsell Value and Munsell Chroma). 

There are 40 hue pages in the Munsell Book of Color. The lightness of a colour is expressed by 

the Munsell Value (V) ranged between 0 and 10 at 1-unit interval. The Munsell Chroma (C) 

represents the degree of chromatic content from zero (achromatic colours) to an open end.  
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Professional Colour Communicator (PCC) 

The Professional Colour Communicator (PCC) [16] includes 40 loose-leaf pages of small 

cuttings of dyed cotton arranged according to changing lightness, hue and chroma based on the 

CMC(2:1) colour space [17]. There are totally 1063 textile-based samples in the system. The 

samples with constant hue angle are given in a page. These samples in each page are arranged 

according to the lightness (column) and chroma (row). In the PCC, each adjacent page has a 9-

degree interval in hue angle, and there are 5-unit and 10-unit intervals for chroma and lightness 

respectively between each adjacent pair of samples.  

GretagMacbeth ColorChecker® DC (MCDC) 

 The GretagMacbeth ColorChecker
®
 DC target has 237 patches in a 12 cm by 20 cm grid 

including 167 matte colours, 10 glossy colours, 60 colours of the repeated three neutral colours (a 

black, a gray and a white patches) surrounding the border of the chart. The 10 glossy samples in 

the MCDC set which may give serious reflection problems in some lighting situations were 

excluded. Also, the 60 repeated 3 neural colours were discarded in the study. A large matte white 

patch at the chart centre occupying 4 patches positions was considered as 4 colours. Hence, 170 

samples in total were used for this set.  

 

 

 

Nikon D80 Digital Camera 

In this project, a digital single lens reflex camera, Nikon D80 [18], was used for capturing 

images of all the samples mentioned in the last section to obtain camera RGB values. The digital 
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camera was situated on the top of a cabinet illuminated by a CIE D65 simulator from each of the 

sides as shown in Figure 3. The illumination and viewing geometry can be considered as d/0, and 

the camera conditions are given in Table 1. Samples were placed on the base at the bottom of the 

cabinet. The images of samples were captured by the digital camera and the captured images 

were saved the captured images as jpeg files. The RGB values of samples were directly taken 

from the jpeg file. Therefore, the results could not be improved by additional steps such as 

channel balancing and linearisation. 

 

Figure 3: Structure of the digital camera system 

Table 1: Camera Setting 

GretagMacbeth® COLOR-EYE® 7000A Spectrophotometer 

The colorimetric CIE XYZ values were calculated from the reflectance measured by a  

GretagMacbeth
®
 COLOR-EYE

®
 7000A Spectrophotometer [19]. The measuring conditions were 

small aperture, specular inclusion and UV exclusion conditions. The reflectance functions were 

measured between 400nm and 700nm at 10nm interval.  

 

In total, three source datasets were accumulated. Each dataset contained camera responses 

and corresponding CIE tristimulus values. The three colour selection methods introduced above 

were compared using the data collected. The mean CIEDE2000 colour difference value was used 

to measure the model performance. 

Comparison among Colour Selection Methods 
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The MCDC chart (170 samples) was first taken as the source dataset. Hardeberg, MAXMINC 

and CDI methods were used for selecting a subset of samples for developing models. The 

comparison was conducted based on the polynomial model. The models developed were tested 

using the full MCDC source data. For each method, the samples were reordered according to the 

sequence for the samples selected, i.e. the order in which samples were selected matched their 

importance to the model. The same procedure was also applied to the Munsell set and the PCC 

source dataset.  

Table 2 lists the results for each method with the number of the samples (24, 60, 90, 120 and 

170) used to develop the characterisation model. These numbers were arbitrarily chosen for easy 

arrangement in a chart. For the MCDC data, it can be seen that when 24 samples were chosen, 

the Hardeberg method had an average accuracy of 8.4 ǻE00, the MAXMINC method 2.6 ǻE00, 

and the CDI method 2.0 ǻE00; while the ǻE00 values for the worst sample for each of the 

Hardeberg, MAXMINC and the CDI methods were 32.8, 11.8 and 7.9 ǻE00 units respectively. 

The results indicated that the CDI method performed the best among all the methods tested for all 

the subset of training samples.  

Table 2 also shows the results for the Munsell and PCC sets. The CDI method was again the 

best in terms of the mean and maximum measures and the MAXMINC method performed better 

than the Hardeberg method. The results were quite consistent and showed the CDI method 

outperformed the other two methods. It was encouraging that the sample set with 60 samples for 

the CDI method gave better results than the sample set with 170 samples for the Hardeberg or the 

MAXMINC method. However, it should be noted that the Hardeberg method was proposed for 

spectral sensitivity estimation which is a different task than polynomial colorimetric 

characterisation. All the results were based on the polynomial model and the data collection from 
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a Nikon D80 camera. Further work will consider testing with a wider range of models and using 

another camera. 

Table 2: Testing the Hardeberg, MAXMINC and CDI methods developed using the subsets 

from the three source datasets in terms of mean ǻE00 colour differences and maximum 

values (in parentheses). 

 

Figure 4 shows the plot of the Munsell samples selected using a) the Hardeberg, b) the 

MAXMINC and c) the CDI methods plotted in CIELAB a
*
b

*
 and L

*
C

*
ab diagrams. Similarly, 

Figure 5 is analogous to Figure 4 except it is for the PCC samples. In each subplot of Figures 4 

and 5, the largest dots represents 24-sample set, followed by the smaller ones of 60, 90, 120 and 

170 the smallest dots. Note that the larger the dot, the more important the colour region. In 

addition, the colour gamut for each source dataset was also plotted in Figures 4 and 5. This was 

used to compare the colours selected and actual gamut of the source data.  

 

Figure 4: Colour distribution of the Munsell samples selected by (a) Hardeberg (b) 

MAXMINC and (c) CDI methods plotted in (1) a
*
b

*
 and (2) L

*
C

*
ab planes.  

 

Figure 5: Colour distribution of the PCC samples selected by (a) Hardeberg (b) 

MAXMINC and (c) CDI methods plotted in (1) a
*
b

*
 and (2) L

*
C

*
ab planes. 

Figures 4(b) and 5(b) show that the MAXMINC method selected the samples covering the 

largest colour area and uniformly distributed in the colour space. The best method (CDI) in 

Figures 4(c) and 5(c) show that some regions are more important than others, e.g. the orange and 

yellow-green colours seem to be less important than the other colour regions. Also, darker 

colours are more important than lighter colours.  
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In the above test, the training dataset was a subset of the source dataset having the same 

material. Another test was conducted using the three datasets to predict each other in order to 

reveal the impact due to different materials. Therefore, the subsets with 170 samples in Table 2 

selected from the MCDC, Munsell and PCC source datasets using the Hardeberg, MAXIMINC 

and CDI methods were employed as training datasets to develop the polynomial model to predict 

each of the three full source datasets. Since the full set of MCDC was used to test the three 

methods, only one set of the results is listed in Table 3. There was no difference between colour 

selection methods for MCDC. Table 3 summarises the test results in terms of mean and 

maximum ǻE00 values. The results in column 2 represent that the performance of the 

characterisation model trained using the 170 MCDC set tested based on three source datasets. 

The same method was used for the other two datasets. It was expected that the model performed 

the best for the data used as both training and testing data. For example, when the model trained 

using the MCDC set gave the most accurate prediction to the full MCDC dataset, i.e. with a mean 

of 1.2 ǻE00 units comparing with 1.7 and 3.2 for the Munsell and PCC sets respectively. Similar 

results can be found that the model trained using the subset of the PCC data selected by the CDI 

method gave a colour difference of 1.2, 2.8 and 3.4 ǻE00 units for the PCC, MCDC and Munsell 

datasets respectively. The above results clearly show that the performance of the camera 

characterisation model is material dependent. It also indicates that the MCDC chart was a well-

designed characterisation target as it always performed the second best; while the best was 

always based on a target developed using the same material as the testing set. The textile sample 

set (PCC) seems to be the most material dependent, i.e. to give the poorest performance using 

this target to predict the Munsell or MCDC datasets. Comparing the three colour selection 
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methods, the CDI outperformed the other two methods tested.  For instance, the Munsell samples 

selected either by Hardeberg or MAXMINC gave higher prediction errors for all the three testing 

sets than that selected by the CDI method. The CDI method gave quite satisfactory predictions, 

i.e. 1.8, 1.2 and 4.2 ǻE00 units for the MCDC, Munsell and PCC sets respectively.   

Table 3: Testing models derived using the 170 samples selected from the MCDC, Munsell 

and PCC samples in terms of mean and maximum (in parentheses) ǻE00. 

Colour Selection Guideline for Characterising Digital Cameras 

In order to investigate the impact of different colour regions on the accuracy of the 

characterisation models, the F statistical test was used to investigate which regions have 

significant impact on the accuracy. For investigating a specific colour region such as L
*
 less than 

30, the colours with lightness less than 30 were removed from the full set of 170 samples selected 

by the CDI method (referred to as CDI full set). The remaining colours were grouped to form a 

subset, i.e. it includes all colours lighter than L
*
 of 30. Then, the subset was compared with the 

CDI full set to see the effect on the model accuracy. A F-factor was used to determine which 

colour region had a significant impact on the characterisation model developed. The colour 

differences between the predicted and measured colour are denoted as ǻE1, ǻE2 �ǻEN where N 

is the number of the samples. Then, the F factor is defined in Eq. (12). 

 21

2

1   ,factor  F1 VVwhere
V

V
  Eq. (12) 

The V1 and V2 are defined as Eq. (13).  
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 Eq. (13)  

where V1 and V2 represent the models� performance for the subset and CDI full set respectively; 

N1 and N2 represent the number of samples in the subset and CDI full set respectively. The 

investigated colour regions are listed in Table 4. Different subsets represent the colour regions 

tested. Each subset included the CDI full set (i.e. 170 samples in Table 2) excluding the 

following five regions: a) L* regions divided at 10 L
*
 unit interval; b) hue regions divided at 

36Ʊ habġ interval; c) the neutral colour region (Cab
*
 <10); d) the 2 most saturated colours in the 

above hue regions (see b)), and e) dark colours. The dark colour region was defined as L
*
 values 

less than 40 for the Munsell database because there was only one sample with L
*
 values less than 

30 from the CDI (Munsell) full set. However, for the PCC samples there are too many with L
*
 

values less than 40, therefore, the dark colour was defined as L
*
 values less than 30 for the CDI 

(PCC) full set. 

Table 4: Investigation of the importance of colour regions for camera characterisation.  

 

The results in Table 4 show that most of the F factors (values in bold) are larger than the F 

critical value. In other words, most of the colour regions had a significant impact on camera 

characterisation. When darker or more saturated colours were removed from the selected Munsell 

or PCC set, the F factors were the largest, i.e. for the Munsell set, the F factor of 60.083 for the 

region excluding lightness less than 40 was much larger than those of the other regions. This 
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implies that the two most important regions should be always included in designing a 

characterisation target.  

Development of Generic Characterisation Targets based on 

Colorimetric Values 

The CDI method proposed earlier was developed to build a customized target for a particular 

material. This section intends to construct generic characterisation targets suitable for all 

different materials. A set of colorimetric values will be proposed and can be reproduced for all 

materials. The aim here is to develop characterisation targets giving accurate prediction to 

colours presented on different substrates with fewer samples. The target will be represented by a 

set of colorimetric values which are selected based on the CDI method as described in the 

previous section. 

Approach 1: Averaged-CDI (ACDI) 

In this approach, target colours were derived based on the top 50 samples selected from the 

Munsell dataset and the PCC dataset using the CDI method. In total, 100 samples were used. By 

removing colours in the too crowded areas, i.e. with ǻE*
ab of 20 apart, the CIELAB values were 

averaged to form a representative set including 72 samples. Thus, the approach was named as 

�Averaged-CDI� (ACDI). The 72 physical samples are proposed to be produced in particular 

application.  

In order to evaluate the performance of the new target, the closest colours from the Munsell 

and PCC datasets were chosen in turns. These samples were used to develop two characterisation 

models. The training performances i.e. tested by their own full dataset are given in Table 5.  
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Table 5: Performance of 72 selected colours to different sets in terms of mean and 

maximum (in parentheses) ǻE00 values. 

 

The results show the mean ǻE00 values of 1.6 and 1.8 with maximum of 12.6 and 20.2 for the 

Munsell and PCC datasets respectively. These colours are plotted in Figures 6 a) and b) for a
*
b

*
 

and L
*
C

*
ab planes respectively. 

 

(a) (b) 

Figure 6: Colour distribution of the 72 samples for the new target. 

 

Approach 2: Grid-CDI (GCDI) 

Another approach called �Grid-CDI� (GCDI) Method was developed based on the concept of 

the uniform distribution. By applying the CDI method again, 170 colours were selected from 

each of the Munsell and the PCC. In total, 340 samples were accumulated. These colours were 

presented in CIELAB space in terms of grid. Many grids were established ranged from -60 to 60 

for a
*
 and b

*
 scales and from 25 to 85 for L

*
 scale. This approach includes three stages:- 

 

Step 1: Consider the CIELAB space as a cube which is divided into sub-cubes with equal interval 

such as 20 or 30 units in a
*
 or b

*
 direction. The L

*
 interval was set at 10 units between 25 and 85. 

Figure 7 illustrates the process of dividing the cube into sub-cubes and the filled circles in the 

right diagram are colour centres. 

 

Figure 7: Divide a space as cube into sub-cubes with equal intervals. 
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Step 2: Count the number of colours selected in each cube (with a sum of 340) and sort the sub-

cubes in descending order, i.e. the more samples in a sub-cube, the more important is that colour 

region. The sub-cubes containing no colour were discarded. In Figure 8, the filled circles refer to 

the samples in each sub-cube and hollow circle is the centroid of the sub-cube. 

 

Figure 8: Sorting sub-cubes in descending order. 

Step 3: Store the centroid of each sub-cube to form the colorimetric target. 

Using the above GCDI method, 92 colours in terms of CIELAB values were found at a 20-unit 

interval for a
*
 and b

*
 scales, and 64 target colours at a 30-unit interval. To test the target 

performance, the closest colours were selected from each of the Munsell and PCC datasets. The 

selected 24, 60 and full set were used to train the model and then the models were again tested to 

predict the full Munsell and PCC datasets. The results are given in Table 6. 

 

Table 6: Performance of the GCDI method in terms of mean and maximum (in 

parentheses) ǻE00.  

 

It can be seen in Table 6 that by applying all available centres, i.e. 92 and 64 samples 

corresponding to the 20- and 30-interval respectively, both intervals covered the whole colour 

gamut and the 20-unit interval which contained more samples provided the best result as 

expected. For predicting the Munsell and PCC datasets, the model developed from 92 samples at 

20-unit interval gave a performance of 1.6 ǻE00 units.  

 

The colours from the GCDI method are uniformly distributed as shown in Figure 9, where the 

points are the target colorimetric values (centroid in a cube) with a 20-unit interval and the 

boundaries of the Munsell, PCC data sets are also plotted. When the points were located outside 
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the gamut, the sample having the smallest colour difference from the point in the gamut boundary 

was selected. Again, the points are plotted in different sizes to distinguish their priority. 

 

Figure 9: Colour distributions in CIE a*b* (left) and CIE L*C* (right) planes. 

 

Comparing the two approaches from Tables 5 and 6, The ACDI method including 72 colours 

can achieve 1.6 and 1.8 ǻE00 units for predicting the Munsell and PCC respectively. The GCDI 

method including 92 samples can achieve 1.5 and 1.6 ǻE00 units for predicting the Munsell and 

PCC datasets respectively. It explicitly shows that the GCDI method provides more accurate 

prediction and includes reasonable number of samples (92 or 64).  Hence, it is proposed to be 

used as a generic method. 

Conclusions 

A robust method for developing a target from a particular dataset for characterising digital 

cameras was proposed. The method based on the fourth-order polynomial model outperformed 

the existing methods by a large margin in terms of higher colour accuracy or reduced number of 

samples. It was found that with the same number of samples the newly developed CDI method 

always outperform the Hardeberg and MAXMINC methods.  

 

The results also showed that it is recommended to use the same material to build the 

characterisation chart. This is to avoid the metameric effect due to the colorants used in different 

materials. 
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Two Methods � Averaged-CDI and Grid-CDI � to generate generic targets were also 

proposed. The results showed that good performances can also be achieved using either a target 

including 72 colours obtained by the ACDI method or targets including 92 or 64 colours obtained 

by the GCDI method. 
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