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ABSTRACT  

This paper presents a novel idealised dynamical model of day to day traffic re-routeing (as 

traffic seeks cheaper routes) and proves a stability result for this dynamical model. (The 

dynamical model is based on swapping flow between paired alternative segments (these were 

introduced by Bar-Gera (2010)) rather than between routes.) It is shown that under certain 

conditions the dynamical system enters a given connected set of approximate equilibria in a finite 

number of days or steps. This proof allows for saturation flows which act as potentially active 

flow constraints. The dynamical system involving paired alternative segment swaps is then 

combined with a novel green-time-swapping rule; this rule swaps green-time toward more 

pressurised signal stages. It is shown that if (i) the delay formulae have a simple form and (ii) the 

“pressure” formula fits the special control policy P0 (see Smith, 1979a, b), then the combined 

flow-swapping / green-time-swapping dynamical model also enters a given connected set of 

approximate consistent equilibria in a finite number of steps. Computational results confirm, in a 

simple network, the positive P0 result and also show, on the other hand, that such good behaviour 

may not arise if the equi-saturation control policy is utilized. The dynamical models described 

here do not represent blocking back effects.   

Key words: Dynamics, Convergence, Stability, Routeing, Signal control, Day to day 

 

1. Introduction 
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1.1 A brief route choice and traffic control modelling context  

Dynamic transport models involving both travellers’ choices (including drivers’ repeated route 

choices) and traffic signal controls are needed. Such models may be used 

(i) to help predict  (for a given responsive control strategy) how traffic flows and controls are 

likely to evolve over time and so to help assess different given control strategies (against 

specified congestion, delay, pollution, accessibility or other criteria); and  

(ii ) to help design new control strategies for reducing congestion, delay, pollution, 

inaccessibility (or other criteria) in cities, taking reasonable account of the future evolution of 

traffic flows as these respond to the control strategies. 

Allsop (1974), Gartner (1976), Smith (1979a, c), Bentley and Lambe (1980) and Dickson 

(1981) were among the first to point to the need to combine models of route choice and traffic 

signal control; in part so that optimal controls taking account of routeing reactions might be 

found. The study of traffic control and route choice has been pursued by Meneguzzer (1996, 

1997), Maher et al (2001), Wong et al (2001), and many others. Taale and van Zuylen (2001) 

provide an overview.     

Cantarella et al (1991) and Cantarella (2010) focus on seeking optimal controls which take 

account of route choices. They address stability issues involving both routeing and control. In 

these papers, a bi-level optimisation method is used as the signal setting method. The route 

choice model used finds for each OD pair a cheapest route and then swaps route flow toward the 

cheapest route.  

 In this paper we consider a joint, two-commodity (route flow, green time) dynamical system; 

in which route-flows switch toward cheaper routes and signal green-times switch to more 

pressured stages. Both route-flow and green-time swaps follow a development of the 

‘proportional adjustment process’ dynamical system in Smith (1984a).  

In combined traffic signal control and route-choice models we consider not only costs of 

routes (which will causes route flows to change) but also “pressures” on signal stages (which will 

cause stage green-times to change). This formulation was perhaps first introduced in Smith et al 

(1987) and Smith (1987). In the models here both route costs and stage pressures will be 

functions of flows and green-times. These given functions determine (flow, green-time) pairs 

which satisfy Wardrop’s equilibrium condition and a specific control policy as follows:  

A (route-flow, green-time) pair satisfies the Wardrop equilibrium condition if : 
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  more costly routes carry no flow.       (1.1)  

A (route-flow, green-time) pair satisfies the signal control policy if: 

less pressurised stages receive no green-time.     (1.2) 

Condition (1.1) holds if and only if Wardrop’s equilibrium condition is exactly satisfied. If 

(1.1) does not hold exactly then it is proposed initially in this paper that for each pair of routes 

joining each OD pair, route flow swaps from the more costly route to the less costly route at a 

rate which is proportional to:   

  (the difference in the route costs) × (flow along the route with the greater cost). 

Similarly, condition (1.2) holds if and only if the control policy is exactly satisfied. If (1.2) 

does not hold exactly then, in this paper, for each pair of stages at each junction the stage green-

time swaps from the less pressurised stage to the more pressurised stage at a rate which is 

proportional to:  

 (the difference in the stage pressures) × (green-time given to the stage with the smaller pressure). 

The stability of this combined routeing and signal-control dynamical system is considered in 

this paper. Smith and Mounce (2011) have considered a restricted form of this dynamical model 

within a very different context: that of splitting rates. 

A wide-ranging route choice and signal control modelling context is given in Appendix A. 

 

1.2 Overview and contributions of this paper 

This paper focuses on certain mathematical models of route choice dynamics and combined 

route-choice and traffic signal control dynamics and considers the stability of these dynamical 

models.   

The routeing plus signal control dynamical system represents car drivers seeking better routes 

and signal timing changes in response to changing traffic flows. The combined (routeing, signal 

control) dynamical model is idealized. The signal control model may be regarded as a model of a 

system periodically updated either by an operator or by an automatic system. The dynamical 

routeing model is designed to approximately represent, albeit in a simplified or idealized form, 

how routeing decisions are actually made day after day.   

The first contribution of this paper is to introduce a new route choice dynamical system; this is 

a restricted version of the proportional-switch adjustment process (or PAP) suggested in Smith 

(1984a) and discussed by He et al (2010). He et. al. (2010) show that the PAP route-swapping 
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model is not always realistic. In this paper we put forward a restricted proportional adjustment 

process (RPAP) to take account of the comments by He et al (2010) while maintaining the 

essential (proportional) characteristics of the PAP. Paired alternative segments (introduced by 

Bar-Gera (2010)) form a central element of a RPAP.   

Other route swap algorithms have been considered by Cascetta (1989), Smith and Wisten 

(1995), Bellei et al. (2005), Huang and Lam (2002), Peeta and Yang (2003), Nie and Zhang 

(2005), Nie (2010), Mounce (2006, 2009), Mounce and Carey (2011) and Mounce and Smith 

(2007). None utilise paired alternative segments. 

Secondly, we show that the above route-swapping dynamical system satisfies a stability 

property similar to that already proved for the more artificial PAP dynamical re-routeing system 

described in Smith (1984a). To be precise it is shown that, under natural conditions, a trajectory 

of the route-flow dynamical system enters a set of approximate equilibria in a finite number of 

“days”. This routeing stability is guaranteed using RPAP and a discrete dynamical system with 

fixed step lengths instead of PAP and a smooth solution to a differential equation, and moves the 

initial differential PAP theory in Smith (1984a) towards both computer implementation and 

reality.  

A third contribution of the paper is to add to the proposed new RPAP re-routeing model a 

corresponding dynamical model of signal control. To do this most simply we introduce signal 

red-times as the control variable (in place of green-times); and think of the red-time allocated to a 

signal-controlled link (the proportion of time a link is “red”) as an extra ‘flow’ through that signal 

controlled link.  

We show that Webster’s equi-saturation policy (Webster, 1958) and the P0 control policy 

introduced in Smith (1979a, b), may then be readily included within the dynamical RPAP route-

flow swapping process; by simultaneously swapping red times at each junction and route-flows 

joining each OD pair. While route flows are swapped between certain pairs of routes according to 

certain costs and cost differences, red times are swapped according to certain “pressures” and 

pressure differences; different definitions of these pressures then give rise to dynamical versions 

of different control policies. 

Finally, a fairly general stability result is proved for the central [route-flow, red-time] 

swapping model; this is shown to hold when routeing and signal controls vary simultaneously, 

provided that the responsive signal control policy P0 is utilized and provided that the delay 
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formula involving both flow and red times has a certain form; this form ensures that the delay felt 

at a link exit is a non-increasing function of the spare capacity at that link exit.  

To show that the above stability guarantee is a property of the control policies utilised and the 

dynamical assumptions made, and is not a result which holds generally, a simple example is 

given. This example shows that if the equi-saturation policy (rather than P0) is combined with re-

routing then convergence to a single connected equilibrium set no longer holds: in this simple 

example (with equi-saturation) there is a pitchfork bifurcation and unpredictable behaviour arises, 

including hysteresis.  

The paper is organised as follows. In Section 2, the restricted proportional-switch adjustment 

process (RPAP) for dynamical route-choice modelling is introduced and stability results are 

obtained. Section 3 introduces the extension of RPAP to combined dynamical route-flow swaps 

and red-time swaps, and presents stability results for the combined system. Example numerical 

results displaying instability with the equi-saturation policy are presented in Section 4. Finally, 

Section 5 concludes the paper. 

 

2. The Restricted Proportional-Switch Adjustment Process (RPAP) for Route Swaps 

Smith (1984a) proposed a simple day-to-day re-routeing process (called a “proportional-

switch adjustment process”, or PAP, by He et. al., 2010). Three purposes were identified: (i) to 

allow the stability or otherwise of a given traffic equilibrium to be studied (unstable equilibria are 

unlikely to persist); (ii) to help determine, when there are several equilibria, which equilibrium 

attracts trajectories starting from a given point; and (iii) to allow the possibility of modelling 

moving a traffic equilibrium to another “better” equilibrium by using a (perhaps temporary) 

signal-control intervention. 

He et al (2010) highlight a behavioural deficiency of this dynamical route-swap model; this 

deficiency arises in part because of route overlaps. In this paper we show how this behavioural 

deficiency of PAP may be removed by considering route swaps which are more restricted than 

those in PAP, but keeping the proportionality of PAP. This new “restricted” route-swapping 

version of PAP seems likely to be the simplest way of “correcting” PAP in light of the 

observation of He et al (2010). It is clear that the anomaly identified by He et al (2010) cannot 

arise with the dynamical re-routeing model presented in this paper.  
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We present below the original PAP as proposed by Smith (1984a) for a simple network in 

section 2.1, before introducing the RPAP in Sections 2.2 and 2.3. Stability results for RPAP are 

presented in Sections 2.4 and 2.5.  

   

2.1 The proportional adjustment process (PAP) in a simple network 

Suppose that travellers traverse the small network illustrated in figure 1, and that these same 

travellers traverse the network repeatedly. In this paper to be definite we think of this repetition 

as “day after day” (although we might also think more generally in terms of “epoch to epoch”). 

Suppose that both routes are used and that currently (on day t) route 1 is more costly than route 2. 

How many travellers will swap from route 1 to route 2 on day t + 1?  

In this simple case, at first sight the simplest assumption is that some travellers swap from 

route 1 to route 2 on day t + 1 in response to the difference in route-costs on day t. If information 

is perfect then a naive adjustment process would see all drivers on route 1 on day t swapping to 

route 2 on day t + 1; this would often oscillate from day to day and is, under normal 

circumstances, unlikely to be realistic. On the other hand a high flow on the more costly route 

and a high cost difference, even if imperfectly perceived by travellers, would be likely to cause at 

least a few travellers to swap to route 2. 

 

 

  

  

 

  

Figure1. A two route network. 

It is not clear how many travellers will, in reality, swap for a given actual or perceived cost 

difference. A natural and simple assumption is that the traveller flow swapping from route 1 on 

day t to route 2 on day t +1 is an increasing function of both:   

   (1) the flow 1( )X t  on the more expensive route 1 on day t; and  

   (2) the difference 1 2( ( )) ( ( ))C t C tX X  in route costs on day t. 

Here 1 2( ) [ ( ), ( )]t X t X tX  is the route flow vector on day t and 1 2( ( )) [ ( ( )), ( ( ))]C t C t C tX X X  is 

the route-cost vector on day t.   

 

 Route 1 

Route 2 

 ORIGIN 

 DESTINATION 

2 1 0 
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Perhaps the simplest swapping hypothesis obeying (1) and (2) above is that the traveller flow 

swapping from route 1 to route 2 will be proportional to the product of the two factors above in 

(1) and (2). This “proportional to the product” assumption means, in our day to day context, that 

for some constant k > 0, the changes 1( ( ))U tX , 2( ( ))U tX  in the traveller flows on routes 1 and 2 

will be given by the formulae:   

  1 1 1 2( ( )) ( )[ ( ( )) ( ( ))]U t kX t C t C t  X X X             (2.1) 

and 
  2 1 1 2( ( )) ( )[ ( ( )) ( ( ))]U t kX t C t C t  X X X .            (2.2) 

If k is too large (2.1) and (2.2) might give rise to negative flows on day t + 1. So here we are 

thinking of k as being small – possibly very small. These formulae (2.1) and (2.2) depend on 

knowing that 1 2( ( )) ( ( )) 0C t C t X X . To make equations (2.1) and (2.2) independent of this 

knowledge we define (for each real number x): 

  max{ ,0}x x               

which applies throughout the paper. Using this notation we may write equations (2.1), (2.2) as 

follows: 

 1 1 1 2 2 2 1( ( )) ( )[ ( ( )) ( ( ))] ( )[ ( ( )) ( ( ))]U t kX t C t C t kX t C t C t     X X X X X        (2.3) 

and 

 2 1 1 2 2 2 1( ( )) ( )[ ( ( )) ( ( ))] ( )[ ( ( )) ( ( ))]U t kX t C t C t kX t C t C t     X X X X X        (2.4) 

 
Given (2.3) and (2.4), our simplest reasonable day-to-day dynamical system becomes: 

0(0)X X  and 

1 1 1 2 2 2( 1) ( ) ( ( )) ( 1) ( ) ( ( ))X t X t U t and X t X t U t     X X         

or  
0(0)X X  and 

  ( 1) ( ) ( ( ))t t t  X X U X                 (2.5) 

Here 0(0)X X is the starting point (day), and t = 0, 1, 2, 3, . . . . represents the day-to-day 

evolution.  

To avoid the possibility of negativity here we could utilise a projection in (2.5) but we choose 

not to do this here. Here we suppose k is very small; aiming to ensure that  

  ( 1) ( ) ( ( ))t t t  X X U X ≥ 0 for all t = 1, 2, 3, . . .    . 
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Let 12 [ 1,1] ( 1,1)T     be the swap from route 1 to route 2 vector, and let 

21 [1, 1] (1, 1)T     be the swap from route 2 to route 1 vector. Using these swap vectors we 

may (instead of using (2.1) – (2.4)) define U by:    

 1 1 2 12 2 2 1 21( ) { [ ( ) ( )] [ ( ) ( )] }k X C C X C C       U U X X X X X       (2.6) 

We have here defined the swap rate ( )U X  just between two routes in the simple network in 

figure 1. But it is easy to generalise and hypothesise that (2.6) might represent a swap rate 

between any two pairs of routes joining the same OD pair in a general network.  

So in a general network let r ~ s initially means that “route r and route s join the same OD 

pair and are different”. Then to generalise (2.6) so that it applies to swaps between all suitable 

pairs of routes we suppose that there are N routes and specify the co-ordinates rsq  of the N-

vector rs as follows: 

                  1rsr    if r ~ s and r s,  

                  1rss    if r ~ s and r s,                                                                                   (2.7)   

                 0rsq     otherwise.         

This vector rs  is the swap from route r to route s vector. Then, using (2.7), the general form of 

(2.6) becomes:  

  
{( , ); ~ }

( ) [ ( ) ( )]r r s rs
r s r s

k X C C   U X X X                    (2.8) 

This now applies to a network with several OD pairs and N routes and is the PAP direction in 

Smith (1984a); here in (2.8) swaps between any pair of routes joining the same OD pair are 

allowed, and all individual terms or swap rates are proportional to flows and cost differences. As 

before we here suppose that k is very small, so that for any feasible X ( ≥ 0 ), X + U(X) ≥ 0. 

 

2.2 Segments, routes and the restricted proportional adjustment process (RPAP)  

In this section, we take account of the criticism of He et al (2010) by making “ ~ ” more 

restrictive than (2.7) above; we do this by adding the Paired Alternative Segment (PAS) 

restriction. The PAS restriction further confines the pairs of routes which can occur in the sum 

(2.8). From now on the only pairs (r, s) which occur in (2.8) must not only join the same OD pair 

but must also satisfy the PAS restriction.  
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Paired alternative segments were first introduced in Bar-Gera (2010). Before describing the 

PAS restriction, we define segments and routes in a general network.   

Suppose given a network comprising a set N of nodes and a set L of directed links, where each 

link a in L has an upstream node and a (distinct) downstream node in N. Consider a non-empty 

finite connected ordered sequence of distinct links in L and distinct nodes in N: 

     a1, n1, a2, n2, a3, , . . . . , nk-2, ak-1, nk-1, ak,. 

Here for each i, node ni is the downstream node of link ai and the upstream node of link ai+1. 

Definition 1: Such an ordered sequence of links and nodes is called a segment if n0, the 

upstream node of link a1, differs from nk, the downstream node of link ak. (So a segment is not a 

loop.)  

The above segment is said to join nodes n0 and nk. A segment is connected, has no loops and 

joins two distinct nodes.  

Definition 2: A route is then defined to be a segment. In this paper routes are segments and 

segments are routes. So routes here have no loops.  

We may now define the PAS restriction. Consider two routes Rr and Rs. Let the difference set 

(or sequence) Rr – Rs be the ordered sequence of all those links and nodes which form part of 

route Rr but which do not form part of route Rs. This sequence may or may not be a segment 

because it may have two or more components which are not connected to each other.  

Henceforth in this paper, we specify “ ~ “ in terms of the above definitions as follows. Given 

two routes Rr and Rs we now re-define r ~ s to mean that:  

(a) routes Rr and Rs join the same pair of nodes (as in PAP);  

(b) the difference set Rr – Rs is a segment; and  

(c) the difference set Rs – Rr is a segment.  

(a) - (c) above imply that Rr – Rs and Rs – Rr form a pair of alternative segments: they join the 

same two nodes (and do not intersect). This concept, of “a pair of alternative segments”, was 

introduced by Bar-Gera (2010).  

    In this paper, from this point onwards, each term in the sum (2.8) must correspond to a pair (r, 

s) for which r ~ s in this new sense; which means that each such (r, s) satisfies (a), (b) and (c) 

above; with this added  PAS restriction in the definition of r ~ s, the sum (2.8), of course, now has 

fewer terms and takes on a new meaning.  
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    This simple change in the definition of  ~ in (2.8) makes the flow-swapping much more natural 

and realistic, because this change removes the anomaly highlighted by He et. al. (2010); it seems 

likely that this is the simplest way to correct the original PAP for this anomaly.   

    We may now utilise (2.8) (with the new definition of ~) and also include t (recovering the 

dynamical system (2.5) as a special case with just two routes) by putting: 

  0(0)X X  

  ( 1) ( ) ( ( )) for 0,1,2,3,....t t t t   X X U X           (2.9) 

where 0X  is a given supply-feasible starting route flow vector meeting a given demand.  

    With the above more restrictive definition of r ~ s, equations (2.7), (2.8) and (2.9) together 

define a restricted proportional adjustment process or an RPAP. 

    It is possible that the sequence exits the feasible region and then the whole sequence is not 

well-defined. We address these issues below.  

 

2.3 RPAP in a general network  

In this section, we present RPAP in more detail for a general network and show that, under 

certain conditions, for any given feasible start point 0(0)X X  a parameter value k in (2.8) may 

be found which ensures that the dynamical system (2.7) - (2.8) - (2.9) is well defined.  

Definition 3: (Definition of a general capacitated network with a fixed and rigid non-negative 

demand, and a continuous route cost function.) Here in this paper a general capacitated network 

is to comprise: 

(A1) a standard network (comprising N  routes joining K  OD pairs) with a route-link 

incidence matrix A;  

(A2) for each link i, there is a positive saturation flow si defined for all i (S will denote all  

vectors in RN such that AX < s, where s is the vector of all the si); 

(A3) for each OD pair p, there is a given fixed (or rigid) non-negative demand p from the  

origin node to the destination node (D  will denote the set of route-flow N-vectors meeting all  

these demands which have all co-ordinates non-negative); and 

(A4) for each link i there is a non-negative continuous link cost function ci giving the link cost       

in terms of the link flow xi, defined for all xi < si and tending to infinity as xi  si from below. 
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Given a general network as specified above in (A1 – A4), let rjoinsp mean that “route r joins 

OD pair p”. It follows from (2.8) that, for each t, each X(t) belonging to DŀS and each OD 

pair p , the sum of all route-flow swaps is zero at all times, i.e.: for all p,    

{ ; }

( ( )) 0            for all .r
r rjoinsp

U t t X           

Hence, with our new PAS-restricted meaning of ~ in section 2.2, each total OD flow is 

conserved in the dynamical system (2.7, 2.8, 2.9) or:  

{ ; } { ; } { ; }

( 1) ( ) (0)  for all 0,1,2,3,...r r r p
r rjoinsp r rjoinsp r rjoinsp

X t X t X t        

So if the dynamical system (2.7, 2.8, 2.9) starts at 0(0)X X  within the set  

                1
{ ; }

{ :  for all }r p
r rjoinsp

D X p X  

then it remains within that set. The demand feasible set is of course further restricted by a non-

negativity constraint; so let: 

  
{ ; }

{ :  for all  and 0 for all }.r p s
r rjoinsp

D X p X s  X   

Here this set D will be the set of demand-feasible route flow vectors.  

Now A  denotes the link-route incidence matrix and AX is the link flow vector corresponding 

to the route flow vector X ≥ 0. The supply feasible set is the set of route flow vectors with all co-

ordinates non-negative and which also belong to S where  

                 S = { X; AX < s}. 

To establish reasonable values for k in (2.8), initially we suppose that all demand-feasible 

route flow vectors are also supply-feasible; and that the cost function C is thus defined for all X 

in D. Since C is in this case a continuous cost function defined on the whole demand feasible set 

D, C must also be bounded on D and for each route r the least upper bound of Cr(X) (as X varies 

over D) must be attained. Let M be the maximum of all the route costs Cr(X) as X varies over D 

and as r varies (i.e. 1 r N  ). We show below that if the value k is chosen such that k ≤ 1/(NM), 

then the dynamical system (2.7, 2.8, 2.9) is well defined in this initial case.  

For any k ≤ 1/(NM), any demand feasible route flow vector X and any route r:   

{ ; ~ } { ; ~ }

{ ; ~ }

[ ( )] ( ) [1 ( ) ]

                    [1 ( ) / ( )] [1 / ( )]

                    [1 / ( )] [1 / ( )] 0

r r r r s r r s
s s r s s r

r r s r r
s s r s

r r
s

X kX C C X k C C

X C C NM X C NM

X M NM X NM NM

 



      

    

    

 

 



X U X
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Thus under our assumption that C(X) is continuous on D and so bounded on D, choosing k ≤ 

1/(NM) will ensure that:  

  0 ( ) 0   X X U X . 

Thus, in this essentially uncapacitated case, if k is small enough  

  (0) ( )  for all 0,1,2,3,...D t D t   X X   

and the dynamical system (2.7, 2.8, 2.9) is well defined and yields an infinite sequence of route 

flow vectors in D. 

    In the following sub-section 2.4, we suppose that U(X) is defined as in (2.7, 2.8) (with the 

more restricted PAS-restricted meaning of ~ ) and with k ≤ 1/(NM). Section 2.4 briefly considers 

the case where s is a large vector. Section 2.5 considers the case where s is not large and so may 

constrain flows. 

  

2.4.  A Lyapunov stability result  for RPAP when s is large and route-costs are bounded on 

D. 

In this section, we discuss the stability of the RPAP dynamical route choice model for the 

general network defined in Section 2.3 when the route cost function C = C(X) is defined and 

bounded on the whole demand-feasible set D.  

Firstly, we specify a measure of dis-equilibrium. Following Smith (1984a), and bearing in 

mind the PAS modification we have now added by restricting the pairs (r, s) for which r ~ s, we 

define the PAS-modified objective function V as:   

  2

{( , ); ~ }

( ) [ ( ) ( )]r r s
r s r s

V X C C  X X X  for all DX .      (2.10) 

Then V is a measure of departure from equilibrium. It is easy to see here that for X  D:  

       ( ) 0V X  if and only if {for all r, s such that r ~ s, 2[ ( ) ( )] 0r r sX C C  X X } ;  

                        if and only if {for all r, s such that r ~ s, [ ( ) ( )] 0r s rC C X  X X = 0};   

                        if and only if X  is a Wardrop equilibrium (Wardrop, 1952).  

The set E  of Wardrop equilibria may thus be specified as follows:  

{ ; ( ) 0}.E D V  X X         

It is natural to consider approximate equilibria, so let (for any0  ), 

  { ; ( ) }E D V   X X        (2.11) 
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The following lemma and theorem prove a stability result for the dynamical system (2.7, 2.8, 

2.9) when the route cost function is  bounded on D.  

 

Lemma 1. Suppose that C  is monotone and directionally differentiable in all feasible directions 

throughout D. Suppose also that the directional derivative C’(X; į) is a continuous function of 

(X, į). Then  

(a) V is directionally differentiable in all feasible directions at each X in D ; 

(b) ( ; ( ))V X U X  is a continuous function of X in D ; and   

(c) ( ; ( )) 0V X U X  for all non-equilibriumX in D . 

PROOF. See Appendix B.1 

It follows from Lemma 1 that 

 
0

( ; ( )) lim[ ( ( )) ( )] / 0
h

V V h V h
 

    X U X X U X X                                       (2.12) 

for all non-equilibrium DX . (Here h represents a small step-length. ( ; ( ))V X U X  as defined in 

(2.12) is the directional derivative of V at X  in the direction ( )U X ). Furthermore, part (c) of 

lemma 1 (see appendix B1) shows that for any non-equilibriumDX , 

  3

{( , ); ~ }

( ; ( )) {[ ( ) ( )] }r r s
r s r s

V X C C    X U X X X                    (2.13) 

Of course 3

{( , ); ~ }

{[ ( ) ( )] }r r s
r s r s

X C C  X X is positive away from equilibrium and so (2.13) 

implies that, away from equilibrium, (2.12) holds and that V is a reasonable Lyapunov function 

(Lyapunov, 1907) for the dynamical system (2.7) + (2.8) + (2.9).  

It may then be shown (by following Smith (1984a) but using the RPAP-restricted swaps here) 

that, under reasonable additional conditions, following ( )U X  in a smooth model causes ( )V X to 

converge to zero and so causes X  to approach the equilibrium set { ; ( ) 0}E V X X  as time 

passes. It may further be shown that provided k is chosen as above and then is further chosen to 

be small the dynamical system (2.9) reaches the set of approximate equilibria. (This further result 

is contained in the result proved in section 2.5 below which is stronger since s is taken into 

account.) 
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2.5 A Lyapunov stability result for RPAP when s is not large and route-costs are not 

bounded on D  

In this section, we demonstrate a Lyapunov stability result for a route-flow swapping 

dynamical system based on RPAP when s is not large and so the saturation flows may 

(potentially) actively restrict link flows. In order to do this we need to slightly extend the result 

proved in section 2.3 to allow for the upper bounds on link flows.  

The extended non-negativity result.  This is as follows. Let X0  D and AX0 < s; so that X0 is 

both demand and supply feasible. Then there is k > 0 (depending on X0) such that   

 if X  D, AX < s and V(X) ≤ V(X0) then X + U(X) ≥ 0.  

Here, in what follows in theorem 1, U(X) = Uk(X) is defined in equation (2.8), using the above 

k. The proof of this extended non-negativity result is a simple extension of the proof in section 

2.3 to take account of the upper limits on link flows; we do not give this extension here as it is 

straightforward.    

We will also need here lemmas 2-4 below.  

Lemma 2.  In a standard capacitated network (see A1 – A4 above in definition 3) with 

demand D, let X0  D and AX0 < s (so that X0 is both supply-feasible and demand feasible). Also 

let X*  D where AX* ≤ s but AX* < s no longer holds (so X* is demand feasible, not supply-

feasible and very nearly supply-feasible). Let X move along the straight line joining X0 and X*. 

Then V(X) tends to +∞ as X  X*. 

PROOF. See Appendix B.2. 

Lemmas 3 and 4 below show that monotonicity and directional differentiability of the route 

cost function C follow from corresponding properties of the link cost function c. 

 

Lemma 3. Suppose that the link cost function ( )c c x  is monotone, then the route cost function 

( )C C X  is also monotone. 

PROOF. See Appendix B.3. 

 

Lemma 4. Suppose that the link cost function ( )c c x  is directionally differentiable in all 

feasible directions, then the route cost function ( )C C X  is also directionally differentiable in 

all feasible directions. Further the directional derivative of C is continuous if the directional 

derivative of c is continuous.  
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PROOF. See Appendix B.4.  

 

Short statement of theorem 1: Given a feasible start point X0, k satisfying the extended non-

negativity result above and a non-empty set Eİ of approximate equilibria; under reasonable 

conditions there is h > 0 such that the dynamical system X  X + hU(X) (starting at X0) enters 

Eİ in a finite number of steps. Here all links are capacitated. (Note that h in general depends on 

the starting point X0.) 

Theorem 1 

    Suppose given:   

(1a) a network comprising N  routes joining K  OD pairs;  

(1b) for each of the K  (origin node, destination node) pairs a fixed or rigid non-negative demand 

from the origin node to the destination node (D  denotes the set of route-flow N-vectors X 

meeting these given demands); and 

(1c) for each link a a positive saturation flow sa and a continuous, non-negative and non-

decreasing continuously differentiable cost function ca(.), defined for all link flows xa < sa and 

tending to +∞ as xa  sa. 

     Suppose further that the set S  D is non-empty and for any 0   let 

 Eİ = {Y  S  D; V(Y) ≤ İ} 

be a given set of approximate equilibria, where V is given in (2.10). Let X0   S  D be any 

feasible starting route flow vector, and for this starting route flow vector let 

 D0İ = {Y  S  D; İ ≤ V(Y) ≤ V(X0)}  

so that 

 D00 = {Y  S  D; 0 ≤ V(Y) ≤ V(X0)}. 

    Then: 

(i) given the start point X0   S  D, given any k satisfying the above extended non-negativity 

condition, and given U(X) determined by equation (2.8), there is h0 > 0 but so small that: 

      X  D00  X + hU(X)  D00 = {Y  S  D; 0 ≤ V(Y) ≤ V(X0)}. 

for all h  such that 0 < h ≤ h0.  

    Now, given the start point X0   S  D and the particular  h0  constructed in (i), let 0 < h < h0 

so and define T = Th: D
00  D00 as follows:  

   ( ) ( )T h X X U X          (2.14) 
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for all X  D00.  Consider (for h satisfying 0 < h <  h0) the (well-defined) sequence  

 X0, T X0, T 2X0,  . . . , T n-2 X0, T n-1X0, T nX0, . . . .   .  (2.15) 

   Then  

(ii): the infinite sequence (2.15) enters E  at some value of n.  

PROOF. See Appendix B. 5 

    

The above result depends on monotonicity and directional differentiability of the route cost 

function. It proves that under reasonable conditions the dynamical model of route-flow 

adjustment given in (2.14) and (2.15), based on RPAP, eventually reaches a set of approximate 

equilibria. This limited convergence result may be strengthened to show that there is an h > 0 

such that (2.15) enters the set Eİ and remains within that set for all remaining time.  

 
3.   Extending RPAP to Embrace Signal Control Adjustment Using “Red-Time” Costs. 

In this section, we consider dynamics as both route-flows and signal green-times vary. We 

show how certain signal control policies may easily be included within the above RPAP route 

adjustment process (2.8) + (2.9); and that if the special control policy P0 is included in this way 

then a convergence result very similar to the “no control” Theorem 1 holds.  

First it is necessary to outline a method which makes signal green-times responsive to 

“current” flows and delays. Normally this is done (in practice) by using signal stages and 

utilizing a signal control policy stating how stage green times vary with traffic flow. (In this 

paper a stage is a (maximal) set of links terminating at a single junction which has the property 

that when the stage is green then all links in that stage are green.)   

Here we specify a corresponding procedure by using red-times, “antistages” and red-time 

costs following Smith and Mounce (2011); this leads to a  two-commodity link flow model. 

In this paper, a stage (or a link) green-time is the proportion of time that the stage (or the link) 

is green. A link green-time is obtained by adding relevant stage green-tmes. Furthermore, we 

assume that there are no minimum green times and that if a link is green, then all movements 

leaving the link are given green. (These are control idealisations employed in this paper.) 

 

3.1 Anti-stages and red-time costs 
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Given any signal stage, say stage J (at a certain junction) there is a corresponding antistage AJ: 

comprising all those links (terminating at the same junction) which are not in stage J. Antistages 

have the property that when an antistage is red then all links in that antistage are red. Now to 

specify a signal control policy, instead of specifying how the green-times allocated to the signal 

stages vary with link traffic flows, we here specify how the red times allocated to the anti-stages 

vary with link traffic flows. Any responsive control policy stated in terms of green times and 

stages may be written in terms of red times and antistages. Link red times are sums of antistage 

red times just as link green times are sums of stage green times. 

An extended version of the route-swapping dynamical system (2.8) – (2.9) is then constructed 

by thinking of link red-time as an extra “flow” through each signal controlled link exit, causing 

an extra cost. In this extended system, link costs add to give route costs, for each pair of routes 

real traffic flow swaps toward the cheaper route; also link red-costs add to give antistage costs 

and, for each pair of antistages, red-time swaps toward the “cheaper” antistages. The route flow 

swaps and the antistage red-time swaps both follow the same proportional rule described in 

Section 2.3 for just flows.  

The aggregated flow on link i will comprise the flow of real vehicles added to a suitable 

multiple of link i  “red-time” (designed to take up the capacity which cannot be used while the 

signal is red for that approach). For each link i we let the aggregated “flow volume” be i i ix s r ; 

where ix  represents the “real” vehicular flow and ir  represents the proportion of time approach i  

is red. The multiple i is r  is the capacity lost due to the proportion (ir ) of red time, bearing in mind 

the saturation flow is  at the link exit. Then we suppose that the cost (or travel time) of traversing 

approach i  equals  

  ( ) ( )i i i i i ic x b x s r  .           (3.1)  

Here ( )i ic x  represents the cost of traversing the length of the link when the flow is ix  and 

( )i i i ib x s r  represents the bottleneck delay felt at the traffic signal when the flow is xi and the red 

time proportion is ir . Both (.)ic  and (.)ib  are non-decreasing real-valued functions of a real 

variable. Here the gradient of ic  may be rather small and the gradient of ib  may be rather large: 

ib  may even have a vertical asymptote atis ; in fact below we suppose that this is so. 
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3.2 A two-commodity link model and RPAP dynamics of (route-flow, red-time) vectors 

This approach (using (3.1)) allows a simple dynamical model of control and routeing to be 

constructed. In essence we have a two-commodity link model where the two commodities are: 

         ix  = vehicular flow on link i and  

         ir   = red-time on link i (a proportion and dimensionless). 

The dynamics are now to be as follows (for any responsive control policy). At each origin real 

flow switches to cheaper routes following RPAP in Section 2.3, pushed by sums of the 

“standard” link costs ( ) ( )i i i i i ic x b x s r  ; but now also red-time switches to “cheaper” antistages 

pushed by antistage “red-time-costs”; again still essentially following RPAP, although with  the 

antistage red-time adjustment there is no distinction between PAP and RPAP.  

The link red-time-costs are defined to suit, or to define, a particular signal control policy. For 

example, the equi-saturation policy (Webster, 1957) may be obtained if: 

           the link  red-time cost = .
(1 ) ( )

i i i

i i i i i i i

x x x

g s r s s r s
 

 
                    (3.2a) 

The P0 policy (Smith, 1979a, b, c) is obtained if:  

           the link red time cost = sibi(xi +  sir i).  (3.2b) 

For example, for a signalised junction with two approaches, the above red-time swapping 

specifications implied in (3.2a, b) may be thought of as having the following two objectives:  

 (i) The equi-saturation policy chooses green times which seek to ensure that: 

  1 2 1 2

1 1 2 2 1 1 2 2(1 ) (1 )

x x x x
or

g s g s r s r s
 

 
                    (3.3a) 

as if this holds then no more red-time swapping occurs.  

     (ii) The P0  policy chooses red times which seek to ensure that  

  1 1 1 1 1 2 2 2 2 2( ) ( )s b x s r s b x s r   ;                      (3.3b)    

if this holds then no more red-time swapping occurs.  

It is clear from the above equations (3.2b) and (3.3b) in the P0 case that if the saturation flow 

2s  is high then the P0 policy will (by a suitable choice of the red-time vector r ) seek to ensure 

that the bottleneck delay 2b  will tend to be small; encouraging the use of the approach with the 

higher saturation flow (even if the actual flow on that approach is small). The policy encourages 

re-routeing toward higher capacity routes rather than rewarding travellers on existing routes. It 



 19 

may be shown that, under natural conditions, which include strict capacity restrictions, this policy 

maximises network throughput at an equilibrium distribution of traffic flows. Theorem 2 below 

may be regarded as a simple demonstration of this.  

 
3.3    RPAP for the combined dynamical system with the P0 policy in a general network 

In this section, we extend the previous Theorem 1 above so as to include the responsive policy 

P0 within the day-to-day dynamic RPAP framework for a general network.  

Suppose that the P0 signal control policy is employed at each node of a network. The 2-

commodity link i  cost-flow function arising is then, following the previous section: 

  [ ( ) ( ), ( )]i i i i i i i i i i ic x b x s r s b x s r   .           (3.4)  

(Lemma 5 below shows that (3.4) is monotone if ci and bi are both monotone.) 

The first co-ordinate in (3.4) gives the link cost felt by real flow on link i and the second co-

ordinate gives the red-cost felt by red-times. We need to extend (2.9) so as to include the red 

times of antistages as well as the flows along routes. In doing this we think of signal antistages as 

new “routes” and red-times as new “flows” on those new routes, and apply dynamics like (2.8) to 

both. 

Both the route-flow switches and the stage-red-time switches will depend, in essentially the 

same way, on the specifications of costs of routes and antistages, which are both sets of links. 

These costs are determined as follows:  

(a) for each route r : the link i  costs ( ) ( )i i i i i ic x b x s r   are added over all links i in route r to 

determine route r  (flow-)cost, and 

(b) for each antistage J : the link i  red-time costs ( )i i i i is b x s r  are added over all links in 

antistage J to determine antistage J  (red-time-)cost.  

Consider a general network. Suppose thatA  is the link-route incidence matrix and that B is 

the link-antistage incidence matrix. Let X  be a vector of route flows and let R  be a vector of 

antistage red-times. Then the link flow vector x = AX  and the link red-time vector r = BR. 

The two-commodity demand set is now D×RD where D is the set of demand feasible route-

flow vectors and RD is the set of demand-feasible anti-stage red-time vectors.  

Then the set S’ which guarantees supply-feasibility for this two-commodity network is now 

defined as follows: 
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            ' {( , ); } {( , );( ) ( )   for all 1,2,3,..., }i i i iS s s i n      X R AX s •BR s X R AX BR  

For all non-negative vectors (X, R)  S’, the flow cost ( , )r rC C X R  of route r depends on 

two commodities and is to be given by: 

   
~

( , ) [ ( ) ( )]r i i i i i i
i r

C c x b x s r  X R             (3.5)  

where ~i r if link i forms part of route r; and (as we are using P0) the red-time-cost of antistage 

AJ 

 
~

( , ) [ ( )]J J i i i i i
i AJ

AC AC s b x s r  X R           (3.6)  

where ~i AJ  means that link i is in antistage J. The formula here for the antistage cost ACJ 

arises from the definition of the P0 signal control policy in Smith (1979a) and the simple link 

delay formulation ( )i i i ib x s r  adopted in this paper. 

In lemma 5 below we drop suffices and assume that the link i cost function c and the link i 

bottleneck function b are both non-decreasing so that they are both monotone one-dimensional 

functions.  

Lemma 5. Suppose that c is monotone and b is monotone. Then [ ( ) ( ), ( )]c x b x sr sb x sr    is a 

monotone function of the 2-vector( , )x r .  

PROOF. See Appendix B.6.   

 

It follows from Lemma 5 that (3.4) is monotone and then it follows (essentially from the two-

commodity versions of lemmas 3 and 4 above) that  

                     [route cost, antistage red-time cost] = [ ( , ), ( , )]C X R AC X R   

is a monotone directionally differentiable function of [ , ]X R  throughout S’  (D×RD).  

The combined (route flow, red-time) adjustment direction is now defined to be  

 U(X, R) = [ ( , ), ( , )]RXU X R U X R    

where  

  
{( , ): ~ }

( , ) [ ( , ) ( , )]r r s rs
r s r s

k X C C   XU X R X R X R     (3.7)  

and 
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{( , ): ~ }

( , ) [ ( , ) ( , )]I I J IJ
I J I J

k R AC AC  RU X R X R X R                                      (3.8) 

Here k is to be chosen so that (X, R) + U(X, R) ≥ 0 for relevant feasible (X, R), and for two 

antistages I and J, I ~ J if and only if these antistages are (a) different and (b) at the same junction 

(so that swapping red-time between them is sensible). The antistage red-time swap vector IJį  has 

-1 in the Ith place and +1 in the Jth place and zeros everywhere else. Moving R in direction IJį  

swaps red-time from antistage I to antistage J.   

Extending the objective function V  given in (2.10), to allow for the current context involving 

red-time swaps as well as route-flow swaps, let  

2 2

{( , ): ~ } {( , ): ~ }

( , ) [ ( , ) ( , )] [ ( , ) ( , )]r r s I I J
r s r s I J I J

V X C C R AC AC     X R X R X R X R X R      (3.9) 

This extended V is defined throughout S’  (D×RD) and will be the Lyapunov function for a 

dynamical system following directions (3.7), (3.8). Now RD denotes the set of (demand-) 

feasible antistage red time vectors R . Then the set E  of consistent equilibria is here specified as 

follows 

  {[ ] ;    ([ ]) 0}.E D RD V   X,R X,R  

It is natural to consider also approximate consistent equilibria, so let, for any 0  , 

  {[ ] ;    ([ ]) }.E D RD V    X,R X,R  

It follows from Lemma 5 and by expanding Lemma 1 that [ ( , ), ( , )]X RU X R U X R   is a descent 

direction for ( , )V X R  (at any feasible ( , )X R  which is not an equilibrium consistent with the P0 

control policy). Then a combined (route flow, antistage red-time) dynamical system is (where 

0 0[ , ]X R  is a feasible starting pair): 

 [ ( 1), ( 1)] [ ( ), ( )] [ ( , )( ), ( , )( )]t t t t h t t    X RX R X R U X R U X R  for t = 0, 1, 2, 3, …   

 0 0[ (0), (0)] [ , ]X R X R     (3.10) 

where 0 < h ≤ 1. A modification of the flow-only Theorem 1 may now be proved for this [route 

flow, anti-stage red-time] dynamical system. This is theorem 2 below.  
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    The proof of theorem 2 below depends on noting that lemma 1 holds also in this “two-

commodity” setting; the proof of this is straightforward and yields this “two commodity” result  

Two commodity form of lemma 1. Suppose that [C , AC] is monotone and directionally 

differentiable throughout S’ŀ(D×RD). Suppose also that the directional derivative [C , AC]’((X, 

R); į) in direction į is a continuous function of ((X, R), į), then  

(a) V is directionally differentiable in all feasible directions at all (X, R) in S’ŀ(D×RD); 

(b) V’((X, R); U(X, R)) is a continuous function of (X, R) in S’ŀ(D×RD); and  

(c) V’((X, R); U(X, R)) < 0 for all non-equilibrium (X, R) in S’ŀ(D×RD). 

 

3.4   Lyapunov stability of the combined system with RPAP and the P0 control policy 

Extending the previous theorem 1 to allow for the two commodities we obtain theorem 2 

below.  

Short statement of theorem 2: In the following theorem 2 we show that under reasonable 

conditions the dynamical system (X, R)  (X, R) + hU(X, R) (starting at any feasible (X, R)0) 

enters a given set of approximately P0 consistent equilibria in a finite number of steps. Here (as 

in theorem 1) all links are capacitated. k is supposed chosen to ensure that a two-dimensional 

version of the extended non-negativity condition in section 2.5 holds; This condition will involve 

(X, R) and U(X, R) rather than just X and U(X).    

Theorem 2. 

    Suppose given: 

     (2a) a network comprising N1 routes joining K1 OD pairs and N2 antistages at K2 junctions;   

     (2b) for each of the K1 (origin node, destination node) pairs, a fixed or rigid non-negative 

demand from the origin node to the destination node (D  denotes the set of route-flow N1-vectors 

X meeting these given demands); and for each of the K2 junctions, there is a set of stages and 

antistages (RD denotes the set of antistage red-time N2-vectors R arising from all these given 

antistages); and 

     (2c) for each link a a positive saturation flow sa, a continuous, non-negative and non-

decreasing continuously differentiable cost function ca(.), defined for all link flows  xa ≤ sa and a 

continuous non-decreasing continuously differentiable function ba(.), defined for all link volumes 

va < sa tending to +∞ as va  sa. 

    Suppose further that the set S’  (D×RD) is non-empty and for any 0  let 



 23 

 Eİ = {(X, R)  S’  (D×RD); V(X, R) ≤ İ} 

be a given set of approximate equilibria, where V is given in (3.9). Let (X0, R0) = (X, R)0  S’  

(D×RD) be any feasible starting (route flow vector, antistage red-time vector) and for this 

starting (route flow vector, antistage red time vector) (X0, R0) let 

 (D×RD)0İ = {(X, R)  S’  (D×RD); İ ≤ V(X, R) ≤ V((X, R)0)}.  

    Then: 

(i) given the start point (X0, R0) = (X, R)0  S’  (D×RD), given any k satisfying the two-

dimensional form of the extended non-negativity condition in section 2.5 and given U(X, R) 

determined by equations (3.7) and (3.8), there is  h0 > 0 but so small that: 

(X, R)(D×RD)00  (X, R)+hU(X,R)  (D×RD)00 = {( X, R)S’(D×RD); 0≤V(X, R)≤V((X, R)0)}  

for all h  such that 0 < h ≤ h0. Here V is given by equation (3.9). 

Now, given the start point (X0, R0) = (X, R)0  S’  (D×RD) and h0 satisfying (i) above, let 0 

< h ≤ h0  and define T = Th: (D×RD)00  (D×RD)00 as follows:  

  T(X, R) = (X, R) + hU(X, R) 

for all (X, R)  (D×RD)00. Consider (for h satisfying 0 < h < h0) the (well-defined) sequence  

    (X, R)0, T (X, R)0, T 2(X, R)0,  . . . , T n-2 (X, R)0, T n-1(X, R)0, T n(X, R)0, . . . .   .         (3.11) 

    Then  

(ii) the infinite sequence (3.11) enters E  at some value of n.  

PROOF.  This essentially follows from the proof of Theorem 1, but of course the two commodity 

version of lemma 1 is needed here. 

Theorem 2 assumed that the [flow, antistage] conservation constraints hold at the start point; 

then using only the not-too-large switches specified via (3.7) and (3.8) ensures that these 

constraints continue to hold. This is a stability / convergence result where both flow and red-

times move simultaneously; and uses the special delay formula bi(xi+sir i). It may be interpreted 

as a rudimentary capacity-maximisation result: at each day the flows on the network satisfy the 

demand and costs are bounded on the whole sequence. 

 
4. A Simple Example Network: Instability with Equi-saturation and Stability with P0 

In this section we show that rather negative results (instability) arise in some circumstances 

with the equi-saturation policy and a certain delay formula, whilst stability is maintained with 

this delay formula with the P0 policy.  
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Consider the simple network shown in Fig. 2. The network is comprised of a single origin-

destination (OD) pair, and two links joining the origin to a signal-controlled junction. The 

saturation flows on the two approaches to the signalised node are 1s  and 2s , and the free-flow 

travel times on the two routes are 1K  and 2K  respectively. The total OD flow is T  vehicles per 

minute and the proportions of drivers using each of the two routes are 1H  and 2H  where 

1 2 1H H  . So the flows on the two routes are 1 1X TH  and 2 2X TH  (vehicles per minute). 

 

     

DESTINATIONSIGNAL

ROUTE 2

ROUTE 1

ORIGIN

CURRENT DELAYS

s1

s2

T

H1
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Figure 2. A 3-link 2-route network with a signal-controlled junction. The saturation flows at the 
junction are 1s  and 2s . The proportion of the total flow rate T using route 1 is 1H  and the 

proportion of the total flow rate T using route 2 is 2H . 

 
 
4.1 Route cost functions and link cost functions 
 

We consider a general route cost function having three terms: a free-flow travel time, a rather 

shallow flow-related travel time, and a rather steep delay function involving both flows and 

signal green times. This is: 

               i i i iC K AX d   ,                                                                                      (4.1) 

where iK  is the free-flow travel time on route 1 (minutes), iX  is the flow (veh/min) on route i. A 

is a per-vehicle travel time (min/veh) and is a constant. One form of the steep delay formula is 

that of Webster’s random delay term; which is:  

               
( )

i
i

i i i i i

BX
d

s G s G X



                                                                                   (4.2) 
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where iG  is the green-time proportion, is  is the saturation flow on approach i , and B  is a 

constant.  In the above simple case of Figure 2, the flow on approach i  is the same as flow on 

route i .  

The delay function of (4.2) is exactly the second term of Webster’s delay formula when 

9 / 20B  (Webster, 1958). In Webster’s famous two term delay formula, the first term estimates 

the delay due to the stop-start nature of traffic signal operation (assuming that flow is steady). 

The second term, used here in (4.2), allows for the random nature of arrivals. 

Webster’s formula is closely related to the Pollaczek-Khintchine (P-K) formula (Pollaczek, 

1930; Khintchin, 1932) for the average waiting time felt by a Poisson stream of arrivals (with 

arrival rate X vehicles per minute) at a single server (with a constant service rate sG vehicles per 

minute). This formula is obtained by taking 1/ 2B  instead of 9/20 in (4.2), (See, for example, 

Madan and Saleh, 2001).   

Now in our network in figure 2, the above delay formula (4.2) may be written: 

          
1 1

[ ]
( )i

i i i i i i i

d B
s X s R s s R

 
  

        (4.3) 

The first term of (4.3) is also a non-decreasing function of the red-time proportion to the routeiR  

and we write it as: 

               
1 1

[ ]
2 ( )i

i i i i

w
s X s R


 

,                                                                             (4.4) 

We show later that when this delay term wi is combined with the P0 policy, it yields stable control 
solutions. 
 
 
4.2  Flow swapping 
 

It is assumed in this section that: 

         (1)  travellers will stay on the same route if there is no cheaper route.  

    (2) If there is a route with a smaller expected travel time, then some travellers will     

periodically swap their route for a quicker route.  

 By symmetry equal flows on the two routes will yield an equilibrium, so no swapping occurs 

in that case under the above assumptions (1) and (2). We examine the equilibrium solutions for 

the asymmetrical flow patterns and see how such asymmetrical flows evolve as time passes 

allowing for the responsive control; using route-swaps like those specified previously. 
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In our study here, by computing the times to traverse the two routes using the various delay 

formula in Section 4.1 when different policies are used to set the signals, the whole triangle of 

feasible flows was filled with small vectors indicating the direction of motion on the above 

assumptions (1) and (2).  

 
4.3  Equi-saturation and P0 policy to the simple network and flow feasibility 

 

For the example network of Figure 2, the equi-saturation policy yields: 

            
1 2

1 1 2 2

X X

s G s G


 

Here 1 1X TH  and 2 2X TH , and since 1 2 1G G  , we obtain the green-time proportions as: 

           1 1 2 2
1 2

1 1 2 2 1 1 2 2

/ /
   and   

/ / / /

H s H s
G G

H s H s H s H s
 

 
,           (4.5)                                                          

For the P0 policy, we apply the first term of the P-K wait time function, i.e. (4.4). Then (3.3b) 

becomes: 
 

1 2

1 1 1 1 2 2 2 2[ ( )] [ ( )]

Bs Bs

s X s R s X s R


             (4.6) 

Together with the condition: 1 2 1R R  , we solve (4.6) and obtain the red-time proportions as: 

1 2 1 2
1 2

1 2 1 2

[1 ( )]   and   [1 ( )]
X X X X

R B R B
s s s s

     
          (4.7) 

We apply the delay formula (4.1) and (4.2) with the equi-saturation policy. To avoid a zero 

denominator in (4.2), and to ensure delays given by (4.2) are non-negative, we have: 

           1 1 1 2 2 20 0s G X and s G X    . 

From the above, we obtain the supply-feasibility constraint on the total flow T  and flow splits 

1H  and 2H  as follows: 

           
1 1 2 2

1

/ /
T

H s H s



  (4.8) 
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It can be shown that the second term of the P-K wait time function in (4.3) is feasible also if (4.8) 

holds. Thus the set of supply-feasible ( , )T H  pairs is the set of those ( , )T H satisfying (4.8). For 

any given T, (4.8) also defines the supply-feasible set of vectors H . So: 

           1 2 1 2{ : , 0, 0,S H H H H   H and 1H  and 2H  satisfy inequality (4.8)}   

 
4.4. Routeing/control dynamics under the equi-saturation control and the P0 control 
 

In this section, we present numerical results showing the routeing/control dynamics under 

different control policies in the simple symmetric network of Fig. 2. We consider a symmetric 

network with K1 = K2 = 1.1 (mins), 1 2 30s s   (veh/min) and 1/ 2B .  In this case, we assume 

that the total OD flow rate  is T s  = 1 2 30s s   (veh/min).  

We show in Appendix C a simple method to compute the trajectories of flow vectors arising 

from RPAP flow-swapping (2.1) and (2.2), and a responsive signal control policy.   

Figure 3 plots the trajectories of flow vectors when the responsive equi-saturation policy and 

the delay formula (4.1) and (4.2) are followed. It shows that for any given demand (with equi-

saturation) the set of consistent equilibria sometimes comprises three distinct points (one 

symmetrical equilibrium and two all or nothing equilibria) and sometimes comprises five distinct 

points (those mentioned above and also two further equilibria on the two “prongs” of the 

pitchfork). Moreover starting at a non-equilibrium a natural dynamical system will converge to 

one of the equilibria depending on the starting (flow, green-time) pattern; there is no guarantee of 

convergence to a single connected set of consistent equilibria as is the case with P0. Further a 

small change in the starting position of the adjustment process may lead to convergence to a 

different consistent equilibrium; so a small change in the problem leads to a sharp change in the 

long run behaviour.  

All these show how unpredictable the results of the routeing-control interactions are. Figure 3 

also shows clearly the pitchfolk bifurcation, and confirms in great detail the suggestion in Smith 

and Mounce (2011); that even in the simplest signal-controlled network, stability is an issue 

when there is a responsive control system. The result demonstrates the instability and 

unpredictability arising with the equi-saturation policy. 

    Replacing the Webster’s random delay function (4.2) with the first term of the P-K delay 

formula (4.4), we plot the trajectories of flow vectors when the equi-saturation policy is followed.  
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Figure 4 illustrates the effect of changing one of the parameters in the delay formula in the equi-

saturation case; although the pitchfork has disappeared, the set of symmetrical equilibria is still 

unstable with trajectories diverging from it and converging to points where all flow is on just one 

of the two routes.  

 

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Flow on route 1

F
lo

w
 o

n 
R

ou
te

 1

Pitch-folk with A=0.006

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Flow on Route 1

F
lo

w
 o

n 
R

ou
te

 2

Pitch-folk diagram with A=0.01

 
Figure 3. Using the equi-saturation policy with delay formula (4.1) and (4.2), a pitchfork-shaped 
set of equilibria arises. The dynamics of disequilibria are shown for two values of the slope A of 
the linear part of the cost flow function: (a) A=0.006 min/veh and (b) A=0.01 min/veh.  
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Figure 4. Using the equi-saturation policy with the delay formula (4.1) and (4.4), and 
A=0.006min/veh. 

 

Figure 5 presents the trajectories of the flow vector when the P0 policy and a special delay 

function (which is a non-decreasing function of the red-time proportion) are followed. In contrast 

to Figures 3 and 4; Figure 5 illustrates that with P0 all flow trajectories converge to the 
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symmetrical set of equilibria. Thus in this special case the P0 policy gives for each demand a 

single equilibrium state which is globally stable.  

 

 

 

 

 
Figure 5. Using the P0 policy with the delay formula (4.1) and (4.4), and A=0.006 min/veh. 
B=1/2. 
 
 
5. Conclusions    

The paper has considered a new model of day-to-day re-routeing using restricted route-flow 

swaps following a restricted proportional-switch adjustment process (or RPAP). A corresponding 

dynamical model of green-times (or red-times) has been added. The central combined dynamical 

model in this paper is based on the special responsive control policy P0 introduced in Smith 

(1979a, b) and cost functions, giving link costs in terms of flows and red-times, which are of a 

specific form.    

    Control dynamics in this paper have been stated in terms of the red-times allocated to “anti-

stages” and links. This has allowed us to combine link red times and link traffic flows; leading to 

a two-commodity link model in which both the traffic flow and the red-time on a link contribute 

to the delay on that link. Having done this, similar proportional adjustment formulae have been  

utilised to specify both the routeing dynamics and the control dynamics. Both routeing and 
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control adjustments are based on the proportional adjustment process (PAP) suggested in Smith 

(1984a) and discussed by He et al (2010); although here the PAP route-swap process has been 

modified (to RPAP) in light of the comments of He et al. 

It has been shown that (under natural conditions) the discrete dynamical routeing model alone 

enters a set of approximate equilibria. This follows the continuous version in Smith (1984a). This 

central stability result is shown to hold also when the special dynamical P0 green-time or red-time 

dynamical model is added to the dynamical routeing model. In this case the discrete routeing / 

control adjustment enters a set of approximate equilibria consistent with the P0 policy.  

The paper ends with examples showing that the equi-saturation policy may cause the joint 

(route flow, green time) dynamical system  to be unstable and may give rise to the pitchfork 

bifurcation; this is done by plotting the route-swap directions induced by the equi-saturation 

policy. In these figures the pitchfork bifurcation appears clearly and it is obvious that the stability 

of the routeing / control dynamical system is, with equi-saturation, very unpredictable. 

Corresponding computational results with P0 instead of equi-saturation demonstrate stability and 

predictability.  

The paper suggests many questions which may be pursued. These include:  

(a) How do the dynamical routeing systems studied here connect to other day to day 

dynamical routeing systems? 

(b) Can a similar stability result be proved for other day to day dynamical systems,  

(c) Can the P0 policy be combined as here with other day to day dynamical systems ? 

(d) If this is done, does the joint routeing / control dynamical system have a similar stability 

property as that demonstrated here with RPAP and P0, perhaps utilising a similar two commodity 

cost function 

(e) Can the signal control model in this paper be extended to include a wider class of realistic 

junction movements (such as lanes which allow left-turns and through movements), and more 

complex signal phasing schemes? The signal swapping model in this paper relies heavily on a 

degree of separability of the link-based red time; but in realistic junctions such separability is 

often missing. Applications to many real networks require more research in this direction. 

In addition to extensions of this work in the directions suggested above, the route swap and 

red time swap models here may perhaps be extended (a) to within-day control/routeing systems 

and then (b) to allow time-varying demands. In order to do this it will be important to deal 
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correctly with flow-propagation constraints and to adopt suitable travel time functions. This may 

well be difficult, but if successful would lead to large gains in applicability of the ideas in this 

paper. 

 

  
 

Appendix A. Routeing and signal control: a modelling context 
 

This appendix gives a short context concerning route choice modelling and traffic control 

modelling. 
 

 

A.1 Route choice modelling. 
 

Route choice modelling has typically been concerned with the problem of estimating the 

equilibrium distribution of traffic over a given network. This has been considered in a vast 

number of papers and books; and seeks iterative methods which ensure that route choices in 

model iterations converge to equilibrium; without seeking to design the iterations so as to 

necessarily represent a realistic within-day or day to day dynamical system. The following 

references concern steady state modelling and constitute a very small proportion of the literature. 

Bar-Gera and Boyce (2003; 2006), Cantarella (1997), Charnes and Cooper (1961), Dafermos 

(1980), Dial (1971, 2006), Evans (1976), Larsson and Patriksson (1992), Lv et al (2007), Maher 

(1998), Patriksson (1994), Payne and Thompson (1975), Sheffi (1985), Szeto and Lo (2006), 

Yang et al (1994), Yang and Huang (2004), Smith (1984b, 2009).  

At the same time, within-day and day to day dynamics of traffic re-routing has been 

considered by Bie and Lo (2010), Cantarella and Cascetta (1995), Flötteröd and Liu (2014), Liu 

et al (2006), Smith (1984a) and others. These papers do not involve RPAP. 

 

A.2 Signal control modelling. 

Webster (1958) considered ways of determining signal timings for a single isolated 

intersection using a model of an isolated junction. As a result of his theoretical and simulation 

studies he suggested that the equi-saturation policy would be a practical way of approximately 

minimising the total rate of delay to vehicles passing through the intersection. If the intersection 

has just two approaches then this equi-saturation policy aims to choose signal green times so that 
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the saturation ratios on the two approaches are equal. Evers and Proost (2015) demonstrated the 

clear benefit of intersection regulation by traffic signal over priority rules. 
 

There are now several models in use for designing or optimizing signal timings over a whole 

network. The most well-known is TRANSYT (TRAffic Network StudY Tool; Robertson 1969); 

this may be used to design fixed timings, where the timings do not respond rapidly to the 

prevailing traffic flows. Signal timings designed using TRANSYT do allow for adjacent 

junctions or (for example) for a sequence of junctions on one main route. In TRANSYT the 

whole network and the bottlenecks within it have an impact on the signal design process and on 

the timings suggested at each individual junction.
 

Adaptive or responsive systems seek to adapt signals timings in near to real time in response 

to changing traffic flows and include: SCOOT (Split, Cycle and Offset Optimisation Technique; 

Hunt et al, 1982; this started as a responsive version of TRANSYT and follows equi-saturation 

rules similar to Webster’s for deciding how green time is split among stages); SCATS (Sydney 

Co-ordinated Adaptive Traffic System); UTOPIA (developed by FIAT, Mizar and others; see 

www.miz.it) and OPAC (Gartner, 1983). See Wood (1993) for a helpful discussion of the various 

systems. Heydecker (2004) outline motivations and new possible approaches to adaptive signal 

control. 
 

The control variables considered in both fixed time and responsive systems include not only 

how the total green time is split between stages at each junction (the splits) but also offsets which 

determine how display changes at different signals are related and cycle times which determine 

for each signal the time which must elapse before the signal display repeats. 
 

LINSIG (2010) is now often used to design or determine signal timings at a single signal-

controlled intersection, and also over small networks. The assumption here is that a single set of 

timings, once designed, will be applied in an unchanging manner. Thus they are called “fixed-

time” signal settings. Different fixed time settings may be utilized at different times of day. 
 

 

A.3 Route choice and signal control modelling
 

The effects of changing signal timings on route-choices (and other decisions by users) are 

typically ignored by signal control designers. It was first pointed out by Allsop (1974) and 

Gartner (1976) that signal timings should ideally take reasonable account of the reactions of 

travellers; this is partly to try to optimize signals subject to an equilibrium constraint (at which all 
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travellers are happy with their route-choices) and partly to at least obtain a consistent (green-time, 

route-flow) pair  (G*, X*), say. If for example the equi-saturation policy is to be employed then it 

is reasonable to seek green-times and flows where 
 

(1) green-times satisfy the equi-saturation policy at each junction and  
 

(2) for each origin-destination pair no traveller has a less costly alternative route. 
 

The latter is Wardrop’s equilibrium condition. 
 

Dickson (1981) first showed that using delay-minimising signal settings does not minimize 

delay at a Wardrop equilibrium. Much of the existing theoretical work on re-routeing / control 

interactions has focused on one particular dynamical system: this is the standard method of trying 

to achieve a consistent (green-time, flow) pair (G*, X*). For example, for the equisaturation 

signal control policy the method iterates between the signal setting model (determining exactly 

equisaturating green-times G for fixed flows X) and the traffic assignment model (determining 

exactly equilibrium route-flows X for fixed signal settings G). This dynamical system is called 

Iterative Optimisation Assignment (IOA). Convergence of the IOA dynamical system has only 

been proved for a few control policies; see Smith and Van Vuren (1993). 
 

Combining signal control and route choice within theoretical models has been considered by 

many others: for example, see Yang and Yagar (1994, 1995), Meneguzzer (1996) and the review 

by Meneguzzer (1997). In all the above work the setting is static within a day. Recently Mounce 

(2009) has considered the problem of existence of equilibrium in a continuous dynamic queueing 

model for traffic networks with responsive signal control, in a dynamic within day setting. Maher 

et al (2013) considered the stochastic re-routing of drivers in response to a signal timing plan and 

applied a noisy optimisation method to find the globally optimal fixed-time signal plans that take 

into account of random errors in the objective function. 
 

Hu and Mahmasami (1997), Mahmassami and Liu (1999), and Huang et al (2008) consider 

these dynamical issues within context of intelligent transportation systems; including information 

availability, utilizing microsimulation models. Clegg et al (2001) and Smith (2006) have 

considered the bi-level optimisation of prices and signals. Recently, Han et al (2014) developed a 

continuum approximation to the binary on-and-off signal controls, which provides a natural 

pathway for the combination of dynamic traffic assignment with signal optimization. 
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Appendix B. Proofs of Lemmas 1, 2, 3, 4 and 5; and of Theorems 1  

 

APPENDIX B. 1 

Proof of Lemma 1 

Proof of part (a) of Lemma 1.  

Consider an DX , let į  be any feasible direction from X  and consider the change in V  as 

X  changes to hX į  where 0h . Then, from equation (2.10), 
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It follows that V  has a directional derivative ( ; )V X į at X  in direction į  and that     
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This proves part (a) of lemma 1. Ƒ 

Proof of part (b) of lemma 1.  
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By (B.1), and since ( ; )C X į  is a continuous function of( ; )X į , 

       ( ; ( ))C X U X  

is a continuous function of X. Also C is continuous and so   
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 is a continuous function of X. This proves part (b) of lemma 1.  

Proof of part (c) of lemma 1.  

By monotonicity of C  

       ( ; ( )) ( ) 0  C X U X U X . 

and so (B.2) now yields: 

2

{( , ); ~ }

2

{( , ); ~ }

( ; ( )) ( ) [ ( ) ( )] 2[ ( ; ( ))] ( ) /

 ( ) [ ( ) ( )] .

r r s
r s r s

r r s
r s r s

V C C k

C C





    

 





X U X U X X X C X U X U X

U X X X
 

It may be shown (see the lemma in the appendix of Smith (1984b)) that, at all supply-feasibleX ,  
 2 3

{( , ); ~ } {( , ); ~ }

( ) [ ( ) ( )] [ ( ) ( )] .r r s r r s
r s r s r s r s

C C k X C C     U X X X X X  

Hence: 
  

3

{( , ); ~ }

( ; ( )) [ ( ) ( )] 0r r s
r s r s

V X C C     X U X X X  

away from equilibrium since  

 3

{( , ); ~ }

[ ( ) ( )] 0r r s
r s r s

X C C   X X  

away from equilibrium. This completes the proof of part (c) of lemma 1.Ƒ 

 

APPENDIX B. 2 

Proof of Lemma 2.  

    Let X0 be feasible (or X0  {Y; AY < s}  D) and let X*  {bdry{ Y; AY < s}}   D. Now let 

X start at X0 and move steadily toward X* (by smooth route-flow swapping so that X remains 

in{ Y; AY < s}  D throughout until X* is reached). To be definite we may suppose here that  

 X(t) = (1 – t)X0 + tX* for 0 ≤ t ≤ 1.  

Suppose that at X* (at t = 1) exactly m > 0 link exits become saturated simultaneously. Then the 

link flow through each of these m exit bottlenecks increases as X  X*; since each of these 

bottlenecks is unsaturated at X0, unsaturated at X(t) if 0 ≤ t < 1 and saturated at X* = X(1). Thus 
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for each of these m bottlenecks the total flow along all routes passing through that bottleneck 

must rise as t increases to 1. Adding over the m bottlenecks, the total of all the route flows 

through one or more of these m bottlenecks must also then rise as t increases to 1. It follows that 

there is at least one origin-destination pair p such that the total of the route flows joining OD pair 

p and passing through at least one of the m bottlenecks increases as X moves toward X* or as t 

increases to 1.  

    Let us suppose then that route r is one such route; that is: route r joins OD pair p, passes 

through at least one of the m bottleneck links and has increasing flow as X  X*. As we are only 

swapping route flows in moving along the line joining X0 and X*, it follows that the total of the 

route-flows joining OD pair p which miss all of the m bottlenecks must decrease. So there must 

be at least one route (route s say) which joins OD pair p and misses all the m bottlenecks (and 

whose route-flow decreases). It now follows (since this route s misses all the m bottlenecks) that 

the cost Cs(X) of travel along this route s is bounded above as X  X*; because route s passes 

through no saturated bottlenecks at X*. 

    On the other hand route r passes through a bottleneck link and so that link cost, and hence 

Cr(X) tends to infinity and also there is a constant a such that Xr > a > 0 as X  X*, since Xr 

increases as X  X*, (and Cs(X) is bounded above as X  X*). 

    It follows that Xr[Cr(X) – Cs(X)] and [Cr(X) – Cs(X)] both tend to infinity as X  X* and 

hence that Xr[Cr(X) – Cs(X)][Cr(X) – Cs(X)] = Xr[Cr(X) – Cs(X)]2 must also tend to infinity. This 

then implies that 

  2

{( , ); ~ }

( ) [ ( ) ( )]r r s
r s r s

V X C C  X X X      (2.10) 

tends to infinity as X X* too. 

    We have shown here that V(X) tends to infinity as X  X*  {bdry{ Y; AY < s}}   D. This 

completes the proof of lemma 2. ƶ 

 

APPENDIX B. 3 

Proof of Lemma 3 

Let X H  and X  be both feasible. Let x AX and h AH . Then x  and x h  are both 

feasible and so:    
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[ ( ) ( )] [ ( ) ( )]

[ ( ) ( )] [ ] [ ( ) ( )] [ ] 0

T T T

T T

     

      

C X H C X H A c AX AH A c AX H

c AX AH c AX AH c x h c x h
 

since ( )c c x  is monotone. Therefore ( )C C X  is monotone. This completes the proof of 

lemma 3. ƶ 

 

APPENDIX B. 4 

Proof of lemma 4. 

Let hX H  and X  be both feasible for small 0h . Then as 0h  ,    

[ ( ) ( )] / [ ( ) ( )] /

[ ( ) ( )] / [ ( , )]

T T

T T

h h h h

h h

    

   

C X H C X A c AX A H A c AX

A c AX A H c AX A c AX AH
 

since c  is directionally differentiable. Therefore ( )C C X is directionally differentiable at X  in 

direction H .  

    This directional derivative is [ ( , )]T A c AX AH ; and this is a continuous function of (X, H) as 

the directional derivative of c in direction AH at AX is a continuous function of (AH, AX). This 

completes the proof of lemma 4. ƶ 

 

APPENDIX B. 5 

Proof of Theorem 1.  

    This uses Lemma 1 and a standard Lyapunov approach; similar to that utilised in the appendix 

in Smith and Mounce (2011).   

  Let all the conditions in the statement of theorem 1 hold, let X0 be feasible, let k satisfy the 

extended non-negativity result, let U(X) be then given by equation (2.8), and let 0  . Then C is 

monotone on S  D since the link cost function c is monotone on [0, s); therefore U(X) (given in 

(2.8)) is a descent direction for V at each X  S  D such that V(X) > 0. Proof of (i). Here we 

show that continuity of U, C’ and hence V’ now yields the existence of h0 = h0(X
0) such that  

 X  D00  X + hU(X)  D00 for all h  such that 0 < h < h0.  

This will then have shown that (i) holds. Note that if X  D00 then   

 X  D00  {X  S  D; V(X) ≥ İ} or X  D00  {X  S  D; V(X) ≤ İ} 

and we consider these last two possibilities separately.  
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    So first let X  D00  {X  S  D; V(X) ≥ İ}. Then by lemma 1 (using monotonicity of C) 

inequality (2.12) holds. Since D00  {X  S  D; V(X) ≥ İ} is closed and bounded (and so 

compact), and since V’(.) is continuous on D00  {X  S  D; V(X) ≥ İ} convergence in (2.12) is 

uniform on D00  {X  S  D;  V(X) ≥ İ}. So there exists h1 ≤ 1 such that  

 0 < h ≤ h1 implies [V(X + hU(X)) - V(X)] / h < V’(X, U(X))/2 < 0 

for all X  D00  {X S  D; V(X) ≥ İ}. Here h1 does not depend on X  D00  {X S  D;  

V(X) ≥ İ}. It follows that, for all X  D00  {X S  D; V(X) ≥ İ}, 

 0 < h ≤ h1 implies V(X + hU(X)) < V(X) < V(X0) 

and so X + hU(X))  D00  (S  D).  

    Now, on the other hand, let X  D00  {X  S  D; V(X) ≤ İ < V(X0)}. Then, since V and U 

are both continuous and V(X0) – İ > 0, there exists h2 such that 

 0 < h ≤ h2 implies V(X + hU(X)) - V(X) < V(X0) - İ 

which implies that V(X + hU(X)) < V(X0) – İ + V(X) ≤ V(X0) and hence that 

 X + hU(X))  D00  (S  D).  

   To combine these two results let 0 < h ≤ h0 = min{h1, h2}. Then both of the two implications 

above hold and so  

         X  D00  (S  D) implies X + hU(X)  D00  (S  D) 

and this is (i).  

 

Proof of (ii). Now let h0 satisfy (i). Then the infinite sequence (2.15) is properly defined for any h 

such that 0 < h ≤ h0. The approximate equilibrium set Eİ = { X S  D; V(X) ≤ İ} and we need 

now to check that if 0 < h ≤ h0 the sequence (2.15) also certainly entersE .  

    Let X  D00  {X  S  D; V(X) ≥ İ}. Then by the argument above   

 0 < h ≤ h0 implies [V(X + hU(X)) - V(X)] / h < V’(X, U(X))/2 < 0 

for all X  D00  {X S  D; V(X) ≥ İ}.  Now, since D00  {X S  D; V(X) ≥ İ} is closed and 

bounded (and so compact) and V’ and U are continuous, there is q > 0 such that 

 V’(X, U(X))/2 ≤ - q < 0 

for all X in D00  {X  S  D;  V(X) ≥ İ}. Thus if h is fixed, 0 < h ≤ h0 and  

 T(X) = X + hU(X), 

for all X in D00  {X  S  D;  V(X) ≥ İ}, then: 
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 V(T(X)) - V(X) = [V(X + hU(X)) - V(X)] < hV’(X, U(X))/2 ≤ - hq < 0 

for all X in D00  {X S  D;  V(X) ≥ İ}. It follows that if  

 X0, T X0, T 2 X0, . . .  , T n-1 X0, T n X0 

all belong to D00  {X S  D;  V(X) ≥ İ} then: 

 V(T n X0) - V(X0) 

= [V(T n X0)-V(T n-1 X0)] + [[V( T n-1 X0)-V(T n-2 X0)] +. . .+ [V(T 2 X0)-V(T X0)] + [V(T X0)-V(X0)]  

<             - hq                                         - hq                                          - hq                         - hq 

= - nhq. 

It now follows that in this case:   

 V(T n X0) < V(X0) – nhq < İ 

if n > [V(X0) – İ] / hq. Hence, if n > [V(X0) – İ] / hq,  

 X0, T X0, T 2X0,  . . . , T n-2 X0, T n-1X0, T nX0 

cannot all belong to D00  {X S  D;  V(X) ≥ İ}. 

    Hence the infinite sequence (2.15) certainly enters Eİ: the above inequality shows that TnX0 

must first enter Eİ when n first exceeds [V(X0) – İ] / hq, at the very latest. 

   Theorem 1 is proved.Ƒ 

 

APPENDIX B. 6 

Proof of lemma 5. 

Suppose that ci and bi are monotone cost functions associated with link i; here we drop the 

suffices. Suppose that x , x x , x sr and x x sr s r     are all feasible. Then 

{[ ( ) ( ), ( ) ( )] [ ( ) ( ), ( )]} [ , ]

[ ( ) ( )] [ ( ) ( )] [ ( ) ( ) ( )]

[ ( ) ( )] [ ( ( )) ( )] [

c x x b x x sr s r sb x x s r r c x b x sr sb x sr x r

c x x c x x b x x sr s r b x sr x sb x x s r r sb x sr r

c x x c x x b x sr x s r b x sr

      
       
    

            
                 
           ]

0 0

0,

x r
 

since c  and b  are both monotone. This completes the proof of lemma 5. ƶ 
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Appendix C. Calculation of the trajectories of flow vector following RPAP route-flow swap 

and a responsive signal control policy  

A simple method to examine the stability of a dynamical system of route flow swapping and 

responsive signal control is to follow the trajectories of flows from neighbouring supply-feasible 

regions and to see how the dynamical system behave.    

For a given network, e.g. the example network of Figure 2, starting from a feasible flow vector 

( , )T H , we follow an iterative process of route-flow swapping and signal green (or red) 

proportion adjustment, until no more changes can be made to either the route flows or the 

green/red signal proportions. The details of the calculation method is outlined as follows: 

 

Step 0   Input  

             Input: Network description and link cost function variables: s1, s2, K1, K2, A, B 

             Input: step size k , and a flow-swap tolerance level   

             Select: responsible control policy and the delay formula  

For each T=1, 2, 3, …. max(s1, s2) 

Step 1   Initialisation  

        Set day counter t=1. Choose initial flow vector ( , )T H   that satisfies the flow feasibility 

condition (4.8) 

Step 2   Compute the route flow and route costs 

        Calculate route flow TX H   

       Calculate route cost C  from (4.1) choosing the steep delay formula following either the 

Webster’s random delay term (4.2) or the first term of P-K (4.4)  

Step 3   Route flow swap 

        Compute the amount of route flow swap U  according to (2.1) and (2.2) 

Step 4   Solution improvement check  

      If the amount of flow swap is less than the predefined value  , then stop and report the 

final route flow X and green/red proportions G/R 

       Otherwise, compute the new flow ( 1) ( ) ( ( ))t t t  X X U X  and new flow split 

( 1) ( 1) / ( 1)i i jH t X t X t    , set t= t+1, go to Step 2.   
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