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It has previously been shown that the transient flow in a channel following a step
increase of Reynolds number from 2800 to 7400 (based on channel half-height and
bulk velocity) is effectively a laminar–turbulent bypass transition even though the
initial flow is turbulent (He & Seddighi, J. Fluid Mech., vol. 715, 2013, pp. 60–102).
In this paper, it is shown that the transient flow structures exhibit strong contrasting
characteristics in large and small flow perturbation scenarios. When the increase
of Reynolds number is large, the flow is characterized by strong elongated streaks
during the initial period, followed by the occurrence and spreading of isolated
turbulent spots, as shown before. By contrast, the flow appears to evolve progressively
and the turbulence regeneration process remains largely unchanged during the flow
transient when the Reynolds number ratio is low, and streaks do not appear to play
a significant role. Despite the major apparent differences in flow structures, the
transient flow under all conditions considered is unambiguously characterized by
laminar–turbulent transition, which exhibits itself clearly in various flow statistics.
During the pre-transition period, the time-developing boundary layers in all the cases
show a strong similarity to each other and follow closely the Stokes solution for a
transient laminar boundary layer. The streamwise fluctuating velocity also shows good
similarity in the various cases, irrespective of the appearance of elongated streaks
or not, and the maximum energy growth exhibits a linear rate similar to that in a
spatially developing boundary layer. The onset of transition is clearly definable in all
cases using the minimum friction factor, and the critical time thus defined is strongly
correlated with the free-stream turbulence in a power-law form.

Key words: pipe flow boundary layer, turbulent transition

1. Introduction
1.1. Unsteady turbulent flow

Unsteady turbulent flow remains a topic of great interest in fluid mechanics due to
its many intriguing characteristics that remain not fully understood as well as its
broad practical applications in many engineering systems and natural environments,
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including, for example, the transient startup and shutdown of a power station, the
closure or opening of a valve of a large water pipeline, sea waves over beaches, the
blood flow in a vascular system and the unsteady flow in a turbo machine. Unsteady
flows can be usefully classified into periodic and non-periodic flows, albeit similar
underlying physics is often present in both cases. The present paper is concerned
with the latter.

Maruyama, Kuribayashi & Mizushina (1976) carried out one of the earliest
comprehensive experimental studies on turbulence responses following a step increase
of flow rate from an initially turbulent flow. The experiments were conducted in a pipe
of 51 mm diameter in a relatively low Reynolds number range of 5000–10 000. The
axial velocity profiles were obtained using an electrochemical method, and through
ensemble averaging based on repeated runs, both mean and turbulent fluctuating
velocities were obtained. The authors identified that the generation and propagation
of new turbulence are the dominant processes in a step-increase flow case, while
the decay of the old turbulence is the dominant process in the step-decrease case.
However, both cases are governed by the stepwise change of generation of turbulence
corresponding to the final Reynolds number. Many years later, He & Jackson (2000)
performed an experimental study on linearly accelerating and decelerating flows,
again from an initially turbulent flow. Differently from Maruyama et al.’s step-change
case, the acceleration was maintained constant during the period of the experiments
and the flow was varied in a much wider Reynolds number range of 7000–42 000.
The measurements were conducted using a two-component laser Doppler anemometry
(LDA), with which the three components of the velocity and turbulence were obtained
by rotating the probe. The study confirmed the findings of Maruyama et al. that
turbulence responds first in the wall region and propagates into the core. It further
showed that the axial velocity responds earlier than that of the other components in
the buffer region, but they all respond at approximately the same time in the core
region. At any location, turbulence shows a two-stage response, namely an initial
slow response followed by a rapid one. The overall transient turbulence behaviour
was explained by associating it with turbulence production, energy redistribution
between its components and propagation processes.

Greenblatt & Moss (2004) conducted an experiment on an accelerating flow with
much higher initial and final Reynolds numbers (31 000–82 000) and a much faster
acceleration rate. Their results were generally supportive of the conclusions of the
first two studies but, in addition, they observed a second peak turbulence response
in a region further away from the wall at approximately y+ = 300. More recently,
He, Ariyaratne & Vardy (2011) conducted an experimental investigation on wall
shear stress in an accelerating flow of water in a large-diameter pipe (100 mm)
using flush-mount hot-film sensors. The response of the wall shear stress was found
to undergo three-stage development which could be associated with the response
of turbulence established in earlier studies. The first stage was related to a period
where the turbulence response was minimum. The period of this stage was found to
reduce with increase of the initial Reynolds number or increase of the acceleration.
Chung (2005) conducted a direct numerical simulation (DNS) of transient channel
flow following a sudden decrease in pressure gradient. The characteristics of the
flow were found to be similar to those of a quasi-steady flow because the change
of the pressure gradient was small. Seddighi et al. (2011) carried out a similar DNS
study but imposed a much stronger change in pressure gradient and also included a
pressure step-up case. Turbulence becomes more anisotropic in both flows; there is
more energy in the streamwise component than in the other two components in the
step-up case, whereas the trend is reversed in the step-down case.
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In parallel, much research has also been carried out on accelerating flow from rest
to study the effect of acceleration on laminar–turbulent transition. Kataoka, Kawabata
& Miki (1975) studied the startup response to a step input of flow rate in a pipe
using an electrochemical technique. They observed a systematic reduction of time
before the occurrence of the laminar to turbulent transition with increase of the
Reynolds number of the imposed flow. Kurokawa & Morikawa (1986) conducted
experiments on both accelerating and decelerating flows using hot-film probes and
observed that even with a small acceleration, transition can be significantly delayed.
They have noted two rather distinct transition patterns. The first is encountered when
the acceleration is high, and at transition the mean velocity appears to decelerate
near the wall but accelerate in the core. In contrast, when the acceleration is low, the
trends in the core and wall are reversed. Moss (1989) also conducted experiments
on accelerating flows from rest and found that the transitions they observed could be
best associated with instabilities due to local flow conditions or those that originated
from the turbulent structures carried downstream from the inlet of the pipe. Based
on a series of experiments on constant acceleration from rest using water, Lefebvre
& White (1989) and Lefebvre & White (1991) derived a simple relationship between
the transitional Reynolds number and acceleration, which was further improved by
Knisely, Nishihara & Iguchi (2010) based on additional experiments with air. In
addition, they have found that the transitional Reynolds number for flows starting
from a laminar flow follows the same trend as those from rest and can also be well
represented by the same expression. Annus & Koppel (2011) studied transition from
rest using a large-diameter pipe (D = 100 mm) with flush-mount hot-film sensors.
Their results are consistent with transition observations in earlier studies based on
smaller diameters. Following the approach of Koppel & Ainola (2006), they chose
to correlate the dimensionless transitional (critical) time, rather than the Reynolds
number, with the acceleration.

Recently, based on DNS of a channel flow following a step increase of flow rate
from an initially turbulent flow, the present authors proposed a new interpretation
of the behaviours of the transient flow (He & Seddighi (2013); hereafter referred to
as HS2013). Even though it started from a turbulent flow, the transient process was
found to be effectively a laminar–turbulent transition. The transient process involves
distinct phases of pre-transition, transition and full turbulence that are equivalent to
the three regions of the boundary layer bypass transition, namely the buffeted laminar
flow, the intermittent flow and the fully turbulent flow regions. In contrast to the
spatial development, the initial response of the transient flow to the step increase
of the flow rate is the formation of a thin layer of high strain rates on the wall,
which grows into the core of the flow with time. The pre-existing turbulent structures
act as perturbations to this boundary layer, much like the role that the free-stream
turbulence plays in a bypass transition. These turbulent structures are modulated by
the time-developing boundary layer and stretched to produce elongated streaks of
high and low streamwise velocities, which remain stable in the pre-transitional period.
However, later, in the transitional phase, they become unstable and localized turbulent
spots are generated randomly in space. Such turbulent spots grow longitudinally as
well as in the spanwise direction, merging with each other and eventually occupying
the entire wall surface when the transition completes and the flow becomes fully
turbulent. This transition concept is radically different from the theories that prevail
in the unsteady flow literature. In essence, the traditional unsteady flow theories look
at the evolution of turbulence following the perturbation of the mean flow, whereas
the transition theory sees the new flow perturbation as the ‘base’ flow, studying its
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laminar-flow-natured development and then its transition to turbulence, while treating
the pre-existing turbulent flow as disturbances. Nevertheless, as discussed in HS2013,
the new theory explains well the observations of previous studies including, for
example, Maruyama et al. (1976), He & Jackson (2000), Greenblatt & Moss (2004)
and He et al. (2011). In a follow-up study, Seddighi et al. (2014) demonstrated
that the transient response of a slowly accelerating flow shows a similar transitional
behaviour.

In the study reported in HS2013, only one case was considered, where the initial
and final Reynolds numbers (Re= Ubδ/ν, where Ub is the bulk velocity of the flow
δ is the channel half-height and ν is the kinematic viscosity) were 2800 and 7400
respectively. An interesting question is how will the behaviour of the transient flow
change when the initial and final Reynolds numbers are increased or decreased? In
particular, what happens when the Reynolds number ratio is very small? Assuming
that the flow rate is increased by only 20 %, for example, is the response of the flow
still a distinct transition process? The purpose of this paper is to provide some answers
to these questions by analysing results of DNS of a series of transient flows with
systematically varied initial and final Reynolds numbers.

Before proceeding to review the literature on bypass transition, it is useful to note
that the above review is focused on non-periodic flows only. There are extensive
studies of periodic flows around a non-zero mean, and oscillatory flows around zero
mean flows. Readers interested in those topics are referred to recent studies of Scotti
& Piomelli (2001), Tardu & Da Costa (2005), He & Jackson (2009) and Manna,
Vacca & Verzicco (2012) for pulsating flows and Fornarelli & Vittori (2009) and Van
der A et al. (2011) for oscillatory flows.

1.2. Bypass transition
The theory of transition to turbulence is traditionally concerned with the natural
transition where the two-dimensional Tollmien–Schlichting (TS) waves are amplified,
leading to a three-dimensional secondary instability, which subsequently results in a
breakdown of the flow to turbulence (referring to the review article Kachanov 1994).
The development of the TS waves is governed by the slow viscous process, and
the transitional Reynolds number (Rex,cr) based on the free-stream velocity and the
distance from the leading edge for a zero-pressure-gradient boundary is of the order
of 106. However, this process can only be observed in boundary layers with small
free-stream turbulence (FST). When the level of FST is >1 %, the disturbances in
the boundary layer develop rapidly and the breakdown occurs much earlier than that
predicted by the traditional transition theory based on the TS instability. This scenario
of transition is referred to as bypass transition, which typically occurs at a Reynolds
number of the order of 105 or lower (see, for example, Klebanoff 1971; Boiko et al.
1994).

Extensive studies have recently been carried out on the canonical bypass transition
of a boundary layer over a flat plate subjected to FST. The free-stream turbulence
enters the boundary layer either at the leading edge or through interactions with
the boundary layer from above. The latter more readily allows disturbances of
low frequencies to enter, whereas those of higher frequencies are filtered out; this
is referred to as the sheltering effect (Hunt & Durbin 1999; Hernon, Walsh &
Mceligot 2007; Zaki & Saha 2009). Often, unsteady streaky structures with high and
low streamwise velocities develop and are enhanced downstream of the boundary
layer, which is explained using the transient growth theory. Eventually, secondary
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instability develops and the boundary layer breaks down into turbulence. Much of
this bypass transition process was demonstrated experimentally by Matsubara &
Alfredsson (2001) with detailed flow visualization as well as extensive hot-wire
measurements in wind tunnels, and computationally by Jacobs & Durbin (2001)
using DNS. Matsubara & Alfredsson’s data demonstrated that the spanwise scale of
the disturbances approaches the boundary layer thickness downstream after an initial
adjustment, and that the energy of the streamwise velocity fluctuation grows linearly
with downstream distance, which is consistent with observations in previous studies,
e.g. Westin et al. (1994). The proportionality constants, however, vary from one
experiment to another. Based on an extensive set of measurements of turbulence levels
(Tu) ranging from 1.4 to 6.7 %, Fransson, Matsubara & Alfredsson (2005) attempted
to establish semi-empirical correlations for modelling the transition zone. They have
shown that the initial disturbance energy in the boundary layer is proportional to Tu2

and that the transitional Reynolds number (Rex,cr) is proportional to Tu−2. The authors
also quantified the length of the transitional zone and found that it increases linearly
with Rex,cr.

The pre-transition energy growth was theoretically studied by Andersson, Berggren
& Henningson (1999) using optimal disturbance theory. The optimal disturbances
consist of streamwise vortices developing into streamwise streaks, and the maximum
energy growth was shown to be linearly proportional to the distance from the
leading edge, hence reproducing experimental observations. This was also achieved
independently by Luchini (2000). Leib, Wundrow & Goldstein (1999)’s theoretical
study was based on the solution of the boundary-region equation, which allowed
them to more closely consider the interactions between the boundary layer and the
free-stream disturbances. Their results showed that continuous free-stream forcing
could play an important role in producing the large Klebanoff-mode growth rates
observed in experiments, and that this growth exhibited a strong sensitivity to
low-frequency anisotropy of the FST. Ricco (2009) extended Leib et al.’s method
to study the effects of convective-gust-type free-stream vortical disturbances on
the Blasius boundary layer, which produced velocity profiles that compared well
with experiments. Wundrow & Goldstein (2001) carried out an analysis based on
the full nonlinear boundary-region equations. They demonstrated how an initially
linear perturbation develops into nonlinear cross-flows. Such a flow could lead to a
shear flow being locally highly inflectional, supporting the rapidly growing inviscid
instabilities. They noted that the averaged streak amplitudes reported in experiments
are likely to mask such strong localized distortions which can induce streak
breakdown, causing discrepancies between theoretical predictions and experiments.
This was verified recently by Nolan & Zaki (2013) using a DNS database.

Streak instability has been studied in searching for the mechanisms of breakdown to
turbulence based on observations of flow structures (e.g. Brandt & Henningson 2002;
Zaki & Durbin 2005; Schlatter et al. 2008; Mandal, Venkatakrishnan & Dey 2010;
Nolan, Walsh & Mceligot 2010; Nolan & Walsh 2012). Additionally, Andersson
et al. (2001), Vaughan & Zaki (2011) and Hack & Zaki (2014) have performed
secondary instability analysis of streaks. It is apparent that both the level and the
scales of the FST can have a significant influence on when and how transition occurs.
In their DNS study, Brandt, Schlatter & Henningson (2004) observed both sinuous
and varicose breakdowns, although the former tends to occur more often and FST
with larger length scales causes an earlier transition. Using a mixture of DNS and
large-eddy simulation (LES), Nagarajan, Lele & Ferziger (2007) found that both the
bluntness of the leading edge and the FST level have an effect on the mechanisms of
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transition. For sharp edges with relatively low FST, transition usually occurs through
instabilities on low-speed streaks, as observed by Jacobs & Durbin (2001) and Brandt
et al. (2004). For high FST or flow over a blunt leading edge, the transition was
found to result from the amplification of the free-stream vortices at the leading edge
due to stretching; these vortices grow as they convect downstream and eventually
break down resulting in turbulent spots. These disturbances are wavepacket-like and
occur in the lower part of the boundary layer. Ovchinnikov, Choudhari & Piomelli
(2008) observed that streamwise streaks have a clear dynamical significance only for
a flow with small-length-scale FST. For a large-scale FST flow scenario, turbulent
spots were formed upstream of the regions where streaks were detected. The spots’
precursors were short wavepackets in the wall-normal velocity components inside the
boundary layer. Such wavepackets were noted to bear many differences from those
observed by Nagarajan et al. (2007), in which the wavepackets are in the spanwise
velocity components and mostly stay in the lower part of the boundary layer. Based
on the secondary instability analyses of a boundary layer distorted by both steady and
unsteady Klebanoff streaks, Vaughan & Zaki (2011) and Zaki (2013) identified two
most unstable modes, referred to as the inner and outer modes, which are apparently
associated with the wavepacket- and streak-related transition mechanisms, respectively.
Residing close to the wall, the inner mode is shielded from the high-frequency noise
in the free stream and is believed to originate from the receptivity at the leading
edge, consistent with the observations of Nagarajan et al. (2007) and Ovchinnikov
et al. (2008). In the outer mode, the turbulence in the free stream provides an
effective high-frequency forcing, causing an outer instability of the lifted streaks.
This transition scenario was dominant, for example, in the DNS performed by Jacobs
& Durbin (2001).

The present study is concerned with the transition of a transient channel flow
following a step increase of flow rate from an initially statistically steady turbulent
flow. The initial and final Reynolds numbers of the transient flow are varied
systematically, which results in scenarios with various FST structures and intensities
(the latter is defined as the ratio of the root mean square (r.m.s.) of the turbulent
fluctuating velocity of the initial flow to the final bulk velocity herein, which is
discussed in § 3.2). This allows investigations into the effect of FST on the behaviours
of transient flow transition and comparisons with results for the boundary layer
transition discussed above.

The rest of the paper is structured as follows. After a description of the DNS
numerical methods used in the present study in § 2, the results are presented and
discussed in detail in § 3. The general picture of the transient flow is outlined in § 3.1
with the aid of flow visualizations, which is followed by an investigation into the
effect of the initial and final Reynolds numbers on the timing of transition in § 3.2.
Section 3.3 investigates the behaviour of the time-developing boundary layer, § 3.4
studies the energy growth during the pre-transition period and finally § 3.5 provides
some quantifications of the flow structures. The paper is concluded with a summary
of the key findings in § 4.

2. Numerical methods
DNS of transient turbulent channel flow is performed using an ‘in-house’ code

solving the incompressible momentum and continuity equations:

∂u∗i
∂t∗
+ u∗j

∂u∗i
∂x∗j
=−∂p∗

∂x∗i
+ 1

Rec
∇2u∗i , (2.1)
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Re Reτ 1x+ 1z+ 1y+min 1y+max

Present 2 818 179.3 3.2 1.9 0.16 2.78
7 404 414.1 7.3 4.3 0.37 6.4

12 600 657.5 11.6 6.8 0.59 10.2

He & Seddighi (2013) 2 825 178.6 4.47 3.13 0.32 2.96
7 404 418 10.45 7.3 0.76 6.95

TABLE 1. Mesh resolution in wall units at some typical Reynolds numbers.

∂u∗i
∂x∗i
= 0, (2.2)

where x1, x2, x3 and u1, u2, u3 are the streamwise, wall-normal and spanwise
coordinates and velocities respectively. The variables with an asterisk are non-
dimensionalized using the density of the fluid (ρ), the channel half-height (δ) and
the centreline velocity of the laminar Poiseuille flow at the initial flow rate (Uc). The
Reynolds number is defined as Rec = Ucδ/ν. However, unless otherwise stated, the
time is rescaled using the bulk velocity of the final flow (Ub1) as the characteristic
velocity to facilitate direct comparison with data from literature, that is, t∗ = tUb1/δ.
The spatial derivatives of the governing equations are discretized using a second-order
central finite difference method. For the temporal discretization, an explicit low-storage
third-order Runge–Kutta scheme and a second-order implicit Crank–Nicholson scheme
are used for the nonlinear and the viscous terms respectively. These are combined
with the fractional-step method to enforce the continuity constraint (Kim & Moin
1985; Orlandi 2001). The Poisson equation is solved using fast Fourier transform
(FFT). The code is parallelized using the message-passing interface (MPI) for use on
a distributed-memory computer cluster. More details on the numerical methods used
in the DNS code can be found in Seddighi (2011) or HS2013.

The channel flow is simulated using a computational domain with dimensions
of 18(δ), 2(δ) and 5(δ) for the streamwise, wall-normal and spanwise directions
respectively. Periodic boundary conditions are used in the streamwise and spanwise
directions, and no-slip boundary conditions are used for the top and bottom walls.
The domain is meshed with a grid of 1024× 240× 480 using a non-uniform
distribution in the wall-normal direction and a uniform distribution along the other two
directions. These can be compared with the domain 12.8(δ), 2(δ) and 3.5(δ) and mesh
512× 190× 200 used in HS2013, which were carefully validated against previous
benchmark data and checked for adequacy of the domain size using streamwise
velocity correlations. A larger domain and mesh size are used in the present study
to ensure that they are suitable for the whole range of Reynolds numbers used. The
streamwise correlation of the streamwise velocity for each transient case was ensured
to decay to approximately zero before the domain half-length. A summary of the
non-dimensional grid sizes for the initial and final Reynolds numbers is shown in
table 1 together with those used in HS2013 for direct comparison.

A total of ten cases have been conducted, which are grouped into two series
(table 2). In the first series (S0X), the final Reynolds number (Re1 =Ub1δ/ν) is fixed
at 7400, but the initial Reynolds number (Re0=Ub0δ/ν) is varied from 2800 to 5300,
where Ub0 and Ub1 are the bulk velocities of the initial and final flows respectively. In
the second series (S1X), Re0 is fixed at 2800 but Re1 is varied from 3100 to 12 600.
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Case Re0 Re1 1t∗ Re1
Re0

Case Re0 Re1 1t∗ Re1
Re0

S01 2800 7400 0.21 2.6 S11 2800 12 600 0.36 4.5
S02 3500 7400 0.21 2.1 S12 2800 10 000 0.29 3.6
S03 4200 7400 0.21 1.8 S13 2800 5 300 0.08 1.9
S04 5300 7400 0.21 1.4 S14 2800 4 200 0.06 1.5

S15 2800 3 500 0.02 1.2
S16 2800 3 100 0.006 1.1

TABLE 2. The unsteady flow cases studied.

Case S01 is the same as that of HS2013. For the smallest increase of flow rate, the
Reynolds number is increased by only ∼10 % (S16), whereas the increase is 450 %
in S11. For each case, at least five runs were carried out to facilitate the calculations
of flow statistics using ensemble averaging. To generate independent initial flow
fields, simulation at a constant mass flow corresponding to the initial Reynolds
number of any case in table 2 is carried out until it has reached a stationary state,
after which it is run for a further period of time, so independent flow fields with
long time intervals between them are saved. Each transient flow is started from one
such flow field, being accelerated rapidly and linearly to the final Reynolds number,
after which it is run at a constant mass flow for a sufficiently long time for the flow
to become fully developed (statistically steady) again. The acceleration is so rapid
that the flow can be seen as undergoing a step increase. The non-dimensional ramp
period (1t∗) is between 0.006 and 0.36, but the period during which the flow exhibits
transient behaviour is approximately t∗ = 50–80, where t∗ = tUb1/δ. We have adopted
a constant mass flow approach (as opposed to a constant pressure gradient approach)
in the simulations presented herein. To initiate the acceleration, an additional source
term is added to the streamwise ‘mean’ pressure gradient at t∗ = 0, the detail of
which can be found in Seddighi (2011) or HS2013.

The ensemble averaged statistical quantities for any location at a distance of y1 from
the wall are obtained through averaging over the plane of y= y1 as well as using the
repeated runs. Thus, the local mean velocity is

us = 1
MNL

(
L∑

k=1

N∑
j=1

M∑
i=1

us

)
, (2.3)

and the r.m.s. of the turbulent fluctuating velocity is

u′s,rms =
√√√√ 1

MNL

(
L∑

k=1

N∑
j=1

M∑
i=1

(us − us)2

)
, (2.4)

where M and N are the numbers of data points in the streamwise and spanwise
directions respectively, L is the number of repeated runs and s = 1, 2, 3 for
the streamwise, wall-normal and spanwise velocities, which are also denoted as
u, v and w. The results for the top and bottom half-channels are found to be
practically identical, which serves as an indication of the convergence of the statistical
calculations. The results presented in this paper are averaged over the top and bottom
half-channels where appropriate.
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3. Results and discussion
3.1. The general picture

The flow structures at several instants during the transient period in selected cases are
shown in figure 1 using three-dimensional isosurface plots of u′/Ub0 and λ2/(Ub0/δ)

2.
Here, u′(= u − ū) is the instantaneous streamwise fluctuating velocity and λ2 is the
second largest eigenvalue of the symmetric tensor S2 + Ω2, where S and Ω are
the symmetric and antisymmetric parts of the velocity gradient tensor ∇u. This was
initially proposed by Jeong & Hussain (1995) as an effective indicator for vortical
structures and has since been used in the study of turbulence and transition. All the
cases shown in the figure have the same initial Reynolds number (Re0 = 2800) but
very different final Reynolds numbers, namely 12 600, 5000 and 3100 for S11, S13
and S16 respectively. These can be compared with the flow studied in HS2013 in
which Re was varied between 2800 and 7400.

We first consider the flow with the highest change of flow rate, i.e. case S11. In the
initial flow (t∗= 0), patches of fluids with high or low fluctuating velocities are clearly
in existence and some hairpin structures are also identifiable through the isosurfaces
of λ2. These are rather uniformly distributed in the flow field, showing the picture
of a typical turbulent shear flow. During the early period (appropriately, t∗ < 29),
elongated streaks are formed, as evident by the long tubes of isosurfaces of positive
and negative u′/Ub0 which appear alternately to each other. Such flow structures are
common and representative in the pre-transition and transition regions of boundary
layers (e.g. Jacobs & Durbin 2001; Matsubara & Alfredsson 2001). The number of
hairpins appears to reduce during the early stage of this period, but new vortical
structures start to appear in clusters at approximately t∗ = 29, which indicates the
generation of turbulent spots, signifying the onset of transition. During the period to
follow (approximately, 29< t∗< 55), such turbulent spots grow to occupy more spaces,
joining with each other, and eventually at approximately t∗ ∼ 55, the entire surface
is covered with newly generated turbulence. The isosurface tubes (streaks) break up
along with the generation of turbulent spots as the transition progresses. The vortices
often occur around the low-speed streaks accompanying their breakup in this case,
which is again similar to those shown in boundary layer bypass transition (e.g. Jacobs
& Durbin 2001; Schlatter et al. 2008). The basic features of the flow described above
are similar to those found in HS2013, although the streaks during the pre-transition
and transition periods are stronger and more striking in S11.

Overall, case S13 (which has a ‘medium’ Reynolds number ratio) follows a
similar trend (figure 1b), but the strength of the streaks is much weaker and the
generation of turbulent spots seems to occur at a lower rate and the changes are less
striking. This trend is similar to the transition of a boundary layer subject to a higher
level of FST. For example, in a boundary layer subject to a 7 % FST, Jacobs &
Durbin (2001) found that although streaks and jets are present in such flows, they are
surrounded by elevated turbulence and distinct turbulent spots are much more difficult
to discern. In the case of S16 where the Reynolds number was only increased by
10 %, the flow structures appear to be characteristically different (figure 1c). It is
clear that the turbulent activities at the end of the transient are stronger than those
at the beginning, but the distinct transition is not seen. There are no clear signs of
generation of elongated streaks at the pre-transition stage nor obvious enhancement
of the generation of turbulent spots during the transition period.

The above results show that the phenomenological features of transition of the
transient flow identified in HS2013 are strong and well pronounced when the
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FIGURE 1. Streaks and vortex structures in three-dimensional plots of isosurfaces in
(a) S11, (b) S13 and (c) S16. Streaks are shown in green/blue with u′/Ub0 =±0.35 and
vortical structures are shown in red with λ2/(Ubo/δ)

2 =−5.
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FIGURE 2. Development of the friction coefficient with equivalent Reynolds number
(Ret= tU2

b1/ν): (a) effect of varying Re0 (same Re1); (b) effect of varying Re1 (same Re0).

difference between the final and initial Reynolds numbers is high, but less pronounced,
though still clearly in existence, when it is reduced. When the Reynolds number
difference is very low, however, the transitional process is difficult to identify from
the visualization presented above.

In the rest of the paper, various statistics of the mean flow and turbulence are
analysed to quantify the flow structures observed above to establish the effect
of varying the initial and final Reynolds numbers. It will become clear that
although the visualization of the flow structures shows that the transient process
of lower-Reynolds-number-ratio cases appears to be qualitatively different, they in
fact show as much a transition characteristic as the higher-Reynolds-number-ratio
cases in the parameters used to identify such processes, and the critical equivalent
Reynolds number (defined later) in all the flows studied can be correlated using a
simple expression.

3.2. Effect of initial and final Reynolds numbers

The variations of the friction coefficient (Cf = τw/(ρU2
b/2), where τw is the wall shear

stress) in the various cases investigated in this study are inspected to establish the
overall behaviour of the flow response (figure 2). Here, we use an alternative non-
dimensional time to t∗, namely

Ret = tU2
b1

ν
, (3.1)

which is referred to as the equivalent Reynolds number herein. Considering the bulk
velocity Ub1 as a characteristic convective velocity, together with the time t, it defines
a length x=Ub1t, representing the distance that a fluid particle has travelled after the
commencement of the transient. As a result, the equivalent Reynolds number can be
written as Ret = (xUb1)/ν, mirroring the Reynolds number Rex used in the boundary
layer based on the free-stream velocity and the distance from the leading edge. It
will be demonstrated later that Ret indeed has the same significance in a transient
flow transition as Rex in the boundary layer transition, although direct quantitative
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comparison between the two quantities is not appropriate. It is useful to note that
Ret = t∗Re1, where t∗ = tUb1/δ and Re1 =Ub1δ/ν.

Focusing on case S11 first, it can be seen that the Cf reaches a very high value
(off scale) immediately after the commencement of the excursion due to the inertia
resulting from the rapid flow acceleration in a very short period of time. From there,
it decreases monotonically until approximately Ret = 3.6 × 105 (or, t∗ = 29) where
it reaches a minimum, after which it increases again to approximately the final
steady value at Ret = 7.0 × 105, or t∗ = 55. Comparing with the flow visualization
of the corresponding case (figure 1a), it is clear that the timing of the minimum
Cf roughly coincides with the initial stage of the generation of turbulence spots.
Following HS2013, we refer to the time when Cf reaches the minimum as the point
of the ‘onset of transition’ and the corresponding non-dimensional time as the critical
equivalent Reynolds number Ret,cr or, equivalently, the critical time t∗cr.

The effect of varying the initial and final Reynolds numbers (Re0 and Re1) on the
overall flow behaviour is now studied by comparing the responses of Cf in the various
cases. Figure 2(a) shows that Ret,cr reduces monotonically with increase of Re0. For a
fixed Re1 of 7400, Ret,cr reduces from 1.47× 105 to 5.50× 104 when Re0 is increased
from 2800 to 5300. In addition, alongside the reduction of Ret,cr, the minimum friction
coefficient increases significantly, showing a progressively smaller ‘undershooting’ of
the final Cf . Figure 2(b) shows that increasing Re1 results in an increase in Ret,cr.
For a fixed Re0 of 2800, as Re1 is increased from 3100 to 12 600, Ret,cr increases
from 3.30× 104 to 3.65× 105. In addition, the minimum Cf varies from a very small
‘undershooting’ at Re1 = 3100 to a strong one at Re1 = 12 600. The final Cf reduces
with increase of Re1. It is of most interest that the friction factor in all cases, including
those with a very small Re ratio, shows the same characteristic behaviour even though
Ret,cr and the level of undershooting of Cf can be very different in the different cases.
It will be shown later that the flow before the critical point always behaves like a
laminar flow despite the significant differences in the initial Reynolds number and the
level of flow perturbation. Overall, the critical time t∗cr shows a similar trend to that
of the equivalent Reynolds number Ret,cr described above, reducing with increase of
the initial Reynolds number or decrease of the final Reynolds number.

The mechanisms by which the initial and final Reynolds numbers affect the
transition process and the critical equivalent Reynolds number are no doubt very
complex. It has been well established in boundary layer research that the transition is
strongly influenced by the level of FST, referring to Andersson et al. (1999), Luchini
(2000), Brandt et al. (2004), Fransson et al. (2005), Nagarajan et al. (2007) and
Ovchinnikov et al. (2008). Moreover, Brandt et al. (2004) and Ovchinnikov et al.
(2008) also showed that both the critical Reynolds number and also possibly the
mechanisms of transition are affected by the length scales of the FST. In light of
such understanding, the following factors are candidates for consideration, which
can potentially influence the behaviours of the transient process when the Reynolds
numbers are varied.

(i) Re0 (=Ub0δ/ν), which defines the initial turbulence in terms of the amplitude and
time/length scales. The higher Re0 is, the lower the initial turbulence intensity is
but also the smaller the time/length scales are. It also defines the initial mean
velocity profile.

(ii) Re1, which defines the ‘free-stream’ velocity. Arguably this is the most important
velocity of the transient flow.

(iii) (Re1 − Re0), which defines (Ub1 − Ub0), is the cause of the change. Indeed, the
time-developing boundary layer is characterized by this velocity (see § 3.3).
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(iv) The acceleration rate, (Ub1−Ub0)/1t. This could potentially be a factor. However,
in all cases considered herein, the acceleration is very rapid and the flow increase
can be viewed as a step change. Tests with the acceleration rate increased by an
order of magnitude show no effect on the transition behaviour. For a transient
with a much slower rate, the acceleration rates does affect the Ret,cr but the
general transition process remains similar (Seddighi et al. 2014).

(v) The initial FST intensity (Tu0). This is dependent on both Re0 and Re1, which
can be represented by (u′rms,0)max/Ub1, as explained later, where (u′rms,0)max is the
peak value of the wall-normal profile of the r.m.s. of the streamwise turbulent
fluctuating velocity at t= 0.

We have investigated the various mechanisms discussed above and correlated the
data against alternative parameters. It has become evident that, as far as the critical
Reynolds number is concerned, the dominant effect of varying Re0 and Re1 is through
changing the initial FST intensity, as demonstrated below.

First, let us derive a way of describing the initial turbulent intensity, that is, the
equivalent FST. We consider a very early instant of the transient flow following the
step increase of the flow rate. At this stage, the turbulence remains unchanged from
that of the initial flow and the mean velocity is that of the final flow. The turbulence
in a fully developed channel is very different from the FST of the boundary layer,
being highly anisotropic and non-uniform normal to the wall. For simplicity and
unambiguity, we choose the peak value of the wall-normal profile to represent the
turbulence level. Consequently the initial free-stream turbulence intensity can be
written as

Tu0 =
(
u′rms,0

)
max

Ub1
=
(

Ub0

Ub1

) (
u′rms,0

)
max

Ub0
. (3.2)

The ratio (u′rms,0)max/Ub0 is the peak turbulence intensity of the initial flow before
the commencement of the transient. Recently, there has been considerable interest
in the effect of the Reynolds number on the peak turbulence intensity in wall
units, i.e. (u′+rms)max = (u′rms)max/uτ (Hultmark, Bailey & Smits 2010; Ng et al. 2011;
Hultmark et al. 2013). It has been established that (u′+rms)max varies with the Reynolds
number in a boundary layer and a channel flow, whereas there are still some dispute
on whether (u′+rms)max is also dependent on the Reynolds number for pipe flows. In
any case, it is well established that the turbulence intensity expressed in the outer
scaling, (u′rms)max/Ub, is a function of the Reynolds number. The present DNS data
for 2800 < Re < 12 600 show that (u′rms)max/Ub ∼ Re−0.1, and hence the free-stream
turbulence (Tu0) defined in (3.2) is proportional to (Ub0/Ub1)Re−0.1

0 . In fact, the
following expression represents the DNS Tu0 extremely closely:

Tu0 = 0.375
(

Ub0

Ub1

)
(Re0)

−0.1 . (3.3)

Figure 3 shows the critical equivalent Reynolds number (Ret,cr) plotted against
the velocity ratio (equivalent to the Reynolds number ratio) in double logarithmic
scale. The data correlate reasonably well, which suggests a strong dependence of
Ret,cr on the velocity ratio. In fact, all the data of the S1X series (with the same
Re0 but different Re1) lie nearly perfectly on a straight line, implying that Ret,cr and
Ub0/Ub1 are related in a power-law form. On the other hand, all of the data of series
S0X (with fixed Re1 but varying Re0) appear also to lie on a straight line, which
suggests a systematic Re0 effect. By trial and error, it has been established that the
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FIGURE 3. Dependence of the critical equivalent Reynolds number on the velocity ratio.
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FIGURE 4. Dependence of the critical equivalent Reynolds number on the initial FST
intensity.

effect of varying the initial Reynolds number is closely represented by Re−0.1
0 , and

the two series of data are brought closely together when Ret,cr is shown as a function
of (Ub0/Ub1)(1/Re0.1

0 ). Now, comparing this knowledge with (3.3), it is clear that
the critical equivalent Reynolds number is likely to be a function of the free-stream
turbulence. It can indeed be seen from figure 4, where Ret,cr is shown with respect
to Tu0, that the data from both series now lie strikingly closely along a straight line,
which can be well represented by

Ret,cr = 1.34× 103Tu−1.71
0 , (3.4)

where Ret,cr= tcrU2
b1/ν and Tu0 is defined by (3.2), which can be estimated using (3.3).
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This result shows that the effect of varying Re0 or Re1 on Ret,cr simply comes down
to the variation of the initial turbulence intensity. All other factors discussed above
in the list are insignificant as far as the critical Reynolds number is concerned. For
example, the change of the Reynolds number of the initial flow leads to some change
in the length scale of the initial FST, comparing for example cases S01 and S04,
but this has no direct effect on the critical Reynolds number except for that through
changing Tu0. This result is in contrast to the conclusions reached by Brandt et al.
(2004) and Ovchinnikov et al. (2008), who showed that the length scales of the FST
have a major effect on Recr. It should be pointed out, however, that the insensitivity of
the results to the length scale observed in the present study should be treated carefully
since the change of Re0 is limited.

It has been well established through both theoretical and experimental investigations
that Recr ∼ Tu−2

0 for a spatially developing boundary layer (Andersson et al. 1999;
Brandt et al. 2004; Fransson et al. 2005; Ovchinnikov et al. 2008). In particular,
Andersson et al. (1999) proposed

Rex,cr = 144 Tu−2
0 . (3.5)

It is interesting to see that (3.4) and (3.5) are similar in form, even though both the
multiplier and the exponent are different. As mentioned before, the value of Ret,cr in
the transient channel flow and that of Rex,cr of the boundary layer are not directly
comparable; indeed, the two flows are not equivalent and hence the differences in
the multipliers are trivial. On the other hand, the fact that the exponent of (3.4) for
the transient flow is different from the theoretical value of ‘−2’ for the boundary
layer may be of interest, but the implications of this observation are not explored
here. It is noted that, previously, Blumer & Van Driest (1963) established an empirical
correlation for boundary layer transition based on experimental data as

1√
Rex,cr

= a+ b
√

Rex,crTu2
0, (3.6)

where a = 10−4 and b = 62.5 × 10−8. The value of Rex,cr calculated from this
expression is quite similar to that of (3.5), but Rex,cr is not strictly related to Tu0

through a −2 power law.
Another interesting feature of the transition is the period of the transition phase,

that is, the time between the onset of the transition and the completion of it. As for
the onset of transition (tcr), we again use Cf to define the completion of transition,
and assume that the transition is completed (tturb) when Cf reaches its first peak. The
period of the transition phase is the difference between these two times. We can again
express it in terms of the equivalent Reynolds number as

1Ret,cr = Ret,turb − Ret,cr = U2
b1tturb

ν
− U2

b1tcr

ν
. (3.7)

Figure 5 shows 1Ret,cr versus Ret,cr. The trend of the data can be reasonably
well represented by the straight line shown in the figure, but there are some
scattered points. Whether such scattered points may be related to potentially different
transition mechanisms needs further investigation. Various researchers have previously
investigated the transitional length for boundary layers. Dhawan & Narasimha (1958)
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FIGURE 5. Relationship between the period of the transition phase and the critical
Reynolds number. Here, Recr refers to Rex,cr and Ret,cr respectively for boundary layer
and transient channel flow.

and Narasimha, Narayanan & Subramanian (1984) suggested a power-law relation
between 1Rex,cr and Rex,cr, and the latter proposed

1Rex,cr = 9Re′x,cr
0.75
. (3.8)

The onset and the completion of transition are defined based on the level of
intermittency at 0.25 and 0.75 respectively. In addition, in contrast to the Ret,cr used
herein, which is based on the onset of the transition, Re′x,cr in the above equation
is defined as the location at an intermittency level of 0.5, that is, halfway between
the onset and the completion of the transition. More recently, Fransson et al. (2005)
proposed an alternative formulation based on a large number of experimental data:

1Rex,cr = 3.9× 104 + 0.33Re′x,cr. (3.9)

The onset and completion of transition are defined based on intermittency levels
of γ = 0.1 and 0.9 respectively and Re′x,cr is again for γ = 0.5. Equations (3.8) and
(3.9) are shown in figure 5 so that the general trends can be compared with the data
from the present transient channel flow. In order for such a comparison to be made,
Re′x,cr in (3.8) and (3.9) is replaced by Rex,cr+ 0.51Rex,cr, to ensure that the definition
of the critical Reynolds number is consistent. It is noted that, incidentally, the present
data can be reasonably well represented by the correlations of Narasimha et al. (1984)
and Fransson et al. (2005) if a factor of 0.5 is applied to the 1Recr of the present
data. In particular, the present data appear to support Fransson et al.’s idea that 1Ret,cr
and Ret,cr are linearly related, and that there is a minimum 1Ret,cr for small values
of Ret,cr.

3.3. The time-developing boundary layer
The flow response in the initial (pre-transition) stage of the transient channel flow
was described as a time-developing boundary layer in HS2013. Following the rapid



Transition of transient channel flow after a change in Reynolds number 411

increase in the flow rate, a very thin boundary layer of high strain rate is formed
adjacent to the wall, but the bulk of the flow increases as a ‘solid body’ with no
change in its velocity profile. This boundary layer, which progressively develops into
the flow with time, exhibits a character that is similar to the laminar boundary layer
before the onset of transition. Here, we study the behaviour of the time-developing
boundary layer in the various cases by examining the perturbing velocity:

ū∧(y+0, t+0)= [ū(y+0, t+0)− ū(y+0, 0)]/[ūc(t+0)− ūc(0)], (3.10)

where ūc is the centreline velocity, y+0= yuτ0/ν and t+0= tu2
τ0/ν, where y is the wall-

normal distance from the wall, t is the time that has elapsed after the commencement
of the transient flow and uτ0 is the friction velocity at t= 0. The benefit of using the
wall units based on the initial flow is that the onset of transition occurs at roughly the
same time (t+0 = 80–110, see below), and hence the flow at the same t+0 is roughly
at the same stage of the pre-transition development.

The profiles of ū∧ at various t+0 of all the cases are plotted in figure 6(a) against
y+0. The profiles at any time t+0 are shifted by a distance proportional to t+0. Also
shown in the figure for comparison is the solution of Stokes’ first problem (Schlichting
& Gersten 2000):

u(η)= 1− erf(η), (3.11)

where η= y/2
√

tν and erf(η)= 2/
√

π
∫ η

0 e−ξ2dξ . The equation is recast in terms of ū∧,
y+0 and t+0 for plotting. It is clear that, visually, the time-developing boundary layer
shows strong similarities to the spatially developing boundary layer. Most interestingly,
the profiles in different cases collapse closely on top of each other for t+0 < 100 (that
is, in the pre-transition stage). At earlier stages (say, t+0 < 50), these velocity profiles
are closely represented by the Stokes solution. Later, 50< t+0 < 100, the profiles of
the various cases are still in close agreement with each other, but they deviate from
the Stokes solution. Further proceeding with time (say t+0 > 110), the profiles of the
various cases start diverge from each other. The close accordance between the velocity
developments of the various flow cases during the pre-transition phase is extraordinary,
noting the wide range of Reynolds number ratios examined. The response of the mean
velocity in the transient flow is the same in a 10 % increase flow as in a 400 %
increase one, irrespective of their very different flow patterns shown in figure 1, for
example. Further, the profiles of the velocity ū∧ with respect to the non-dimensional
parameter η at various times of the pre-transitional phase (t+0 < 80) in all the cases
are shown in figure 6(b) together with the Stokes solution. It can be seen that the
profiles collapse very well onto a single curve, close to the Stokes solution, with only
small spreads, hence showing the similarity of the velocity profiles at different times.
Figure 7 shows that the values of the displacement thickness (δ∗) of the perturbation
velocity in the various cases correlates reasonably well when they are normalized by
the initial flow wall units, that is, δ∗+0 = δ∗uτ0/ν.

A friction coefficient for the perturbation flow can be defined as

Cf ,du = τw,du
1
2ρ (Ub1 −Ub0)

2 , (3.12)

where τw,du = {µ∂[ū(y, t∗)− ū(y, 0)]/∂y}|y=0 = τw − τw,0 is the wall shear stress of the
perturbation flow, and τw and τw,0 are the values of the wall shear stress of the full
flow at times t and 0 respectively. Noting that the wall shear stress of the theoretical
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FIGURE 6. (Colour online) Development of the perturbation velocity profiles (ū∧) in the
pre-transition period in all cases studied and comparison with the Stokes solution. Solid
lines: present data; dash-dotted: Stokes solution. (a) Perturbation velocity ū∧ versus y+0

at various non-dimensional times (t+0); the profiles are shifted by an amount proportional
to the time. Lines (1)–(3) show the thickness of the boundary layer of ū∧, δ99; the
displacement boundary layer of ū, δ∗u ; and that of ū∧, δ∗. (b) Perturbation velocity ū∧

versus y/2
√
νt for all cases at various instants during the pre-transition phase (t+0 6 80).

solution of Stokes’ first problem is τw = µ(Ub1 −Ub0)/
√

πνt (Schlichting & Gersten
2000), the friction coefficient for a transient laminar flow is given by

Cf ,Stokes = 2√
π

1√
(Ub1 −Ub0)

2 t
ν

. (3.13)

Now, returning to the data shown in figure 6(a), the fact that the velocity profiles of
the various cases overlap each other at any t+0 implies that the values of the wall
shear stress of ū∧ normalized in the manner defined below should collapse on top of
each other when expressed in terms of t+0:

C′f ,du =
τw,du

1
2ρ (Ub1 −Ub0) uτ0

, (3.14)
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FIGURE 8. (Colour online) Development of the modified friction coefficient C′f ,du

defined by (3.14) with non-dimensional time t+0 in all cases.

which can be reorganized as

C′f ,du =Cf ,du
(Ub1 −Ub0)

uτ0
. (3.15)

The present data in the form of the modified friction coefficient C′f ,du defined
above plotted against t+0 are shown in figure 8, together with the Stokes solution for
comparison. It can be seen that all the data indeed collapse well onto a single curve
during the pre-transitional stage. This curve is elevated from the Stokes solution, but
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can be well represented by the following expression:

C′f ,du =
2√
π

1(
t+0
)0.47 , (3.16)

which is shown in the figure. The expression can be recast in terms of Cf ,du as

Cf ,du = 2√
π

(t+0)0.03√
(Ub1 −Ub0)

2 t
ν

=Cf ,Stokes(t+0)
0.03
. (3.17)

Equation (3.16) together with figure 8 demonstrates that the detailed variation of the
wall shear stress in the pre-transient phase of all the transient flow cases can be closely
correlated in terms of the modified friction coefficient (C′f ,du) against the wall-unit
time of the initial flow (t+0). This correlation deviates somewhat from the solution
of Stokes’ first problem for laminar flow, but only needs a relatively small correction
based on t+0. In practice, either (3.16) or (3.17) can be used to predict the wall shear
stress in a transient turbulent flow. Another useful piece of information that can be
derived from figure 8 is that the timing of the onset of transition in terms of t+0

does not change significantly as the flow conditions are varied, being in the range
of t+0= 80–110 for the conditions examined in this study. As a result, t+0 provides a
good measure of the stage of the flow development, and hence the reason for using
it for comparison for the flow developments under the various conditions.

3.4. Energy growth
Figure 9 shows the development of the profiles of u′rms, v

′
rms and w′rms in S11 and S15

for Reynolds number ratios of 4.5 and 1.25 respectively, to represent a low- and a
high-FST case. The profiles at any time t+0 are shifted by a distance proportional to
t+0. Despite the large differences in the level of the changes in the two cases, some
features of the response of turbulence can be identified in both scenarios, which are
also common in all other cases. (i) The value of u′rms starts to increase from the start
of the transient, reaching a level that is close to the maximum value at the time of
the onset of transition, only making slow adjustments afterwards. The pre-transition
rapid increase is an important feature of transition, which reflects the formation and
enhancement of the streaky structures, and is comparable to the pre-transitional energy
growth in a boundary layer. (ii) By contrast, v′rms and w′rms remain largely unchanged
(in fact reduce very slightly, as shown below) during the pre-transition period. They
only start to increase when transition occurs.

To facilitate a direct comparison between the energy growths in the various cases,
the development of the profile of (u′rms− u′rms,0) normalized by the increase of the bulk
velocity (Ub1–Ub0) for all cases is shown in figure 10(a). It is clear that the profiles for
all cases at any t+0 agree very well with each other. In fact, the cases with the same
final Reynolds number (series S0X) fall rather closely on top of each other, whereas
the scattered points shown in the figure have largely originated from series S1X with
a variation in the final Reynolds number, reflecting some albeit small unaccounted
effect of Re1. Nevertheless, the close correlation is remarkable considering the fact
that in some cases the flow is increased by only a very small amount, and that the
flow structures appear to be so different between the cases, as shown in figure 1.
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FIGURE 9. Development of the profiles of u′rms, v
′
rms, w′rms at various times. The profiles

are shifted to the right by a distance proportional to the time. (a) S11; (b) S15. Thin
lines: initial profiles; thick lines: profiles at time t+0; lower horizontal lines: displacement
boundary layer (δ∗); higher horizontal lines: velocity boundary layer (δ99).

Whether the flow shows strong or weak streaks, or even no streaks, the energy growth
is apparently described by the same non-dimensional parameter. Also remarkable are
the responses of v′rms shown in figure 10(b). During the most part of the pre-transition
stage, v′rms decreases slightly in all cases although only slightly, and then increases
rapidly after approximately t+0 = 80. The w′rms component shows a similar trend to
v′rms (not shown). These results demonstrate that, even though the transition is very
difficult to observe through visualizations in cases such as S16 due to the very small
increase in flow rate, the process of a distinct quiescent pre-transition period followed
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FIGURE 10. Development of the profiles of (a) u′∧rms [= (u′rms − u′rms,0)/(Ub1 − Ub0)] and
(b) v′∧rms [= (v′rms − v′rms,0)/(Ub1 −Ub0)] at various times in the pre-transition period for all
cases.

by a ‘sudden’ and rapid generation of turbulence exhibits itself unambiguously in all
cases in the turbulence statistics as well as in the velocity profiles discussed earlier.

The maximum streamwise energy growth, u′2rms,max {= maxy(u′2rms)}, with respect
to Ret, is shown in figure 11(a). It is clear that the growth rate increases with
increase of Tu, which is consistent with the trend exhibited in the experiments
by Fransson et al. (2005). Inspired by figure 10(a), the energy growth in terms of
1E=maxy{(u′rms− u′rms,0)

2/(Ub1−Ub0)
2} is plotted against t+0 (figure 11b). Again, the

data from the series S0X practically collapse on top of each other whereas the data
from S1X have some deviations from the overall trend but still follow it rather closely.
At the very early stage, there is a ‘delay’ in the increase of the energy, which was
also noted by Fransson et al. (2005), who attributed it to an early receptivity stage
when the flow adjusts itself to the boundary layer. Following this stage, the energy
growth is linear, which in many cases extends much beyond the point of the onset of
transition. Noting that uτ0/Ub1 = ((u′rms,0)max/Ub1)(uτ0/(u′rms,0)max)= Tu0/(u′+rms,0)max and
that (u′+rms,0)max is only a very weak function of the Reynolds number, t+0= (tu2

τ0/ν)=
(tU2

b1/ν)(u
2
τ0/U

2
b1)∝ RetTu2

0. Consequently, figure 11(b) implies that

1E∝ RetTu2
0. (3.18)

That is, the energy growth is linearly proportional to the initial FST intensity squared
when Ret is fixed, or vice versa. The same expression has been reached by Fransson
et al. (2005) based on their boundary layer experimental data. It should be noted that,
strictly speaking, 1E is not the energy growth. Either u′2rms or u′2rms − u′2rms,0 instead
of (u′rms − u′rms,0)

2 would be a better representation of the energy in defining 1E,
but no correlation can be found in these forms. This suggests that there may exist
some nonlinear interactions between the existing flow structure and the growth of the
‘disturbances’.

Figure 12 shows the profiles of u′rms normalized by its maximum value plotted
against y/δ∗u for a number of cases, where δ∗u is the displacement thickness of the full
velocity profile (i.e. ū not ū∧). For the cases shown in figure 12(a), it is clear that the
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FIGURE 11. Energy growth: (a) u′2rms,max/U
2
b1 versus Ret,

(b) 1E=maxy{(u′rms − u′rms,0)
2/(Ub1 −Ub0)

2} versus t+0.

peak location remains fixed during the pre-transition period, where the profiles show
close similarity. During the transition period, the peak location moves towards the
wall. For the cases with a small Reynolds number ratio (figure 12b), the change of
the peak location is small throughout the transient period. Although the peak location
remains fixed during the pre-transition for each flow, it is different for different flows,
varying from 0.85 for S11 to 0.57 for S16 as the final Reynolds number reduces.
This is in contrast to the boundary layer transition, in which the peak location is
always at y/δ∗= 1.3, which has been derived from optimal growth theory (Andersson
et al. 1999) and demonstrated by DNS and experiments (e.g. Matsubara & Alfredsson
2001; Brandt et al. 2004). A major reason for the transient channel to be different is
likely to be associated with the fact that the free-stream velocity is not a flat profile
but varies with the distance from the wall.

3.5. Flow structures
Due to the presence of high- and low-speed streaks in turbulent and transitional flows,
the spanwise correlation of the streamwise velocity (R11) shows a negative peak, a
phenomenon that is commonly used to illustrate the behaviour of the streaks. A higher
value of the negative peak of the correlation, |R11,min|, can be associated with the
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FIGURE 13. (Colour online) Time variation of the spanwise correlation of the streamwise
velocity at a plane y+0 = 0.5 (the magnitude of negative correlations is shown; positive
correlations are set to zero).

existence of stronger and/or more regularly spaced streaks relative to the background
disturbances. Furthermore, the ‘y’ location of the peak negative correlation (ymin)
indicates the averaged central location of the streaks above the wall. Twice the z
value at which this occurs (zmin) can be seen as a measure of the averaged streak
spacing. Figure 13 shows the time variation of the spanwise correlation on a horizontal
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FIGURE 14. (Colour online) Development of the minimum spanwise correlation of the
streamwise velocity for streaks close to the wall (y< 0.2). Lines only: S1X series; lines
and markers: S0X series.

plane near the wall (y+0 = 0.5) for various cases with the steady flow values shown
in t+0 < 0. The absolute values of the negative correlations are shown while the
positive correlations are set to zero for clarity. The overall behaviour of the streaks
during the transient flows is well displayed. The streaks are enhanced relative to the
background turbulence (that is, |R11,min| is greater) during the pre-transition period in
all cases, but much more strongly in some than in others. The streak spacing appears
to reduce initially but then mostly stay unchanged during the pre-transition period.
The ‘strength’ and location/spacing of the streaks are quantified next: the variations
of the minimum value (|R11,min|) with time for all cases are shown in figure 14, and
the time variations of the wall-normal distance (ymin) as well as the spanwise location
(zmin) are shown in figure 15.

The general trend of the variation of |R11,min| is similar in the various cases. It first
increases, reaching a peak at approximately t+0 = 50–70, and reduces thereafter. The
increase of |R11,min| is greater with increasing Tu0 in both series, but the final value
in most cases in S0X is much lower due to their starting point (i.e. the streaks are
weaker and/or fewer at higher Reynolds numbers). On the other hand, there appears to
be an absolute maximum in |R11,min|, just below 0.3, which has been reached in S01,
S11 and S12. For these three cases, the streak strength reduces sharply at the time of
the onset of transition, reaching a minimum value towards the end of the transition.
This is consistent with the visualization of the flow field in figure 1(a), namely strong
streaks are formed during the pre-transition phase, but destroyed during transition as
turbulence spots are generated and spread. By contrast, in the cases of a low Reynolds
number ratio, such as in S15 and S16, the strengthening of the streaks is minor,
and, probably more significantly, the streaks are only slightly weakened during the
period of transition. It is hence likely that streak formation and instability are not the
dominant mechanisms under such flow conditions. The change from streak-dominated
to streak-‘inactive’ cases appears to be progressive as the Reynolds number ratio is
decreased and hence no sudden transition from one mode to the other is displayed.

It can be seen from figure 15(a) that the z-location of the minimum correlation,
or the half-streak spacing, normalized with the initial-flow wall units (z+0

min), initially
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reduces rapidly after the commencement of the transient flow, by an amount that is
roughly proportional to the Reynolds number ratio of the flow. It then remains as
a constant until the onset of transition, implying that the streak spacing in absolute
terms remains unchanged during the most part of the pre-transitional phase, noting
that the normalization is based on the initial flow and remains unchanged during the
transition. The initial and final streak spacings (2z+min) based on their respective wall
units of the flow are both approximately 100, as expected for an equilibrium turbulent
flow (the latter is not shown). When expressed with respect to the displacement
thickness of the full flow field, zmin/δ

∗
u (figure 15b), the distance of the minimum

location in different cases reduces from various initial values during the pre-transition
period, converging to approximately 2.5 at the point of onset of transition for the
S1X series where Re0 is maintained the same, but to different values for S0X where
Re1 is the same. These results compare favourably with those of Ovchinnikov et al.
(2008) for bypass transition; they have shown that the absolute streak spacing remains
unchanged for a period during the pre-transition stage, but the value is different for
FSTs with different amplitudes or length scales. They showed that zmin/δ

∗
u in their

cases reduces to converge to approximately 2 in most cases, whereas the experimental
data of Matsubara & Alfredsson (2001) found that it tends to 3.

The wall-normal distance of the location of the minimum correlation coefficient
normalized using the initial-flow wall units (y+0

min) behaves in a very similar way
in all the cases (figure 15c). Following a brief reduction from its initial value of
approximately 10, it increases roughly linearly throughout the pre-transition phase
and approaches a value between 12 and 14 just before the onset of transition. The
location in relation to the momentum displacement thickness (δ∗u ) in each case also
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increases, but only slightly (figure 15d), and more significantly it assumes very
different values for different cases, spreading from approximately 0.3 to nearly 1.
The implication is that the streaks lift up in both absolute terms and relative to the
boundary layer, but the former is more significant.

The peak values of the streaks are naturally much greater than the r.m.s. values of
the corresponding fluctuating velocities and Wundrow & Goldstein (2001) suggested
that it is likely that the strong events that are associated with these peaks are relevant
to the onset of instability rather than the mean values. Hence the fact that experiments
often report that r.m.s. values may be a major contributing factor to the differences
often observed between the theory and measurements in levels of disturbance energy
at the onset of transition. Brandt et al. (2004) and more recently Nolan & Zaki
(2013) have further evaluated the idea and provided additional explanation and
evidence. We represent the peak amplitudes of the streaks with the maximum and
minimum fluctuating velocities defined as follows:

u′max(t)=max
y

{
max

x,z
[u(x, y, z, t)− 〈u(y, t)〉]

}/
Ub1, (3.19)

u′min(t)=min
y

{
min

x,z
[u(x, y, z, t)− 〈u(y, t)〉]

}/
Ub1, (3.20)

where 〈u(y, t)〉 denotes the span and streamwise average over a y-plane. The u′max
and u′min for the S0X and S1X series are shown in figure 16. The initial value
of u′max varies in a wide range, from 0.1 to 0.5, among the various cases with
a higher-Reynolds-number-ratio flow resulting in a lower u′max as expected. After
the commencement of the transient, the cases with a lower initial value, however,
increase faster than those with a higher initial value and, by the time of the onset
of transition, all cases converge to a value of approximately 0.55. The u′min tends
to follow a similar trend but converges to a slightly smaller value of approximately
−0.5. Incidentally, these values are comparable to the values 0.5 and −0.45 of
Brandt et al. (2004) for boundary layers, which are taken from figure 7 of that paper.
It is interesting to note that the u′max increases sharply at the time of the onset of
transition in S11 and S12, and to a smaller extent in S01, but not in the remaining
cases. This observation seems again to suggest that these three cases show different
characteristics from the other cases. In fact, it is rather surprising that the streak
peaks appear to reach approximately the same values in all flow cases around the
time of the onset of transition, considering that streaks are probably not the dominant
transition mechanism in some low-Reynolds-number-ratio cases. Figure 17 shows
that, in the pre-transition stage, the wall-normal location at which the u′min occurs is
approximately 3 times higher than that of u′max, indicating that high-speed streaks are
located closer to the wall whereas low-speed streaks are pushed away from the wall,
which is consistent with the results of Brandt et al. (2004).

Finally, it is of interest to inspect the flatness of v′, which responds strongly to the
intermittence and hence provides a good measure of the strength of turbulent spots
in comparison with the background turbulence. A large value of the flatness occurs
when there is a small number of burst events, but each one, when it happens, has a
high amplitude. Consequently, the peak of the flatness of v′ can be associated with
the onset of transition. Figure 18 shows the flatness of v′ at y+0 = 5 in the various
cases studied herein. In both the S0X and S1X series, the peak value is the highest
when the Reynolds number ratio is maximum, and reduces with decrease of the ratio.
In consistency with the observations in figure 16, the peak values of S11 and S12
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are much greater than those of the rest, being 1800 and 600 respectively, followed
by 200 for S01. In addition, the period during which an increased value is observed
is narrower, that is, the process is more abrupt, when the Reynolds number ratio is
higher.

4. Summary

Direct numerical simulations were performed of a transient flow in a channel
following a step increase of flow rate from an initially turbulent flow. The aim
was to study the transient behaviours under a range of initial (Re0) and final (Re1)
Reynolds numbers. Two series of simulations were performed. In the first, Re1 was
fixed at 7400 and Re0 was varied between 2800 and 5300. In the second, Re0 was
fixed at 2800 and Re1 was varied between 3100 and 12 600. As a result, the final to
initial Reynolds number ratio ranged from 1.1 to 4.5.

Flow visualization showed that the transient flow exhibits strikingly different
patterns in the high- and low-Reynolds-number-ratio cases. For the cases with a
high Reynolds number ratio, the typical bypass transition processes prevail in the
flow development, with the presence of strong streaks during pre-transition and the
generation and spreading of isolated turbulent spots following the onset of transition.
With reduction in the Reynolds number ratio, the above picture becomes less clear.
Streaks are weaker and turbulence spots stand out much less in contrast to the initial
background turbulence. When the Reynolds number ratio is very low, streaks and
turbulent spots are hardly identifiable.
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Despite the contrasting flow patterns observed in the various cases, the mean flow
and turbulence statistics show unambiguously that the transient flow response in all
cases is characterized by the laminar–turbulent transition first described in He &
Seddighi (2013). Following the step increase of the flow rate, the flow does not
progressively evolve to the final turbulent flow. Instead, it shows a distinct three-stage
development that can be referred to as pre-transition, transition and turbulence. In the
pre-transition stage, the response is characterized by a boundary layer initially formed
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on the wall, which develops into the core of the flow with time. The development
of the boundary layer at this stage in all cases shows a strong similarity based on
η (= y/2

√
νt), that is, the velocity profiles at various instants and in all test cases

collapse onto a single curve, which is well represented by the solution of Stokes’
first problem, with only small deviations. This is irrespective of the fact that the
initial turbulence is very different in some cases and that the increase of the flow rate
ranges from 450 % to as low as 10 % in one case. The displacement thickness and
the friction factor in the various cases can both be correlated using a non-dimensional
time. In addition, the wall-normal profile of the streamwise fluctuating velocity in
the various cases shows good similarity and the maximum energy exhibits a linear
growth rate that is proportional to the FST, similar to that in a spatially developing
boundary layer. In contrast to the strong streamwise energy growth, the wall-normal
and spanwise fluctuating velocities reduce, albeit only very slightly, during the same
period of time.

The critical time (tcr) identified based on the minimum friction factor reduces
with increase of the initial Reynolds number or reduction of the final Reynolds
number. A critical equivalent Reynolds number can be defined based on the bulk
velocity of the final flow (Ub1) and the critical time, namely Ret,cr = tcrU2

b1/ν. The
critical Reynolds number thus defined correlates extremely well with the FST (Tu0)
as Ret,cr = 1.34 × 103Tu−1.71

0 , where Tu0 ≡ (u′rms,0)max/Ub1 and can be evaluated
using Tu0 = 0.375(Ub0/Ub1)(Re0)

−0.1. This can be compared with the expression for
boundary layer transition, Rex,cr = 144 Tu−2

0 (Andersson et al. 1999), which has been
obtained from optimal growth theory and describes well experimental and DNS data
of boundary layer transition. In addition, the period of the transition phase (the time
between the onset of transition and the completion of it) correlates well with the
critical Reynolds number. The direct correlation between Ret,cr and Tu0 implies that
the dominant effect of varying the initial and final Reynolds numbers is to vary the
level of the FST. The initial flow, which defines the characteristics of the initial
turbulence including its length scales, does not seem to have a significant effect on
transition for the flow conditions examined in this study.

The high- and low-speed velocity streaks seem to play an important role in the
cases where the Reynolds number ratio is relatively high, including S11, S12 and
S01, but not under other flow conditions, which is suggestive that potentially different
transition mechanisms are dominant in different flow transients examined herein. The
minimum spanwise correlation of the streamwise velocity (R11,min) reaches a similar
high peak value in the pre-transition phase in each case of the former group, and
rapidly reduces during the transition. By contrast, for the cases in the latter group, the
streaks remain relatively weak, albeit strengthened somewhat during the pre-transition
phase, and more interestingly are only slightly weakened during the transition phase.
In all the cases, the absolute value of the spacing of the streaks reduces rapidly at
the beginning of the transient, but then remains largely unchanged during the most
part of the pre-transition phase. This constant spacing varies from case to case, being
lower with a higher initial, or a lower final, Reynolds number. The transition in terms
of the generation of turbulent spots exhibits itself as intermittency in the wall-normal
fluctuating velocity shown with flatness. The intermittence peaks at the time of onset
of transition, and is stronger when the Reynolds number ratio is higher. For the lowest
Reynolds-number-ratio case, any changes of the flatness of v′ are very small and can
hardly be associated with the transition.
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