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Stagnation or low turnover of water within water distribution systems may result in water 

quality issues. This can even occur during relatively short durations of stagnation / low turnover 

if other factors such as deteriorated ageing pipe infrastructure are present.  This paper presents 

results of applying data driven tools to the disparate large corporate databases maintained by 

UK water companies to investigate this issue. These databases include multiple information 

sources such as asset data, hydraulic characteristics, regulatory water quality sampling etc., but 

are typically maintained separately. A huge growth in data volumes is enabling innovation in 

the data-exploration techniques of analytics, modelling and visualisation to generate new 

insight and value from large amounts of complex data. A range of techniques exist for 

exploring the interrelationships between various types of variables. Self Organising Maps 

(SOMs) are a class of unsupervised Artificial Neural Network (ANN) that perform 

dimensionality reduction of the feature space to yield topologically ordered maps. Specifically, 

in this application SOMs performed multidimensional data analysis of a case study area 

(covering a town sized area for an eight year period). The visual output of the SOM analysis 

provides a rapid and intuitive means of examining covariance between variables and exploring 

hypotheses for increased understanding. For example, water age (time from system entry, from 

hydraulic modelling) in combination with high pipe specific residence time and old cast iron 

pipe were found to be strong explanatory variables.  

 

INTRODUCTION 

 

In a Water Distribution System (WDS) stagnation is generally defined as low turnover. 

Stagnation/ low turnover encourages particles to settle and biofilms to develop which can 

influence water quality by providing a longer term store for particles, metals and bacteria as 

well as encouraging extra growth [1]. As closure of valves for leakage monitoring and control 

continues to increase, it is likely that more dead ends and hence potential stagnant zones will be 

created within WDSs. In order to become more customer focused, to improve levels of service 

and water quality compliance there is a need for water companies to obtain better understanding 

of stagnation occurrence and effects. This is vital to drive a move from a reactive to a proactive 

form of management, to mitigate any increase in water quality risk due to stagnant zones.  



Water companies have large datasets garnered over time which describe the network (pipe 

assets) and water quality sampling which have been collected within the network. Company 

databases in an unprocessed format do not easily lend themselves to direct analysis to establish 

any relationships or trends in the data. With advances in data manipulation and analysis 

systems, in particular the integration of GIS information with data mining methodologies, it is 

now possible to explore relationships between data in increasingly sophisticated ways.  

 

The aim of this paper was to evaluate and analyze available Water Company data for a case 

study area to determine associations between deterioration of water quality (using proxy 

measurements such as high iron, manganese and turbidity) and stagnation in WDSs.  

 

BACKGROUND 

 

Stagnant water in a WDS can occur due to oversized storage facilities, dead end pipes or areas 

that experience periods of limited use [2]. Such conditions can have a negative impact on water 

quality. Distribution systems dead ends are problematic locations for water quality failures, 

high residences times and the absence of residual disinfestations create a susceptible 

environment for biological growth [3]. Factors which could increase the negative effects of 

stagnation include pipe material, previous water quality, source water, temperature and previous 

hydraulic events such as bursts.  

 

Company databases in an unprocessed format do not easily lend themselves to direct analysis to 

establish any relationships or trends in the data. The databases are generally on separate 

platforms, in differing formats, with non-uniform IDs and contain many unpopulated or 

company specific default value data fields in their raw form. Previous work has examined asset 

databases and customer service records providing information relating to bursts leakage and 

water quality complaints for example Unwin et al. [4]. This was primarily based on proximity 

searches and visual mining.  

 

Clustering aims to discover structure in a complex data set and is useful when natural groupings 

are suspected but there are many competing patterns in the data. It is an explorative process in 

the field of data mining with the main goal being knowledge discovery i.e. deriving information 

from data without any previous knowledge or preconceived opinions. Many methods exist for 

finding clusters in data from both the statistical and artificial intelligence domains and hence 

there is a large toolbox of approaches to use. Artificial Neural Networks (ANN) have been used 

for modelling water quality variables for different aspects of drinking water systems and a 

comprehensive review is contained in Wu et al. [5]. One ANN approach which can be used for 

clustering and visual data mining/exploration is the Kohonen Self Organising (Feature) Map 

(SOM). There are some applications for which the 'correct' outputs are unknown. In 

unsupervised learning (also referred to as self-organisation) the inputs are presented to an ANN 

which forms its own classifications of the training data. The SOM is one of the most well-

known ANNs employing unsupervised learning, first proposed by Kohonen [6], and has the 

properties of both vector quantization and vector projection algorithms. The prototype vectors 

are positioned on a regular low-dimensional grid in a spatially ordered fashion, hence 

facilitating improved visualisation. SOMs have been used for analysis and modelling of water 

resources, including applications such as river flow and rainfall-runoff and surface water quality 



as reviewed in Kalteh et al. [7]. Mounce et al. [8] proposed their use in data mining 

microbiological and physico-chemical data for laboratory pipe rig data.  

 

CASE STUDY 

 

Data was provided by the water industry partner for a specific region: a production water supply 

zone containing a mix of urban and rural areas for a town with approximately 5000 customers 

(see figure 1). The area was chosen due to good data availability and suspected previous issues 

with stagnation. It is supplied with a chloraminated surface water source. The following data 

was obtained for the case study for an eight year period: regulatory water quality (spot sampling 

with sparse temporal and spatial resolution such as iron, manganese, pH, turbidity, temperature, 

conductivity, total chlorine); GIS asset data (such as pipe material, diameter, length) and 

connectivity; customer water quality and water service contacts; hydraulic model information 

such as maximum velocity and water age and turbidity / iron / manganese failures. 

 

After preliminary data exploration some of the following problems were identified: 

• Inconsistent data / lack of uniform referencing between differing data sets 

• Sparse data sampling rate for regulatory data 

• Potential errors in the data 

• Limited information on service pipes connections may prevent analysis of findings  

• Rezoning year on year 

These issues are typical of all UK water service providers and more generally for most large, 

lengthy period, disparate datasets. The data analysis techniques employed in the study were 

selected to try and address such issues as far as possible. 

 

 
Figure 1. Case study area 

 

METHODS 

  

Feature selection 

A subset of the variables that were considered of possible interest were selected. GIS was 

utilised to link between different corporate systems. For example, the Joint Combine function 



was used in ArcGIS to associate the nearest pipeline to a sample (proximity search) and then 

collate this data into a table. A total of over 9000 unique sample records were available from 

the original thematic layer, covering an eight year period and with theoretically many possible 

fields (>150). However, in practice many of these fields were specific to the corporate database, 

empty, or repeated information. Some variables were considered but not included for analysis 

generally due to being exceedingly sparse. The most promising fields were selected as set out in 

Table 1, along with fields indicated from asset records and modelled data (which was obtained 

and linked between datasets). In Table 1, ‘condition code’ is a value between 1 and 5, (local) 

residence time was calculated directly using (absolute) velocity and length for each pipe and 

water age is the cumulative local residence time from point of entry.  

 

Table 1. Variables incorporated in SOM analysis 

 

Variable Type Units 

Turbidity Water quality FTU 

Iron  Water quality mg/L 

Temperature Water quality deg C 

Free Chlorine Water quality mg/L 

Total Chlorine Water quality mg/L 

Manganese  Water quality mg/L 

Conductivity Water quality S/m 

Nitrite Water quality mg/L 

Nitrate Water quality mg/L 

Month/Year Water quality N/A 

 

 

Variable Type Units 

Length Asset m 

Iron Asset mg/L 

Condition code Asset N/A 

Material Asset N/A 

Velocity Modelled m/s 

Residence time Modelled Seconds 

Water Age Modelled Hours 

Urban / Rural GIS derived N/A 

 

 

 

These fields were imported into MATLAB either as numeric data or strings depending on the 

variable. For the main analysis the data was considered as 1) explanatory asset information, 2) 

stagnation effect or 3) explanatory cause and/or effect of stagnation.  

 

Data preprocessing 

A number of programmatic stages to deal with the variable types in an appropriate manner were 

required: 

• Data cleaning 

Scanning the data and dealing with issues such as missing data or null fields  

• Outlier removal 

The raw data often has quite significant outliers. This is a typical problem with extracts 

from corporate databases and may manifest as impossibly large values for variables, or 

negative error codes such as -99. A degree of pre-processing is required to ‘clean’ any data 

sets used. In this case, as well as processing for error codes (conversion to NaNs) outliers 

were removed using the Thompson Tau method [9] which utilises Maximum Likelihood 

Estimation with an alternative outlier model. 

• Data transformation and normalisation 

Normalising the input vectors for SOM ANN analysis was conducted. When using values 

as potential labels for SOMs some intermediate transformation was often required. In 

addition, GIS was used to create auxiliary variables such as urban / rural identifier for 

pipes, by using a kernel density GIS map function. 



SOM analysis 

The SOM for the training vectors was generated using the program MATLAB (Version 

7.2.0.635; The Mathworks Inc.) using the SOM toolbox developed at the Helsinki University of 

technology (available online at http://www.cis.hut.fi/projects/somtoolbox ). The input layer 

consisted of a number of neurons corresponding to the number of variables used and the output 

layer consisted of a hexagonal Kohonen map whose size was optimally selected by the SOM 

toolbox. A batch training method was used with a Gaussian neighbourhood. The initial learning 

rate of 0.5 was used for the first rough phase of training corresponding to the creation of a 

‘coarse’ mapping which is when the global order is imposed on the map. Later the learning rate 

is reduced to 0.05 for the second phase, in which the fine structure is added to the map while 

preserving the global order. A trained network can be labelled in a manner described by 

Kohonen. Each output neuron is tested against a set of inputs of some known classification. For 

each set, consisting of an input of each class, the distances between the weights of that neuron 

and the inputs are calculated and the class corresponding to the closest input is noted. A 

majority verdict over all the sets (using a voting approach) then determines a nodes class label, 

with a draw resulting in a node remaining unclassified. 

 

RESULTS AND DISCUSSION 

 

Base water quality sampling 

Firstly, the regulatory data only was used to check the base water quality relationships. Figure 2 

shows the resulting final Kohenen SOM map (here a 32 x 21 hexagonal map). This map 

contains color coded hexagons that summarize all of the component planes that represent 

individual variables. There are two separate parts of the SOM display. These are the summary 

U-matrix and the component planes for each individual variable. The U-matrix allows 

examination of the overall cluster patterns in the input data set after the model has been trained. 

Each hexagonal cell represents individual neurons, which are the mathematical linkages 

between the input and output layers. In the component planes for individual variables, the 

coloring corresponds to actual numerical values for the input variables that are referenced in the 

scale bars adjacent to each plot. Blue shades show low values and red corresponds to high 

values. Visual inspection of the component planes allows examination of how variables vary 

against each other. A temporal aspect was included by incorporating the month (with 1 as 

January to 12 as December) and year (of the sampling). We can immediately see how the 

temperature measurement band relates to the summer months, but there are also some other 

interesting factors revealed such as nitrate values being lower during later months of the year. 

We can also see that when turbidity is high, iron and manganese are also generally high. 

 

Incorporating asset information with water quality and using rural/ urban labelling 

Figure 3 provides the results of incorporating asset information into the analysis. A SOM 

analysis for water quality and asset data was run. Relationships between water quality and asset 

data can be observed by looking between component planes. For example, wider diameter pipes 

generally have a larger condition code and may be associated with higher pH. From GIS 

analysis it was observed that there was a difference between patterns occurring in rural/ urban 

areas. In order to separate the data points along these lines a kernel density GIS map of the 

assets was produced. Assets were then labelled in a binary fashion and this category was used to 

label the SOM. The labelled map (bottom right in figure 3) was colored as follows: 

Green=rural, yellow=urban. It is evident by examining between component planes and the 



labelled map, that rural areas generally appear to have lower total chlorine, and that the 

stagnation surrogates (Iron, manganese and turbidity) appear to have extreme values 

predominantly here. 

 

Further analysis including modelled data with material labelling 

A dataset derived from hydraulic modelling results was provided for further analysis, including 

velocities, a calculated residence time and a water age for 3240 records. It would be expected 

that high water age would correspond to water quality stagnation. The analysis supported this 

assumption, with high age being strongly correlated to increased concentrations of iron, 

manganese, turbidity and nitrite (see Figure 4). The final SOM uses material of pipes for 

labelling, which are classified by name type. Of the 11 sorts of material in the database only the 

following are considered (accounting for over 99% of assets): CI (C), DI (D), HPPE/PE100 (H), 

MDPE /PE80 (M), PVCu (P) ST (ST). Figure 4 provides the results for the labelled map using 

the above material codes – bottom right hand corner with colors as follows: Orange = Cast Iron, 

Yellow = Ductile Iron, Blue = MDPE/HPPE/PVC, Light blue= Unclassified/Other. We can 

immediately see strong clustering of material types and we can relate this to areas of component 

planes in figure 4. For example, the plastic pipes generally have a low value of condition code, 

low values of conductivity seem to be associated with ductile iron and as we would expect the 

clusters of high turbidity, iron and manganese correspond to cast iron pipes. More complex 

relationships can be gleaned as well, such as cast iron pipes with medium diameters and a long 

residence time correlate to increased levels of iron, turbidity and manganese and lower chlorine. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. SOM for regulatory sampling – with year and month of sample 

 

 

 



 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3. SOM results for water quality, asset, modelled data and urban/rural label 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. SOM results for water quality, asset, modeled data and with material type label 



CONCLUSIONS 

 

This study has demonstrated the application of advanced techniques to perform highly novel 

analysis and interpretation of complex, diverse and variable quality data from water company 

databases. The ability of SOMs for data mining large, multi-dimensional data sets, including the 

integration of heterogeneous data types across multiple databases, was utilized to identify 

relationships between water quality, modeled and asset data. They offer a useful synthesis and 

higher-fidelity visualization and hence understanding of data which is otherwise impossible for 

humans to grasp. A key finding from the data analysis is that the risk for water quality 

stagnation, for this region, appears to be greatest in cast iron pipes with medium diameters, 

medium to high residence times, high water age, high condition code and located in rural areas. 

Samples with iron failures are often associated with lower chlorine residuals and/or indicators 

of nitrification like nitrite. The benefit of this work is an improved understanding of water 

quality in stagnant zones to enable the production of robust risk assessment. Ultimately this will 

help deliver improved levels of service, water quality compliance and fewer customer contacts 

and to achieve the optimum use of resources through better stagnation flushing procedures. 
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