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A Unified Spatio-temporal Human Body Region Tracking Approach to Action
Recognition

Nouf Al Harbi, Yoshihiko Gotoh

Department of Computer Science, University of Sheffield, United Kingdom

Abstract

There are numerous instances in which, in addition to the direct observation of a human body in motion, the charac-
teristics of related objects can also contribute to the identification of human actions. The aim of the present paper is to
address this issue and suggest a multi-feature method of determining human actions. This study addresses the matter
by applying a sturdy region tracking method, instead of the conventional space-time interest point feature based tech-
niques, demonstrating that region descriptors can be attained for the action classification task. A cutting-edge human
detection method is applied to generate a model incorporating generic object foreground segments. These segments
have been extended to include non-human objects which interact with a human in a video scene to capture the action
semantically. Extracted segments are subsequently expressed using HOG/HOF descriptors in order to delineate their
appearance and movement. The LLC coding is employed to optimise the codebook, the coding scheme projecting
every one of the spatio-temporal descriptors into a local coordinate representation developed via max pooling. Human
action classification tasks were used to assess the performance of this model. Experiments using KTH, UCF sports
and Hollywood2 dataset show that this approach achieves thestate-of-the-art performance.

Keywords: spatio-temporal segmentation, human body volume, object tracking, regions of interest, action
recognition

1. Introduction

It is not a difficult task for us to comprehend the ac-
tions occurring in a video clip, regardless of the scene
context, individuals in the scene or the camera angles
with which the scene is presented. Furthermore, view-
ers can follow an extensive series of actions no matter
how complex they are. From the computational point of
view however, action representation poses considerable
challenges. To provide a solution to this problem, most
existing approaches are geared towards the expression
of motion information within a scene. Descriptors for
motion information are highly important; in recent years
methods used to garner space-time interest point (STIP)
features have been greatly improved [1]. It has been
demonstrated that high-level models, which functioned
on representations developed based on tracked objects,
their features and/or interaction, were capable of identi-
fying complex actions [2, 3]. Such high-level model, re-
lying on interaction primitives, was proven to be highly
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effective when extracting appearance and STIP primi-
tives.

STIPs are extricated from video data using the Bag
of Words (BoW) model. They provide the basis for cur-
rent action recognition research, which depends mostly
on the ability that differentiates unique local space-time
descriptors. STIP primitives are outlined on person and
object trajectories, and attained via a flexible part-model
detector [4]. However, despite their efficiency, such
models remain incapable of tracking all object types or
of functioning in a variety of observation conditions. It
disregards information about the spatio-temporal organ-
isation of the interest points which could be important
for various computer vision tasks. This paper moves
away from point-feature-based approaches, instead ex-
amines a spatio-temporal ‘region-based’ approach to in-
terpret motion extracted from a video stream. In order to
process complex actions which are challenging to track
efficiently using conventional descriptors, this paper in-
vestigates a new model for action representation that re-
lies on detecting spatio-temporal person-object interac-
tion regions [5, 6].
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The argument brought forth is that video ought to be
perceived as an assemblage of three-dimensional vol-
umes. The integrated analysis of the temporal and spa-
tial dimensions of a video presents a number of advan-
tages. First of all, it facilitates the preservation of spatial
and temporal consistency. Secondly, higher-level algo-
rithms are able to concentrate on extensive, sparse re-
gions rather than undertaking a multiple frame analy-
sis of pixels, thus enhancing efficiency. Thirdly, joint
modelling of object appearance and movement leads to
improved recognition results.

To this end the approach builds on a segmentation of
human and non-human objects, where a human body
volume is detected along a video stream [7]. These seg-
ments are extended to accommodate an non-human ob-
jects to form up final key-segment regions. They for-
mulate a descriptor that encompasses the static and dy-
namic features of detected key segments. The KTH,
UCF sports and Hollywood2 dataset are employed to
assess these representations [1]. It is demonstrated that,
in comparison to conventional methods, action repre-
sentation is substantially optimised, and that the code-
book enhancement based on the locality constrained lin-
ear coding (LLC) technique [8] conveys the highest per-
formance. The contributions of this work can be sum-
marised as follows:

• Extraction of a spatio-temporal human body vol-
ume by incorporating generic object foreground
segments guided by the state-of-the-art of human
detection and segmentation approaches as well as
extension of these regions to accommodate an in-
teracted non-human objects regions;

• Extension of the existing two-dimensional (2D)
image LLC scheme to a spatio-temporal video sig-
nal;

• Development of an efficient and robust schema to
represent a human action signal;

• Application of the spatio-temporal region-based
approach to the action classification task with
Hollywood2, one of the most challenging real-
world dataset, demonstrating that the approach
outperforms the state-of-the-art, interest point-
based techniques by a clear margin.

The idea of using objects to improve the recognition rate
for actions was proposed by [9]. However that work
used a traditional approach to detecting humans and ob-
jects [10], suffering from the large size of ‘space’ not
belonging to a human body or an object. To the con-
trary, as illustrated in Figure 1, this paper presents an

Figure 1: A sample segmentation from the Hollywood2 dataset: the
original frame from a video clip ‘sceneclipautoautotrain00319’ (left),
a segmentation using Felzenszwalbet al. [10] (middle) and a segmen-
tation using the approach presented in this paper (right).

approach that segments a human body and object re-
gions at a frame level and tracks them over a sequence of
video frames, thus creating a carefully trimmed spatio-
temporal human body volume. Outcomes from the ex-
periment indicate that the availability of an exact object
region results in more accurate action representation.

2. Related Work

Action representations incorporating low-level track
point features in a video have been embraced by a large
number of research works [11, 12, 13, 14, 15]. However
these types of representations can incur tracking errors,
particularly when there is background clutter present.
On the other hand such representations circumvent the
onerous task of object and person identification.

The use of representations for human motion to iden-
tify human actions has received a fair amount of atten-
tion. One of the first to investigate this phenomenon
was by Bobick and Davis [16], who managed to capture
view-dependent motion, as well as Yacoob and Black
[17], who developed parameter-based motion models.
For action recognition, Aliet al. [18] suggested the use
of kinematic flow features. A different approach pro-
posed by Efroset al. [19], and later by Zelnik-Manor
and Irani [20], was the correlation-based categorisation
of human motion. Schechtman and Irani [21] have im-
plemented this approach to associate correspondences
and self-similarities between images and videos.

Space-time interest point (STIP) methods have at-
tracted an increasing amount of attention recently. By
employing local STIPs, a number of studies have gen-
erated representations on the basis of visual vocabular-
ies outlined with the help of gradient-based descrip-
tors obtained either at determined points of interest
[14, 15, 22, 23, 24] or from the actual point locations
[11, 25]. The positive implications of associating static
and dynamic descriptors have been emphasised as well
[1, 12]. Compound neighbourhood-based features were
originally developed for static images and object iden-
tification [26, 27], but have been recently expanded to
video processing [14, 15, 23]. A wide range of ap-
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Figure 2: Processing flow of the ‘human body region tracking’approach with visual object recognition (HBRT/VOC).

proaches are available, aiming to apply a coarse grid
of histogram bins to subdivide the space-time volume
globally [14, 15, 23] or else to position grids around
the raw points of interest in order to generate new rep-
resentations based on the location of the interest points
which are included in the grid cells encompassing a cen-
tral point [11].

A dataset derived from Hollywood films was pre-
sented by Laptevet al. [15]. Due to the fact that it con-
sists of a wider variety of viewing angles, background
clutter and scenarios, this dataset is considerably more
difficult to process than the earlier datasets. This new
dataset was referred to as ‘Hollywood2: Human Actions
and Scenes Dataset’, and developed further by Marsza-
lek et al. [1], who incorporated contextual information
in their method. Recently another line of work was pro-
posed by Bilenet al. [28] and assessed using Holly-
wood2 data. They attempted to describe actions by ex-
tracting salient local regions, applying motion segmen-
tation, then tracking them with optical flow.

3. Human Action Representation

Despite relying on local information as well, the ap-
proach in this paper is different from existing works in
that it focuses on a human body region-based feature
representation. It is more concerned with the tempo-
ral continuity (or tracking) of regions than with isolated
spatio-temporal regions. Figure 2 illustrates the pro-
cessing flow of the technique presented in this paper,
which is later on referred to as the ‘human body re-
gion tracking’ approach with visual object recognition
(or HBRT/VOC).

3.1. Detecting and Tracking Human Body Regions

Our goal is to segment human body volume in an
unlabelled video. The approach consists of two main
stages (Figure 3). Firstly, human body objects are seg-
mented at a frame level by combining low-level cues
with a top-down part-based person detector, formulat-
ing grouped patches. Secondly, detected segments are
propagated along the time line of video frames, exploit-
ing the temporal consistency of detected foreground ob-
jects using colour models and local shape matching [5].
The final output is a spatio-temporal segmentation of
the human body in a video stream. Figure 4 presents
sample segmentations of a ‘SitDown’ action from the
Hollywood2 dataset, forming a three-dimensional (3D)
human body volume with two spatial and one tempo-
ral domains. In the following each stage is described in
turn.

3.1.1. Estimating Human Body Region at Frame Level
This stage builds on the graph-based image segmen-

tation technique by Maireet al. [7]. It produces a group-
ing of parts and pixels along the following idea:

• pixels are connected based on low-level cues in or-
der to accomplish region consistency;

• detected parts are bound together when they belong
to the same object;

• the regions belonging to a part are included in
the foreground, whereas the remaining regions are
pushed to the background.

3



Figure 3: Two-stage approach to human volume segmentation.A human body detected in the first stage is propagated along video frames in the
second stage.

Figure 4: Sample segmentations of a human body volume of a ‘Sit-
Down’ action from the Hollywood2 dataset. The first row showskey
frames from a video clip, identified as ‘actioncliptest00269’. The
second row presents the segmentation made by our approach ofdetect-
ing and tracking human body regions. The montage in the thirdrow is
the human body volume created from the continuous video frames by
localising the body regions at a frame-level (in 2D space) and tracking
these regions over time. The furthest one is the oldest segmentation
while the closet one is the most recent.

The key-segment extraction consists of several stages.
A preliminary list of top-down regions for the unanno-
tated video is generated and subsequently ordered on
the basis of the appearance for each region of the hu-
man body. The development of the list relies on the
segmentation of each frame with person detection [7].
To formulate several key-segment hypotheses, the de-
tected regions across all frames were grouped together.
Further detail should be referred to [5].

3.1.2. Spatio-Temporal Segmentation of Human from a
Video Stream

Every hypothesis outlines a foreground colour prob-
ability model within the spatio-temporal context of
Markov Random Field (MRF), in which each node takes
the form of a pixel and each edge spatio-temporally
links the adjoining pixels. Graph-cuts are used to sub-
divide this graph in order to generate a pixel-wise seg-
mentation for the temporal movement of the identified
human. The segmentations are then computed accord-
ing to the hypothesis rank and non-overlap between the
chosen key-segments is imposed so that a correlation
between each hypothesis and a unique human in the
video is achieved. Figure 5 shows two samples for hu-
man body segmentation using the approach. Ample dis-
cussion of this method was made in [6].

3.1.3. Object Detection Regions
In many instances, human activities can be effectively

presented by collaboration and interaction between hu-
man and non-human objects. Eating action, for exam-
ple, can be illustrated by describing a person who sits
around a dining table and grasps the food. Consequently
action classification will operate more effectively if non-
human objects are incorporated into the zone of interest.
A number of studies have been conducted for visual ob-
ject recognition tasks1 (VOC) that can be employed as a
frontend processor for the human body region tracking

1e.g., pascallin.ecs.soton.ac.uk/challenges/VOC/ for
the PASCAL visual object classes.
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Figure 5: Two sample segmentations of action localisation,segmentation and recognition from the Hollywood2 dataset.They are identified as
‘sceneclipautoautotrain00405’ (left) and ‘sceneclipautoautotrain00319’ (right), selected based on the number of humans present. The first
row shows key frames from two video clips. The second and the third rows respectively present the results of key segments and the corresponding
segmentation using our approach of detecting and tracking human body regions.

(HBRT) approach. In this study a detector developed by
Felzenszwalbet al. [29] is adopted, creating a store of
the following twenty object classes: person, bird, cat,
cow, dog, horse, sheep, aeroplane, bicycle, boat, bus,
car, motorbike, train , bottle, chair, dining table, potted
plant, sofa and tv/monitor. A window is tightly fitted
to the identified object segment and a bounding box is
drawn on the window. In order to guarantee the con-
sistency of the object segments perceived with the hu-
man body regions in the video, certain spatial restric-
tions are imposed; if a confluence of human body and
non-human regions exists, the segments are included as
key-segments regions. See this in Figure 6.

3.2. Describing Detected Regions
Once key-segments are determined, they must be de-

scribed as the identified hypotheses. In order to encom-
pass the appearance and motion patterns of the regions
of interest throughout a video clip, for each pixel con-
tained in the segmented regions the HOG/HOF descrip-
tor [15] is employed in this study. The 162-bin de-
scriptor is composed of a histogram of oriented gradi-
ents (HOG) and a histogram of oriented flow (HOF).
To outline the movement and appearance of selected
features, the histogram descriptors of space-time vol-
umes are positioned in the proximity of the identified
points. Each volume is subsequently separated into a
nx × ny × nt grid of cells2; for each cuboid a coarse
HOG with 4-bin histogram and a HOF with 5-bin his-
togram are generated. Normalised histograms are in-
tegrated into HOG/HOF descriptor vectors, exhibiting

2The parameter values employed in this study arenx = ny = 3 and
nt = 2, following the setup described in [15].

Figure 6: A sample clip from the Hollywood2 dataset: GetOutCar
action from a video clip ‘actioncliptest00108’. A region was de-
tected using Felzenszwalbet al. [29] (red bounding box), while a hu-
man body was detected by using the approach presented in thispaper
(green contour). The car region was included in the action represen-
tation as there was an overlap between a car and a human.

certain similarities with the SIFT (scale invariant feature
transform) descriptor by Lowe [30]. As an additional
note, in the event that key-segment hypotheses are not
produced for some video clip due to a failure of human
detection, the HOG/HOF descriptor is augmented with
space-time interest points.

4. Learning Feature Sets

A training set consists ofM videos, and we de-
fine X = {x1, x2, . . . , xM} wherexi represents a set of
concatenatedN-dimensional spatio-temporal descrip-
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tors for each video. A sufficient number of features are
randomly selected and grouped together using k-means
in order to attain a preliminary codebookB of the fixed
vocabulary size for spatio-temporal features. LLC is
subsequently applied to enhance the codebook, which
consists of the following three steps: representing video
signals with spatio-temporal local descriptorsX, gener-
ating the locality-constrained sparse codeS , and finally
optimising the codebookB. The codebook basis and
LLC coefficients should efficiently approximate spatio-
temporal descriptors. The following objective function
[31] is employed:

argmin
S ,B

M
∑

i=1

{‖xi − Bsi‖
2+ λ‖di ⊙ si‖

2} st. 1⊤si = 1, ∀i

(1)
where⊙ denotes element-wise multiplication andλ is a
weight parameter to control the locality constraint. The
constraint, 1⊤si = 1, meets the requirement of shift-
invariance for the LLC coding scheme. The locality
constrained parameterdi represents every basis vector
in codebook with different freedom on the basis of its
similarity to the spatio-temporal descriptorxi:

di = exp

(

dist(xi, B)
σ

)

(2)

with dist(xi, B) = {dist(xi, b1), . . . , dist(xi, bM)}T

wheredist(xi, b j) represents the Euclidean distance be-
tween the spatio-temporal descriptor and the basis code-
bookB, andσ is a weight parameter to control the local-
ity constraint. This is a convex problem inB only or in
S but not in both together, and can be iteratively solved
by the coordinate descent method:

1. Initialise the dictionaryB with the codebook gen-
erated by clustering:

B← Binit (3)

2. For each spatio-temporal descriptorxi, compute
the new LLC coefficientsi using the currentB:

si ← argmax
s
{‖xi−Bs‖2+λ‖d⊙ s‖2} st. 1⊤s = 1

(4)
3. Update the current dictionary, only if the computed

LLC coefficient value is greater than a predefined
threshold:

△Bi ← −2
∼
si(xi − Bi

∼
si) (5)

µ←

√

1
i

(6)

Bi ← Bi −
µ△Bi

|
∼
si|2

(7)

4. Project the computed dictionary onto the output
matrix:

B(:, id)← pro j(Bi) (8)

The features are quantised on the basis of the vocabu-
lary, with the purpose of creating a feature histogram
which represents the vector for feature categorisation.
A linear support vector machine (SVM) classifier from
LIBLINEAR package is used to learn a model from the
feature vectors for each action [32], where the regulari-
sation parameter was setC = 10.

5. Experiments

This section assesses the effectiveness of the ap-
proaches, spatio-temporal HBRT and its extension
HBRT/VOC, using three action recognition datasets.
For all datasets we apply HOG/HOF descriptors with
162 dimensions. 100,000 features are randomly se-
lected for initialisation of the codebook with a vocab-
ulary size of 4000 words (the key parameter for dictio-
nary training), and the number of neighbours isK = 5.
A codebook size of 4000 is adopted in order to make
a fair comparison with the standard action recognition
studies, although a much larger codebook may be used
to improve the modelling capacity. In Equation (1)
λ = 500 is selected, andσ = 100 is set for Equation
(2). These parameter values are adopted from the origi-
nal work conducted by Wanget al. [31]. To evaluate the
outcome of the action classification task, accuracy per
class is calculated using the following formula:

Accuracy=
T P + T N

T P + FP + T N + FN
× 100% (9)

whereT P, T N, FP andFN are the numbers of true pos-
itives, true negatives, false positive and false negative,
respectively.

5.1. Datasets and the experimental procedure

The body region tracking approaches (HBRT and
HBRT/VOC) were comprehensively evaluated using
three action datasets selected from the KTH, the UCF
sports and the Hollywood2 video data. The datasets
encompassed a variety of locations and scene settings
shown in video clips, including controlled experimen-
tal settings, popular films and televised sporting events.
The assessment incorporated a range of variations re-
sulting from different resolutions, perspectives, light-
ing shifts, occlusion, background disorder, and irregular
motion. Overall, more than 4000 video segments were
assessed with 28 action classes. Some sample frames
are presented in Figure 7.
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Figure 7: Sample frames from the three action recognition datasets, the KTH (top row), the UCF Sports Action (middle) andthe Hollywood2:
Human Actions and Scenes (bottom), used for the experiments.

KTH Dataset3 (Schuldtet al. 2004 [24])
2391 video segments made this dataset with six types
of human action: ‘walking’, ‘jogging’, ‘running’, ‘box-
ing’, ‘waving’, and ‘clapping’. Each action was carried
out for a number of times by 25 people and filmed in
a variety of settings: outside, outside with scale varia-
tion, outside in changed clothing and inside. In most of
the segments the background was regular and still. Seg-
ments were resized to a spatial resolution of 160× 120
pixels and the mean duration of video clips was four
seconds. We adhered to the experimental format of the
existing studies by splitting the samples into a test set
(nine subjects: 2, 3, 5, 6, 7, 8, 9, 10, and 22) and a train-
ing set (the other 16 subjects). Emulating the original
paper, we trained and assessed a multi-class classifier
[24], and calculated the accuracy for each class and fi-
nally reported the average accuracy over all classes.

UCF Sports Action4 (Rodriguezet al. 2008 [33])
This dataset contained ten human actions: ‘swinging’
(both on a pommel horse and on the ground), ‘div-
ing’, ‘kicking a ball from the front and the side’, ‘lift-
ing weights’, ‘horse-riding’, ‘running’, ‘skateboarding’,
‘swinging from the high bar’, ‘gold swinging from the

3www.nada.kth.se/cvap/actions/
4server.cs.ucf.edu/~vision/data.html

back, front and side’, and ‘walking’. Nearly 200 video
segments were used with a resolution of 720× 480, in-
dicating significant intra-class variability. As with the
KTH set, we employed a multi-class classifier and re-
ported the average accuracy in all classes.

Hollywood2: Human Actions and Scenes Dataset5

(Marszaleket al. 2009 [1])
This data has been collected from 69 different Holly-
wood movies. It consisted of the following 12 action
classes to be identified from real-life film scenes: ‘an-
swering a phone’, ‘driving a car’, ‘eating’, ‘fighting’,
‘getting out the car’, ‘hand shaking’, ‘hugging’, ‘kiss-
ing’, ‘running’, ‘sitting down’, ‘sitting up’ and ‘stand-
ing up’. In total there were 1707 video sequences di-
vided into a training set (823 sequences) and a test set
(884 sequences), with the average length of ten seconds.
Training and test sequences were mutually exclusive.
The experiment was performed on this dataset with a
spatial resolution of 360× 288 pixels and a sample rate
of 4.6 fps (frames per second) as suggested by [34]. A
one-against-all SVM categorisation was applied where
a binary classifier recorded every action [32].
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bx cl hw jg rn wk
boxing 1 0 0 0 0 0
clapping 0 1 0 0 0 0
handwaving 0 0.02 0.98 0 0 0
jogging 0 0 0 0.97 0.03 0
running 0 0 0 0.02 0.97 0.01
walking 0 0 0 0 0.01 0.99

Figure 8: (KTH Dataset) Confusion matrix between six action
classes using the HBRT/VOC combination approach.

method accuracy (%)
point feature based:

Laptevet al. (2008) [15] 91.8
Le et al. (2011) [35] 93.9
Gilbertet al. (2009) [11] 94.5
Sadanandet al. (2012) [36] 98.2

local region tracking:
HBRT 97.2
HBRT/VOC 98.5

Table 1:(KTH Dataset) Comparison of the local region tracking ap-
proaches (HBRT and the HBRT/VOC) with the state-of-the-art, point
feature based methods.

5.2. Experimental Results

Table 1 presents the comparison of the local region
tracking approaches (HBRT and the HBRT/VOC) with
the state-of-the-art, point feature based techniques us-
ing the KTH dataset [24]. To date, it is probably the
most frequently-used dataset in assessment of action
recognition. The region tracking approaches performed
well; the HBRT method achieved 97.2%, and its inte-
gration with VOC reached 98.5%, outperforming the
reported outcome of Sadanandet al. [36] by a small
margin. Figure 8 illustrates the confusion matrix as-
sociated with the HBRT/VOC approach. It still made
occasional, although rare, confusion between ‘jogging’,
‘running’ and ‘walking’ actions. The effectiveness
of the HBRT/VOC resulted from the shrewd targeting
of interest points represented by human body regions,
which allowed the action to be pre-determined and erad-
icated superfluous and noisy background. Although
KTH dataset only depict people, the VOC efficiently en-
hances the accuracy of results. This can be explained
because the HBRT is failed to detect a person who is far
from a camera.

Table 2 makes the same comparison, but this time
using the UCF Sports Action Dataset [33]. For the
region tracking approaches, the overall accuracy was

5lear.inrialpes.fr/data

method accuracy (%)
point feature based:

Le et al. (2011) [35] 86.5
Kovashka and Grauman (2010) [37] 87.3
Wu et al. (2011) [38] 91.3
Sadanandet al. (2012) [36] 95.0

local region tracking:
HBRT 90.8
HBRT/VOC 96.2

Table 2: (UCF Sports Action Dataset) Comparison of the local re-
gion tracking approaches (HBRT and the HBRT/VOC) with the state-
of-the-art, point feature based methods.

90.8% with the HBRT, which was further improved to
96.2% with the HBRT/VOC; the latter clearly outper-
formed the recent state-of-the-art (95.0%) by Sadanand
et al. [36]. For the HBRT/VOC, the confusion ma-
trix between ten action classes is presented in Figure
9. The figure shows some confusion pairs such as ‘lift-
ing’/‘skating’ and ‘running’/‘walking’ as their action
representation was quite similar. The outcome indicates
that the local region tracking is an effective new ap-
proach to capturing human activity on video, and pos-
sesses the great potential to achieve consistent perfor-
mance in realistic conditions.

The KTH and the UCF Sports Action were both
relatively small datasets. Hollywood2: Human Ac-
tions and Scenes [1], on the other hand, was substan-
tially more difficult dataset to process because of sev-
eral reasons,e.g., more classes, the larger number of
videos, actions with more realistic background involv-
ing multiple objects, camera motions. Table 3 com-
pares various approaches using the challenging Hol-
lywood2 data. Laptevet al. [15] presented a tech-
nique where space-time interest points were identified
by the Harris-Laplace detector and described with HOF.
Another technique, based on the motion region, was
proposed by Bilenet al. [28]. The table shows the
significant improvement made by the HBRT and the
HBRT/VOC, i.e., the local region-based approaches. In
particular the latter achieved improvement of more than
4% absolute over Laptevet al. [15]. Recently, Zhang
et al. [39] introduced a novel simplex-based orientation
decomposition descriptor to quantise and represent 3D
spatio-temporal features. This approach decomposes
every 3D visual cue in a features support region into
three different angles and transforms the output decom-
posed angles into the simplex topological vector space.
The proposed technique able to address the singularity
and limited discrimination power issues. Then, quad-
rant decomposition is performed to improve our SOD
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dv gf kk lf rd rn sk sb hs wk
diving 1 0 0 0 0 0 0 0 0 0
golfing 0 1 0 0 0 0 0 0 0 0
kicking 0 0 1 0 0 0 0 0 0 0
lifting 0 0 0 0.92 0 0 0.08 0 0 0
riding 0 0 0 0 1 0 0 0 0 0
running 0 0 0 0 0 0.95 0 0 0 0.05
skating 0 0 0 0.06 0 0 0.94 0 0 0
swing-bench 0 0 0 0 0 0 0 1 0 0
h-swinging 0 0 0 0 0 0 0 0.10 0.90 0
walking 0.02 0 0 0 0 0.07 0 0 0 0.91

Figure 9:(UCF Sports Action Dataset) Confusion matrix between ten action classes using the HBRT/VOC combination approach.

method accuracy (%)
point feature based:

Laptevet al. (2008) [15] 44.4
Bilen et al. (2011) [28] 41.3
Zhanget al. (2014) [39] 50.9

local region tracking:
HBRT 44.4
HBRT/VOC 48.6

Table 3:(Hollywood2: Human Actions and Scenes Dataset) Com-
parison of the local region tracking approaches (HBRT and the
HBRT/VOC) with the state-of-the-art, point feature based methods.

descriptors discrimination capability, and a final feature
vector is formed by combining decomposed histograms
from all quadrants. The table 3 shows that Zhanget al.
[39] approach improve the result significantly over the
HBRT/VOC by 2%.

Additionally Table 4 presents the comparative anal-
ysis of the performance for individual classes by the
region and point feature-based approaches. The com-
plexity of the Hollywood2 data resulted in the low per-
formance with several action classes, in particular with
‘AnswerPhone’, ‘GetOutCar’ and ‘SitUp’. Some videos
contained a variety of camera motions, peripheral ac-
tions as well as a multitude of viewing angles and ac-
tion sequences. Even a human could fail the classifica-
tion task when a subject was far from a camera position.
The HBRT has proven to be highly effective particularly
when processing subtle actions such as ‘SitUp’ and ‘Sit-
Down’. It is interesting to note that, according to Table
4, the HBRT result was improved by the HBRT/VOC,
the latter extended the region of interest to accommo-
date non-human objects such as, car, dinning table and
chair. The significant improvement was observed with
classes such as, ‘Eat’, ‘SitDown’ and ‘SitUp’, indicat-
ing that the HBRT and VOC were complemented each

Figure 10: Samples for action localisation and segmentation. The
1st and 2nd rows respectively present the results of key segments and
the corresponding segmentation using the HBRT/VOC on the KTH
Dataset (‘boxing’, ‘hand waving’ and ‘walking’ actions). The 3rd
and 4th rows show the results on the UCF Sports Actions Dataset
(‘diving’, ‘walking’ and ‘lifting’ actions).

other, especially when a human interacted with other
objects in the video scene (e.g., a human and a chair, a
human and a dining table).

5.3. Discussion

The local region tracking schemes performed better
than the point feature-based techniques for relatively
small and well studied datasets such as the KTH and
the UCF Sports Actions. Figure 10 presents several ex-
amples for action localisation and segmentation with
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action class Laptev Bilen Zhang HBRT HBRT/VOC
AnswerPhone 19.1 21.9 18.1 15.2 18.4
DriveCar 80.2 84.5 88.1 70.6 86.6
Eat 60.2 49.6 61.6 61.2 72.4
FightPerson 72.4 59.2 76.2 70.9 71.1
GetOutCar 25.6 24.0 36.3 18.2 28.7
HandShake 18.9 12.3 55.9 29.3 31.3
HugPerson 32.1 21.4 48.3 33.1 33.6
Kiss 47.8 49.3 58.4 50.3 52.3
Run 68.8 61.8 72.1 61.0 62.2
SitDown 49.2 40.9 51.9 50.9 53.3
SitUp 9.9 20.8 22.4 21.3 23.5
StandUp 49.0 50.4 21.6 50.2 50.3

Table 4:(Hollywood2: Human Actions and Scenes Dataset) Recognition accuracy for individual action classes. Unitsare in %. The best score
for each class is highlighted by bold fonts. The numbers by Laptevet al. and by Bilenet al. were extracted from [28]. Zhanget al. is from [39].

these two datasets. Interestingly the accuracy by the
HBRT/VOC improved over the HBRT even for datasets
such as the KTH that did not contain any non-human ob-
jects. It was probably due to the person detector module
of VOC, which contributed in successful human detec-
tion.

The local region tracking schemes showed its clear
advantage when processing the complex and large
dataset of Hollywood2, although the contribution of re-
gion tracking varied among action classes. It can be
observed in Table 4 that, for ‘FightPerson’ and ‘Run’
actions, the space-time interest point features [15] per-
formed better than the region based approaches. It was
because the point features were able to provide more
compact and abstract representation of video signals
than the HBRT or the HBRT/VOC that relied on mo-
tion segmentation. The interest point features were use-
ful when it was difficult to spatially localise the action
using the region-based approaches.

The region tracking schemes clearly showed the
state-of-the-art performance with some classes in the
Hollywood2 dataset, in particular when the action could
be fully identified using mainly human body regions in-
teracting with some objects. The ‘Eat’ class from the
Hollywood2 Dataset presented one such example, in
which the regions of interest could be presented by mul-
tiple objects (e.g., a human and a dining table).

6. Conclusion

The present study has put forward the human body
region-based approach to action localisation, segmen-
tation and recognition. The approach was further ex-
tended to accommodate non-human objects, resulting in
the HBRT/VOC scheme. We showed that description of
a human body volume with interacting objects regions

using a spatio-temporal descriptor (HOG/HOF) gener-
ated stable representation for the appearance and motion
patterns underpinning comprehension of the actions car-
ried out. Three widely-used datasets were processed for
evaluation and the region-based approach was able to
outperform (or to perform at least as good as) the recent
state-of-the-art, point feature-based techniques with all
three datasets. It is hoped that this work stimulates fur-
ther research on local region descriptors not only for ac-
tion classification but also for many other video process-
ing tasks.
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