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Liquid Crystal Blue Phases: stability, field effects and alignment. 
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The School of Chemistry, University of York, Heslingden, York YO10 5DD, UK 
 

Abstract. 

The blue phases are fascinating structures in liquid crystals, fluids with true 

crystalline order. The blue phases were discovered in the 1970s and were the 

subject of extensive research in the 1980s, when a deep understanding of many of 

their properties was established. The discovery that the blue phases could be 

stabilized to exist over wide temperature ranges meant that they became more than 

scientific curiosities and led to a recent resurgence in research into them as they 

offer some promise in applications. This paper considers some important aspects of 

the blue phases that are recurrent topics in their research. It describes: factors 

affecting blue phase stability, demonstrating on the role of the bend elastic constant; 

field effects, including the Kerr effect, electrostriction and relaxation phenomena; and 

alignment, in particular production and control of blue phase monodomains. The 

dependence of these phenomena on the physical properties of the liquid crystalline 

system, including the twist and bend elastic constants and the dielectric anisotropy is 

emphasized wherever possible. The paper links work carried out in the 1980s with 

contemporary research, using a few key examples to show how there is still much to 

understand in this beautiful topic. 

 

 

1. Introduction and historical perspective. 

 

The first observation of a liquid crystal blue phase is sometimes attributed to Reinizer 

who, according to correspondence with Lehmann, noticed a blue flash at the 

transition between the two liquid phases in his pioneering experiment in 1888. In fact, 

as with many other liquid crystal phases, George Gray played a key part in the 
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discovery of the blue phases as clearly distinct thermodynamic phases when he 

published a systematic study of cholesteryl-based compounds in the 1950s1. This, 

together with my enduring interest in the blue phases, has led me (HFG) to choose 

this topic for this paper in memory of George.  

 

George was responsible both for the discovery of blue phases in chiral materials not 

based on cholesteryl-derivatives, as well as for naming these phases. Dave Coates, 

a well-known liquid crystal chemist, worked with George in Hull in the 1970s, 

synthesizing a series of chiral nematic materials that included the 2-methyl-butyl 

chiral group. On asking Dave what the amorphous blue/gray texture was that he saw 

in the polarizing microscope at the transition between the chiral nematic and 

isotropic phase, Dave apparently told George ‘I don’t know, but it’s definitely blue!’. 

The blue phases in these materials were reported in a key paper published in 19732 

and the terminology ‘blue phase’ was born. 

 

My own involvement with the blue phases came very early in my career and began 

exactly 10 years after George’s seminal paper on them. I was a fresh-faced 

postgraduate student in 1983 working on a project studying the optical properties of 

those same chiral nematic liquid crystals, invented at Hull. My supervisor, Harry 

Coles, suggested that it might be interesting to investigate electro-optic effects in the 

blue phases of the materials and I presented my first work on switching in the blue 

phases at the International Liquid Crystal Conference in York in 1984. George Gray 

was the Chair of the Conference, Harry was the Secretary and David Dunmur was 

the Treasurer. I was privileged to get to know George well at a very early stage of my 

research career; all of the postgraduate students got roped into helping at the 

conference since in those days academics did all the work rather than conference 

organizing bodies. It was a fantastic and fun experience, culminating in a boat race 

on the lake at York in which most of us (including George) ended up extremely wet! 

 

Two years later, George acted as my external PhD examiner and I was both 

honoured and terrified - he was without doubt the best-known and most highly 

respected chemist in liquid crystals. I should emphasise that he was never anything 

other than kind and encouraging to young researchers and the fact that I thought his 

first viva question ‘How are you Helen?’ might be a trick question squarely places the 
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responsibility for the terror on my shoulders! My work on blue phases had formed a 

chapter of my thesis3 and included switching studies in blue phases I and II (BPI and 

BPII) as well as the fog phase4, 5, 6. It was the last of these topics that caused my 

next panic. George asked me what the difference was between the ‘fog phase’ and 

the ‘Gray phase’. I was terrified – I was sure that they were the same thing but that 

the ‘Gray phase’ was terminology commonly used at the time to acknowledge 

George who, after all, was responsible for the ‘blue phase’ terminology. I felt my 

grasp on the PhD quickly slipping away. I had no option but to admit to what I 

thought was a dreadful mistake on my part. George responded gently in his lovely 

Scottish lilt ‘Ah, thanks Helen, that clears up something I’ve been wondering about 

for a while’.  I was awarded my PhD. 

 

It is a privilege to be able to dedicate this paper to George who remained a 

wonderful friend and supporter throughout my career. I have retained my fascination 

with the blue phases since those early days and this paper considers features that 

have remained important for more than 30 years now; factors affecting stability, 

switching phenomena and alignment. This is not a review paper, but describes 

selected research in each of these areas, hopefully offering some new insights as 

well as a link between the past and present. My co-authors are past students of mine, 

so are also part of George’s extended research family. 

 

 

2. Factors affecting blue phase stability; the role of elastic constants. 

 

For the first couple of decades following their discovery, the blue phases were a 

scientific curiosity because they were stable over only very narrow temperature 

regimes (often as little as 0.1K and rarely more than 1K) – they were consequently 

difficult to study and the prospect of applications was remote. The formation of cubic 

phases from chiral molecules depends on frustration7, and it was clear from the 

earliest theoretical and experimental studies that chirality was a key factor in 

stabilizing the blue phases. Indeed, reasonably good agreement had been 

established between theoretical and experimental phase diagrams, as described in 

the review by Crooker in 19898. The blue phases are formed from double-twist 

structures, accommodated by cubic lattices of defects and while the organization in 



H. F. Gleeson, R.J. Miller, L. Tian, V. Görtz & J.W. Goodby: Liquid crystal blue phases: stability, field effects and alignment,  
Liquid Crystals (2015), DOI: 10.1080/02678292.2014.1002821 

 4 

three dimensions will clearly involve chirality, the energy cost of forming the defects 

will certainly include the other Frank elastic constants. Indeed, the expression for the 

elastic energy of blue phases given by Meiboom et al9 includes the splay, twist, bend 

and saddle-splay elastic constants (!!!! !!!! !!! and !!∀ respectively) as well as the 

chirality, !!. While the role of chirality was clear, it was increasingly obvious that 

other parameters must be important; blue phases extending over ~4K were 

observed in systems that had similar chirality to materials with more typical ranges of 

stability of ~1K5.  

 

Some work aiming to understand how the physical properties affected the blue 

phase stability was undertaken in the 1990s10. Although it is impossible to measure 

the elastic constants in the blue phases, measurements were made 2K below the N* 

to blue phase transition in a range of related materials, allowing the influence of 

different parameters to be compared. It is worth noting that measurements simply 

made at room temperature cannot be used to infer anything about the blue phases 

as all of the relevant physical parameters depend on the order parameter, and this 

itself takes values depending on the temperature difference with respect to the 

phase transition. While the dependence of blue phase stability on the pitch and twist 

elastic constant in the underlying N* phase was of little surprise11, the influence of 

other parameters was demonstrated for the first time10. Miller and Gleeson used 

measurements of two different electric field thresholds in the N* phase to determine 

both the twist and bend elastic constants, each 2K below the N* to blue phase 

transition, figure 1. The relevant threshold equations are12, 13: 

 

!!∀ !
!
!
!!! ! !! !!!!!!!

!!!!!!!!!
!!!!!!!∀ !

!
!

!!

!!!

!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

Here, !!!∀ and !!∀ are the field thresholds for the occurrence of periodic distortions 

in the N* state and from the N* to unwound nematic state respectively; ! is the 

sample thickness. The twist and bend elastic constants are !!! and !!! respectively, 

!!  is the helicoidal pitch, while !!!  !!  and !!  are the parallel and perpendicular 

dielectric constants and the dielectric anisotropy of the system. Details of the 

measurement of the physical parameters are described in Refs 10 and 11. The 

textural appearance of typical field thresholds is shown in figure 1. Note that other 
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equations were used to evaluate !!∀ in the past11 and while the trends described 

here remain the same, the absolute values of the twist elastic constant are slightly 

different.  

 

   

(a) (b) (c) 

 

Figure 1. The visual appearance of (a) the undistorted N* state in a mixture 
comprising 20.1±0.2 mole percentage of CE2 in 4CB, (b) just above the threshold for 
periodic distortion and (c) at the threshold to the unwound nematic state10.  
 

Equations (1) are readily rearranged to allow the twist and bend elastic constants to 

be deduced, making use of the relationship ! ! ! !: 

 

!!! !
!!!!

!

!!!!∀
!

!!! ! !! !!∀

!

!!!!!!!! !
!!!!!!

!
!!∀
!

!!!!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

Miller evaluated the elastic constants for materials based on host nematics with 20 

mole% of the chiral material CE2, 2K below the transition to the blue phase. The 

host nematics selected were the nCB (cyanobiphenyl) materials with n=4, 5, 6 and 7, 

and PCHn (phenylcyclohexane) materials with n=4 and 5. Figure 2 shows the 

relationship between the twist and bend elastic constants 2K below the transition and 

the total blue phase range in each of these materials. It can be seen that the blue 

phase range increases with !!!, but decreases with increasing !!!. 

 

This dependence of the blue phase stability on the twist and bend elastic constants, 
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!!!  and !!! , respectively, may be understood simplistically in the context of the 

double twist structure in the blue phases. Figure 2 shows that a larger value of !!! is 

associated with a wider blue phase range. The free energy density around the 

central axis of a double twist tube9 is reduced by increasing !!!. Thus, increases in 

!!! make the double twist structure, and hence the blue phases, more stable with 

respect to the N* phase; this is the result reported in Ref 11.  

 

 

Figure 2. The twist and bend elastic constants, !!! (closed, blue symbols) and !!! 
(open, red symbols) determined for a series of material based on cyanobiphenyls 
and phenylcyclohexane nematic hosts doped with the chiral liquid crystal CE210,11, 
showing the correlations with blue phase range. 
 

Figure 2 also shows a clear correlation between the blue phase stability and !!!, 

such that a smaller value of !!! gives a wider blue phase. Again, some insight can 

be gleaned by considering the double twist tube structure in more detail. The free 

energy density increases rapidly away from the central axis due to increasing bend 

distortions in the director field. This effect is noticeable even at distances of the order 

of a one eighth turn of the helix, which is the radius of the double twist tubes 

considered in the defect theory9. The total free energy of the double twist structure, 

and hence the blue phases, is consequently reduced relative to the N* phase by a 

reduction in !!! so that a smaller bend elastic constant would be associated with a 

wider blue phase range. Again, this is reflected in figure 2.  

 

Of course the blue phase structure also includes disclinations and any consideration 
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of the free energy must take into account the positive contribution these make to the 

total free energy of the blue phase structures. This is proportional to (!!!+!!∀), 

where !!∀ is the saddle-splay elastic constant. Irrespective of the value of !!∀, the 

energy cost of forming the disclinations will tend to counteract the stabilizing effect of 

increases in !!! on the double twist structure. This means that the correlations seen 

in figure 2 between !!! and !!! and the blue phase stability would not be expected to 

be simple and more sophisticated theoretical studies have offered further insights 

into the role of the elastic constants. Alexander and Yeomans 14  published a 

theoretical analysis of the free energy of the blue phases using a modified Landau-

de Gennes approach which can accommodate a temperature-dependent N* pitch 

and demonstrated a strong dependence of the region of stability on the elastic 

constants, though it should be noted that these were not the Frank elastic constants.  

 

Theoretical approaches that describe the dependence of blue phase stability on the 

various Frank elastic constants has been revisited recently by Fukuda15, who also 

describes how a smaller bend elastic constant is expected to enhance blue phase 

stability. Indeed, there are a growing number of experimental reports that describe 

the importance of a small bend elastic constant in stabilizing blue phases, making 

use of new materials with complex molecular geometry. For example, the nematic 

phases of bent-core liquid crystals have been considered as hosts for blue phase 

mixtures and Hur et al 16 describe a correlation between the ratio of the splay and 

bend elastic constants, !!! !!!  of the host materials measured 20K below the 

nematic to isotropic transition and the blue phase stability, with lower !!! enhancing 

the range.  Tanaka and Yoshizawa17 report that blue phases mixtures formed from 

U-shaped oligomers with a small bend elastic constant also have an enhanced 

range; they additionally note that a large molecular biaxiality should contribute to a 

broad blue phase range. It has been demonstrated that bent-shaped molecules can 

exhibit unusually small bend elastic constants18 , 19 , so bent-core materials are 

interesting candidates for inclusion in blue phase mixtures. Indeed, such 

enhancement has been reported in blue phases formed with bent-core material 

included in the mixtures20, 21, 22, 23. However, it is more complicated to consider 

whether such enhancement will always be found in bent-core based systems. Tian24 

examined the blue phase characteristics in several mixtures formed from bent core 
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oxaxiazole-based nematic systems doped with chiral molecules, summarized in 

Table 1. These mixtures differ from many others that have been studied in that they 

all contain at least 50% of the bent-core nematic component. In fact, rather narrow 

blue phase ranges are found, contrasting with reports of enhanced ranges in other 

bent-core systems.  Further, the mixtures all only exhibited BPI and the fog phase 

(Figure 3), which is expected of systems that exhibit blue phases at the long pitch 

end of the blue phase stability regime25. The elastic constants of the bent-core 

nematic hosts19 are also shown in Table 1. In all cases, although the bend elastic 

constant is rather small, the twist elastic constant is even smaller. The combination 

of a relatively long pitch, small twist coefficient and a somewhat larger bend elastic 

constant would seem to explain the modest enhancement seen in the blue phase 

range in these mixtures. 

 

Material Composition Total BP range 
(K) 

Elastic constants 10K 
below the N-I transition. 
k22 (pN) k33 (pN) 

M93R C5-Ph-ODBP-Ph-OC12 

+8% R1011 

0.7 0.6 2.5 

M90R OC12-Ph-ODBP-Ph-OC12 

+8% R1011 

1.0 1.0 3.7 

M93CB C5-Ph-ODBP-Ph-OC12 

+33% CB15 

1.2 0.6 2.5 

M93CE C5-Ph-ODBP-Ph-OC12 

+50% CE1 

1.3 0.6 2.5 

 

Table 1. The composition and some related physical characteristics of the mixtures 
forming blue phases, containing bent-core nematic liquid crystals. The elastic 
constants are from [19] 
 

It is important to mention the significant body of work that has been carried out 

achieving and understanding the stabilization of the blue phases that has not relied 

on a consideration of the elastic behaviour of the system. Well-known approaches 

such as polymer stabilization and inclusion of colloidal particles that accumulate in 

the defects offer a successful approach to significant broadening of the blue phases 

(to tens of K) relying on stabilizing the defects in the structure. Much of this work has 
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been inspired by the realization that the Kerr effect in blue phases could potentially 

provide an effective electro-optic display mode, discussed further below.  

 

 

Figure 3. Photomicrograph showing BPI and the fog phase in the mixture M93R. 
Spectroscopy measurements reveal that the blue (465nm) and red (647nm) regions 
are the [2 0 0] and [1 1 0] surfaces of BPI respectively, judged by the relationship 

between the reflection wavelengths (647 465! !). The dark region is the fog phase 
(BPIII).  The magnification is approximately 100x and the sample is viewed in 
reflection between crossed polarizers. 
 

3. Switching phenomena in blue phases. 

The electric field effects that can be observed in blue phase systems are extremely 

rich25, 26. The blue phase lattice can undergo electrostriction, causing a shift in the 

Bragg reflection wavelength, the Kerr effect can be observed and made use of in 

display devices, and there is considerable scope to induce transitions between 

phases with different lattice structures and to chiral nematic focal conic textures or 

the unwound nematic state. Significant hysteresis is observed in these field-induced 

transformations and in many of the field effects. Some of the earliest work on 

electric-field effects in blue phases dates back to around 1980, when the field-

induced transitions from the blue phases to N* and unwound N states and the 

colour-shift that is associated with electrostriction were observed27, 28, 29. All of these 

phenomena were found to be strongly frequency and voltage dependent and to 

exhibit hysteresis, and recent advances in numerical studies have allowed a deeper 
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understanding of these transitions30. For example, understanding the field-induced 

transitions in BPIII (the fog phase), first described at the end of the 1980s6, 31, 32, and 

including a field-induced phase locally similar to BPII and a transition to an unwound 

N state, has benefited from recent numerical studies33. 

 

The colour-shift observed as a result of electrostriction in BPI and BPII depends 

approximately on the square of the applied field and the response time is relatively 

fast, of the order of tens of milliseconds4. However, a colour change that is the result 

of switching between lattice faces can also be induced, for example a frequency-

induced transition in BPII between a green-reflecting colour (~510nm) and an orange 

colour (~605nm) has been reported4. Such a transition is consistent with a 

transformation between the [1, 1, 1] and [1, 1, 0] orientations of BPII which would 

give a ratio of ! ! ! !!!! between the reflection wavelengths. It is interesting that 

the transformation was caused by a frequency switch with the [1, 1, 1] (orange) 

orientation stable at high frequencies while the [1 1 0] orientation is the ground state 

for that system, demonstrating that specific unit cell orientations can be induced by 

application of a suitable electric field. An important observation is that control of the 

blue phase crystal lattice orientation by electric field treatment offers an invaluable 

way to produce uniform orientation of the crystallites, which is usually random if the 

texture is produced thermally, over a large area. 

 

Although early papers suggested that the field-induced colour changes in and 

between blue phases might be useful for devices, it is the Kerr effect that has so far 

proven to be the most likely electro-optic phenomenon in blue phases to be made 

use of in applications34. The Kerr effect results in an induced birefringence !! with a 

magnitude that depends on the square of the applied field in the ‘low field’ regime, 

!! ! !��!
!, where K is the Kerr constant of the material and λ is the wavelength. 

Large magnitude Kerr effects have been reported in several blue phase systems35, 36, 

including some that have not had the benefit of polymer stabilization37. Of course 

polymer stabilization has the important advantage that the blue phase is extended to 

a useful range. The material parameters that influence the magnitude of the Kerr 

effect in the blue phases are not fully understood, though Equation (3) appears to 

offer some insight: 
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! !
��

!!!
! !!!!

!!!!
!

�� !! !
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

The parameters are those in the underlying N* phase, ! being an elastic constant in 

the one elastic constant approximation and !!  the birefringence37, 38 . Certainly, 

materials with larger values of !! and !!  with small elastic constants appear to 

exhibit a larger Kerr effect, which is maximized in BPI37.  

 

As already mentioned, both the Kerr effect and electrostriction phenomena show a 

quadratic dependence on the applied field. This means that the application of an 

electric field to a blue phase system is likely to cause both types of response and this 

can result in complicated dynamics. Two-stage switching has been reported in 

studies of the dynamic response of electrostriction, with both fast (~100µs) and 

slower (~1ms) components contributing5. A similar two-stage response has been 

described recently in a polymer stabilized blue phase system, with the faster 

response associated with the Kerr effect39 and the slower due to electrostriction. 

Interestingly, polymer stabilization constrains electrostriction phenomena more than 

the Kerr effect, modifying the dynamics of the system. The relative contribution of 

each effect can be determined37, 40, indicating that a judicious choice of material 

could allow the Kerr response and electrostriction to be deconvoluted and studied 

separately. It will be interesting to take advantage of such material design to allow a 

deeper understanding of the dynamics of electric-field effects in blue phase mixtures 

to develop in the future.  

 

 

4. Alignment of the blue phase lattices. 

The crystal lattices of blue phase structures lead to remarkably beautiful liquid 

crystalline textures, some of which allow direct visualization of the cubic symmetry41. 

Perhaps the most obvious phenomenon that affects the blue phase texture is the 

pinning effect of the device itself on the structure, which has been studied by several 

groups42, 43. The nature of the transitions between blue phases also appears to be 

quite sensitive to the cell thicknesses, as shown in Figure 4; in particular, the BPII to 

BPIII transition has a different appearance in thinner cells.  
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Figure 4. Photographs of the blue phase transitions in two different device 
thicknesses.  Magnification is approximately 100x and the samples are viewed in 
reflection between crossed polarizers. 
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The lattice spacing in blue phases changes slightly with temperature, but strong 

anchoring constrains the value it can take to fit within the device thickness, in the 

same way as the N* pitch is constrained to half-integer values, leading to pitch jumps. 

In some cases, the effect of anchoring is negligible44, but in others, large effects are 

seen. Figure 5 shows the reflection spectra determined in the BPI of a mixture 

(denoted M1) comprising 47.5%w/w TM75A and 52.2%w/w TM74A § ; Kossel 

diagrams show that the reflections are from the [1 1 0] surface. Two distinct peaks 

are observed in the high and low temperature regions, with a combined peak 

reminiscent of a selective reflection peak in an N* phase at intermediate 

temperatures. A ‘confinement ratio’, ! ! can be defined for blue phases, where ! is 

the device thickness and !  is the blue phase lattice parameter, which aids the 

interpretation of reflection spectra in blue phases. In the case of the spectra in Figure 

5, the confinement ratio takes values of 13 and 13.5 for the peaks at 508.8nm and 

524.9nm respectively.   

 

Figure 6 shows the dependence of both the Bragg peak wavelength and the 

associated confinement ratio with temperature. It can be seen that there is a rapid 

change in both at the transition to the supercooled regime of BPI, but that the lattice 

then remains stable. There is an interesting reflection observed at 309K in this 

system, discussed further below. A significant hysteresis can be measured in the 

confinement ratio of the system on heating and cooling; heating from N* to BPI tends 

to cause this system to adopt values of ! ! of 14 at the N* to BPI transition, then 

13.5 and 13 at the highest temperature end of the BPI regime, while on cooling ! ! 

is 13 just below the transition from BPII, passes through 13.5 and then becomes 14 

just below the transition to the N* phase. Although hysteresis is well-known for pitch 

jumps in the N* phase45, this effect is less well-studied in the blue phases though 

there is no doubt that understanding pinning effects and hysteresis is of relevance to 

the use of blue phases in devices42.  

                                                        
§ The TM74 and TM75 base mixtures were provided by British Drugs Houses (BDH) 
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Figure 5. Experimentally determined spectra in the BPI of M1 with Gaussian fits to 
the blue phase peaks. (a) 309.74 K; a single peak is centred at 524.9 nm. (b) 309.78 
K; the single peak is centred at 508.8 nm. (c) 309.77 K; an excellent fit is found by 
fixing two single peak positions at 508.8 nm and 524.9 nm, and fitting both the peak 
intensities separately. 

 

The supercooled BPI undergoes a further textural change deep into the state, seen 

only for very slow cooling rates, of the order of 0.02 Kmin-1; this is the anomalous 

data point at 309.0K in Figure 6 labeled BPS. Analogous behaviour was reported by 

Demikhov et al46, 47, with the suggestion that the peak could be associated with a 

further blue phase structure.  The Bragg peak associated with the data point at 

309.0K in Figure 7 is much broader than those normally associated with blue phase 

reflections and is shown Figure 8. In fact this peak could be formed from several 

pinned structures and Figure 8 shows a fit made up of contributions of three of the 

pinned lattices with reflections at 525nm, 542nm and 562nm. Again, it would appear 

that rather than a new phase forming, there is a large change in the lattice around 

the BP to N* phase transition, which is manifest over a very restricted set of 

conditions as coexisting pinned structures. 
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Figure 6. The selective reflection wavelength (black squares, left axis) and the 
confinement ratio (red empty squares, right axis) as a function of temperature for the 
mixture M1, measured on cooling. Note that the system is supercooled below 309.6 
K. The width of the blue phase I on heating is measured to be less than 0.5 K. 
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Figure 7. The experimentally measured reflection peak at 309 K (black dots), with 
the three individual peaks with centres at wavelengths 525 nm, 542 nm and 562 nm 
that are used to fit the spectrum (green lines). The red line shows the sum of the 
three (green) Gaussian functions. 
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Alignment layers typically used for nematic liquid crystals, such as rubbed polyimide, 

can result in large, uniform areas of blue phase structure if the cooling rate is 

sufficiently slow. Figure 8 shows such a sample, grown in the mixture M1 by cooling 

at a rate of 0.01Kmin-1 from the isotropic phase, through BPII to BPI and holding for 

4 hours in BPI to anneal the structure. The BPI orientation is identified as the [1 1 0] 

surface via Kossel diagrams, and Figure 8 shows an obvious anisotropy of the 

structure when viewed with crossed (linear) polarizers; the individual blue phase 

platelets appear subtly different for different orientations with respect to the 

polarizer/analyzer. Such effects are visually clear and were reported in some of the 

earliest studies of blue phases48. Larger uniform areas are required for spectral 

studies of such phenomena to avoid averaging across many blue phase platelets; 

these can be obtained by electric field treatment, as described in Section 2. Figure 9 

shows the appearance of the BPI structure in this system before and after electric-

field alignment; uniform areas as large as 2 x 2 mm2 can be grown in a 5µm thick 

device following field treatment that unwinds the BPI structure into the N state. This 

monodomain satisfies the conditions for studying blue phase optics in detail as 

described in theoretical papers49. 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

 

(e) 

 

Figure 9. (a) and (b) Photomicrographs of BPI when viewed between crossed 
polarizers (black arrows) for rotations 30˚ apart. (c) shows the Kossel diagram of the 
sample, confirming that the BPI [1 1 0] lattice surface is responsible for the green 
reflection. (d) and (e) show photomicrographs of the same system with much larger 
platelets. 
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Figure 9. BPI before (a) and after (b) field treatment. The black dots are spacers. (c) 
the blue phase spectra for various orientation angles of the rubbing direction with 
respect to the polarizer.  
 

The reflection spectra measured from the uniform BPI structure are also shown in 

Figure 9 for different orientations of incident linearly polarized light. The shape of the 

Bragg peaks are identical for all orientations, but the amplitude clearly depends on 

the orientation with a maximum occurring when the rubbing direction on the device is 

at 45˚ to the polarizer direction; the intensity is a minimum when the polarization 

direction aligns with the rubbing direction. The modulation in the intensity is 

significant, about 25%, and no temperature dependence is observed in the 



H. F. Gleeson, R.J. Miller, L. Tian, V. Görtz & J.W. Goodby: Liquid crystal blue phases: stability, field effects and alignment,  
Liquid Crystals (2015), DOI: 10.1080/02678292.2014.1002821 

 19 

phenomenon. Observations of this anisotropy in the reflections from blue phase 

platelets was originally thought to be inconsistent with a cubic structure which should 

be optically isotropic. However, such observations of the anisotropy in the Bragg 

scattered intensity are consistent with calculations by Belyakov et al49 and Bohley50. 

In fact exactly the same experimental situation (light propagating along the [1 1 0] 

axis of BPI) was considered in detail by Belyakov et al51. In principle, detailed 

analysis of the optics of blue phases could lead to a far better understanding of them. 

For example, the analysis of many-wave scattering in Kossel diagrams from BPII 

which allows determination of the phase of the scattering structures, indicates 

discrepancies with the generally accepted structure of the phase52, demonstrating 

that there is much we still don’t understand about these fascinating states of matter. 

 

5. Concluding remarks. 

 

The blue phases, which began as a scientific curiosity and, through chance, ended 

up having some of the strangest names in liquid crystals (the blue phases are by no 

means always blue!), have been ‘rediscovered’ in the past decade because of 

important work that allowed them to extend over useful temperature ranges and 

advances in understanding and controlling their electro-optic response. They remain 

challenging systems to understand from a fundamental point of view. I think that 

George would have been fascinated by the complex but beautiful relationship 

between blue phase stability, the electro-optic response and the material parameters 

that can, in principle, be engineered by careful molecular design and synthesis.  

There is much still to understand in the control of blue phase stability, but it is clear 

that understanding physical properties such as the elastic constants which can be 

controlled by the molecular structure is vital. 
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