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Direct Yaw-Moment Control of an
In-Wheel-Motored Electric Vehicle Based

on Body Slip Angle Fuzzy Observer
Cong Geng, Lotfi Mostefai, Mouloud Denaï, and Yoichi Hori, Fellow, IEEE

Abstract—A stabilizing observer-based control algorithm for
an in-wheel-motored vehicle is proposed, which generates direct
yaw moment to compensate for the state deviations. The control
scheme is based on a fuzzy rule-based body slip angle (β) ob-
server. In the design strategy of the fuzzy observer, the vehicle
dynamics is represented by Takagi–Sugeno-like fuzzy models.
Initially, local equivalent vehicle models are built using the lin-
ear approximations of vehicle dynamics for low and high lateral
acceleration operating regimes, respectively. The optimal β ob-
server is then designed for each local model using Kalman filter
theory. Finally, local observers are combined to form the overall
control system by using fuzzy rules. These fuzzy rules represent
the qualitative relationships among the variables associated with
the nonlinear and uncertain nature of vehicle dynamics, such
as tire force saturation and the influence of road adherence. An
adaptation mechanism for the fuzzy membership functions has
been incorporated to improve the accuracy and performance of
the system. The effectiveness of this design approach has been
demonstrated in simulations and in a real-time experimental
setting.

Index Terms—Fuzzy observer, local modeling, state feedback,
vehicle lateral dynamics.

I. INTRODUCTION

T
HIS PAPER focuses on the design of control strategies to

enhance the performance and safety of electric vehicles

(EVs) in critical driving situations. It has been commonly

recognized that EVs are inherently more suitable to realize

active safety stability control over conventional internal com-

bustion engine vehicles. In EVs, the motor torque can be

measured and controlled accurately, and in-wheel motors can

be installed in each EV’s rear and front tires. Based on these

structural merits, vehicle motion can be stabilized by additional

yaw moment generated as a result of the difference in tire

driving or braking forces between the right and left sides of the
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Fig. 1. Vehicle lateral stability control structure.

vehicle, which is the so-called “Direct Yaw-moment Control”

(DYC) [1]–[5].

Fig. 1 shows the main concept of the chassis control system

utilizing DYC based on the model matching control method and

optimal control method [3], [4], [6].

This system is aimed to maintain the driver’s handling abil-

ity at the physical limit of adhesion between the tires and

the road by making the vehicle easily controllable even well

below that limit. The dynamics of the 2-DOF vehicle model

can describe the driver’s familiar characteristics under normal

driving conditions. The body slip angle (β) and yaw rate (γ)
calculated from the model are taken as the desired behavior of

the vehicle. By applying the model matching control, the yaw-

moment optimal decision can be derived from the deviations of

the state feedback compensator of β and γ from their desired

values. Since sensors for the direct measurement of β are very

expensive, the construction of an observer for its estimation is

desirable.

Generally, such state feedback control method is based on the

state equations derived from the vehicle dynamics. However,

the implementation of these techniques is still difficult since

the vehicle dynamics is highly nonlinear, particularly for β.

Previous authors’ approaches regarding β estimation issue

used model-based observers with either linear or nonlinear

equivalent vehicle dynamic models [6]–[10]. With regard to

linear observer design, the linear 2-DOF vehicle model with

fixed parameters is adopted. However, this approach cannot

always achieve accurate results in different running situations.

In the design of nonlinear observers, tire characteristics are

described by nonlinear functions and with more parameters,

which can produce relatively more accurate results in different

running situations compared with linear observers. However,

nonlinear observers have the disadvantages of not having a

0278-0046/$25.00 © 2009 IEEE
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strong theoretical maturity and still face difficulties regarding

their real-time implementation.

The main nonlinearity of vehicle dynamics comes from the

tire force saturation imposed by the limits of tire adherence,

which makes β response change considerably if the vehicle is

cornering much more than usual. In other words, the model

structure or parameters should vary according to the different

operating regimes for a more practical controller design. In

addition, the nonlinear nature of vehicle dynamics is further

complicated by the influence of the characteristics of whole

chassis elements (tires, suspensions, and steering system). It is

hard to determine the physical model parameters theoretically.

Therefore, an effective modeling methodology is the key for the

system design.

To deal with the difficulties associated with nonlinearity

modeling, as well as to make use of the linear observer advan-

tages such as simplicity in the design and implementation, the

nonlinear vehicle dynamics is represented by Takagi–Sugeno

(T–S) fuzzy models [11], [12]. The local approximation of the

nonlinear vehicle model and a dynamical interpolation method

are introduced in this paper to construct a fuzzy-model-based

control system for β estimation and control. Optimal β observer

is designed for each local model using Kalman filter theory. The

proposed system is a combination of local linear observers and

controllers with varying switching partition.

The first step in the design is concerned with the deriva-

tion of the system state equations from the vehicle dynamics

and local approximation of nonlinear tire model. These mod-

eling techniques are considered appropriate for online con-

trol system design (linear 2-DOF vehicle model as in [13]).

In the next step, a fuzzy-based modeling approach is used

to get a hybridlike vehicle model, which is calculated as a

weighted sum of the outputs of two local linear models. For

practical applications, parameter identification is conducted

experimentally. An adaptation mechanism of the fuzzy mem-

bership functions has been included to make the model fit

different running conditions and road friction changes. The

membership functions of the weighting factors are chosen

to be dependent on lateral acceleration and road friction co-

efficient. The two local observers are based on local linear

tire models, which inherently leads to a relatively simple

design, and have been combined into a single overall ob-

server by means of fuzzy rules. Furthermore, the nonlinear

global system results show high β estimation capabilities and

good adaptation to changing road friction. A series of simu-

lations are performed to evaluate the effectiveness of the pro-

posed β observer when incorporated into a DYC-based control

scheme.

II. VEHICLE DYNAMICS AND FUZZY MODELING

A. Local Approximation and Linearization

of Vehicle Dynamics

The system is based on an in-wheel-motored EV dynamic

model (Fig. 2). The main difference with common vehicle

dynamics is that the direct yaw moment is an additional input

variable, which is caused by individual motor torque between

each wheel.

Fig. 2. Two-DOF vehicle model.

The vehicle dynamics is approximately described by the

following 2-DOF vehicle model equations:

{

may = Fxf sin δf + Fyf cos δf + Fyr

Iz γ̇ = lfFxf sin δf + lfFyf cos δf − lrFyr + N
(1)

where ay denotes the vehicle lateral acceleration, γ is the yaw

rate, δf is the steering angle of the front wheel, N is the direct

yaw moment, m represents the mass of the vehicle, Iz is the

yaw inertia moment, lf denotes the distance between the center

of the mass and the front axle, lr is the distance between the

center of mass and the rear axle, Fxf is the longitudinal force

of the front tires, and Fyf and Fyr are the lateral forces of the

front and rear tires, respectively.

Let the body slip angle β and yaw rate γ represent the system

state variables. By defining the kinematics relationship as ay =

ν(β̇ + γ) and assuming that δf is relatively small for high

speeds, the vehicle’s state equations are obtained as follows:

{

˙̂
β = 1

mν
(Fyf + Fyr) − γ̂

˙̂γ = 1
Iz

(lfFyf − lrFyr + N).
(2)

The model of (2) is nonlinear due to the tire lateral force

dynamics. By using local operating regime approximations, the

model can be simplified into an equivalent linear 2-DOF model

by adopting the equivalent tire cornering stiffness C, which is

defined by

C =
Fy

α
(3)

where Fy is the tire lateral force, and α is the tire slip angle at

its operating point.

By adopting the value of C given by (3), the nonlinear

vehicle dynamic state equation (2) can be transformed into the

following equivalent linear state equation at the local operating

point:

ẋ = Ax + Bu (4)

in which

A =

[

a11 a12

a21 a22

]

=

[

−(2Cf+2Cr)
mV

−2lf Cf+2lrCr

mV 2 − 1
−2lf Cf +2lrCr

Iz

−2l2
f
Cf−2l2rCr

IzV

]

B =

[

b11 b12

b21 b22

]

=

[ 2Cf

mV
0

2lf Cf

Iz

1
Iz

]

x =

[

β

γ

]

u =

[

δf

N

]
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Fig. 3. Tire lateral force characteristics partitioned roughly into four different
local dynamics (Lsa is the large tire slip angle, Ssa is the small tire slip angle,
Lfr is the large friction, and Sfr is the small friction).

where Cf and Cr are the cornering stiffness values of the front

and rear tires, respectively, and V is the longitudinal velocity.

Since the main nonlinearity in the model comes from the

tires, the cornering stiffness of the tires will play an important

role in the formulation of the model used in the estimator.

According to Fig. 3, these coefficients are large when the

tire slip angle assumes small values, which are equivalent to

the low lateral acceleration regimes. On the other hand, the

stiffness coefficients become small when the tire slip angle

increases, which means that the vehicle is running at high lateral

accelerations. Hence, to describe the vehicle dynamics by an

equivalent linear 2-DOF model, local models with different

C values should be considered, for both low and high lateral

accelerations.

B. Model Parameter Identification

For the local dynamic models, the equivalent tire cornering

stiffness values Cf and Cr are difficult to determine theo-

retically because they are influenced by the suspension dy-

namics, tire characteristics, and steering system. In this paper,

an identification method of tire cornering stiffness based on

experimental tests performed on the EV is proposed.

According to (2), the steady state cornering relationship with

steering angle input can be expressed as follows:

{

may = Fyf + Fyr

0 = lfFyf − lrFyr.
(5)

From (5), the expression of the side force applied to the front

and rear tires can be deduced as
{

F̂yf = lr
l
may

F̂yr =
lf
l
may.

(6)

Moreover, the body slip angle of front and rear tires can be

obtained as
{

α̂f = β +
γlf
V

− δf

α̂r = β − γlr
V

.
(7)

If ay , β, and γ are measured from steady state cornering

experiments, it follows from the aforementioned equations that

the tire cornering stiffness can be obtained as

{

Ĉf =
Fyf

−2αf

Ĉr =
Fyr

−2αr
.

(8)

Fig. 4. Membership function adaptation to the lateral acceleration.

For the nonlinearity of vehicle dynamics, cornering experi-

ments with low and high ay’s should be conducted, respectively,

to identify the different cornering stiffness values in different

operating regimes.

C. Fuzzy Modeling and Local Dynamics

To simplify the fuzzy modeling procedure, the lateral accel-

eration ay will be assigned two fuzzy sets (large and small), as

shown in Fig. 4.

Then, using these fuzzy sets, the fuzzy IF–THEN rules for

the vehicle dynamic model can be defined as follows.

Rule i: (local model i) IF |ay| is Fi, THEN ẋ = Aix + Biu.

The overall vehicle dynamics is described by two models

that take the form of (4). The model parameters, namely, the

equivalent tire cornering stiffness, are identified according to

the steady state regime given by (8).

For the local model 1, the tire works at its small slip region,

and A1 and B1 are calculated based on the largest value of the

cornering stiffness C. For the local model 2, the tire works at its

large slip region, and A2 and B2 are calculated for a relatively

small value of the cornering stiffness C.

Finally, the whole nonlinear dynamics of the vehicle are

described with the proposed dynamic switching partition by

interpolating the two models with fuzzy logic. By a proper

choice of the membership function, the vehicle dynamics can

be calculated for different operating regimes (from low to high

ay value).

Therefore, the following is used to represent the fuzzy mod-

els covering the vehicle dynamics:

ẋ =
2

∑

i=1

wi(Aix + Biu) (9)

where w1 and w2 are the membership functions for local

models 1 and 2. For design simplicity, trapezoidal membership

functions have been used. The formulations of w1(ay) and

w2(ay) are as follows:

w1(ay) =

{

1 − 1
ayw

ay, |ay| ≤ ayw

0, |ay| > ayw

(10)

w2(ay) =

{ 1
ayw

ay, |ay| ≤ ayw

1, |ay| > ayw

(11)

where the coefficient ayw describes the value of ay at the

tire/road adherence limit (road friction coefficient µ) when the

tire force is saturated, which is equivalent to severe steering

dynamics.
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Road condition is one of the most important factors that

must be considered in vehicle dynamic stability control, since

the road friction coefficient µ is uncertain and may change

according to the road condition; the fuzzy partition describing

the vehicle model must be adaptive to such variations (Fig. 4).

The value of µ can be identified with different methods.

In EV stability control, one method that the authors adopted

previously is to identify the µ value by analyzing wheel rotation

dynamics, which takes advantage of the accurate knowledge

of the EV motor torque values [14], [15]. With the identified

µ value, ayw is used as a tuning parameter of the weighting

function partition to form an adaptation mechanism to cope

with the variation of tire/road adherence conditions. In this

paper, ayw is set to be a linear function of µ with the following

low-pass filter to remove the noise:

ayw = kµ

1

1 + Tfs
µ (12)

where kµ is the adaptation gain, and Tf is the constant of first

order low-pass filter.

III. β OBSERVER DESIGN BASED ON FUZZY MODELS

A. Kalman Filter for Local β Observer Design

Based on the local linear models, the β observer is designed

with Kalman filter theory [16]–[18]. For the real-time imple-

mentation of the design strategy, the continuous-time model of

(4) is converted into discrete time model by taking into account

process and measurement noises as follows:

x[n + 1] =Gix[n] + Hiu[n] + ω[n]

y[n] =Cix[n] + Diu[n] + υ[n] (13)

where the covariance vectors of process and measurement

noises are assumed to be the same for all dynamics

E
(

ω[n]ω[n]T
)

= Q E
(

υ[n]υ[n]T
)

= R. (14)

The sampled equations with a zeroth-order hold are ob-

tained as

Gi =

[

1 + Tsa11 Tsa12

Tsa21 1 + Tsa21

]

Hi =

[

Tsb11 Tsb12

Tsb21 Tsb21

]

(15)

where Ts is the sampling time.

Using the discrete state space equation (13), a discrete form

of Kalman estimator can be applied for each linear observer.

The vehicle lateral acceleration ay and yaw rate γ are two

measurable variables and are chosen as output variables of the

observer

y =

[

γ

ay

]

C =

[

0 1
νa11 ν(a12 + 1)

]

D =

[

0 0
νb11 0

]

. (16)

Fig. 5. Implementation of the estimation algorithm based on Kalman filter
theory.

Fig. 6. Structure of hybrid adaptive observer.

The recursive discrete Kalman filter algorithm is then applied

separately to estimate local dynamics, as shown in Fig. 5.

Where x̂ and ŷ are the estimates of x and y, respectively, Li

is the feedback gain of local observer, which is derived using

the Kalman filter theory.

B. Hybridlike Observer Design Based on Fuzzy Models

A hybridlike observer is designed based on the fuzzy discrete

time vehicle models by applying the Kalman filter theory [9].

The proposed observer structure is as shown in Fig. 6.

The observer consists of two Kalman-filter-based local ob-

servers related to the aforementioned local models 1 and 2,

respectively. The observer outputs are the estimates of βob1 and

βob2, respectively.

The fuzzy rules for β observer are defined by the following

IF–THEN rule structure.

Rule i: (local observer i) IF |ay| is Fi, THEN β̂ob = β̂obi.

By introducing this fuzzy logic concept, two local linear

models were sufficient to cover the main nonlinear features

of the dynamics and give the proposed observer the ability to

overcome the limitations associated with the linear observer

Authorized licensed use limited to: Sheffield University. Downloaded on June 3, 2009 at 05:04 from IEEE Xplore.  Restrictions apply.
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Fig. 7. Vehicle stability control applied to UOT MARCH II.

in terms of performances. The overall fuzzy observer is

given by

β̂ob =

2
∑

i=1

wiβ̂obi. (17)

The advantages of a linear observer such as simple design

and noncomputationally intensive are conserved while address-

ing the nonlinear problem at the same time.

IV. SIMULATION AND EXPERIMENTAL RESULT ANALYSIS

A. Description of the Experimental Vehicle and

Control Architecture

A full description of the EV University of Tokyo (UOT)

MARCH II is presented in the Appendix. The parameters used

in the following simulations and observer/controller design

have been obtained in a previous study [19]. Fig. 7 shows the

overall dynamical control scheme applied to UOT MARCH

II. With reference to Fig. 1, we can clearly distinguish the

parts which we have developed in this paper, namely, 1) the

(red thick line) β observer already implemented and tested and

2) the (red dotted line) control to be tested in the near future for

safety reasons. According to the configuration of the vehicle

using four in-wheel motors, an optimal driving/braking force

distribution system has been developed in former research to be

applied with the DYC control unit [20].

B. Simulation and Experimental Studies of the Observer

The effectiveness of the proposed observer structure is tested

via simulations. A sinusoidal steering angle input is chosen

to simulate consecutive lane change maneuvers of the vehicle

body. The amplitude of input steering angle is large enough

to make the tire span both the linear and nonlinear working

regions. Simulation results related to different road friction

conditions are shown in Fig. 8. It is clear that both of the

subobservers used to generate the proposed structure cannot fit

well the real value for the whole operating conditions. This can

Fig. 8. Simulation results of the hybrid observer under (top panel) large road
friction situation (µ = 0.85) and (bottom panel) small road friction situation
(µ = 0.4).

be explained by the fact that they are based on a local model

with fixed parameters describing a limited segment of vehicle

operating regime. Comparatively, the hybrid observer gives a

better estimation, follows closely the real values, and has even

the ability to adapt to different road friction conditions.

To evaluate the proposed control scheme under more realistic

conditions, field tests are conducted on our experimental EV

“UOT March II.” UOT March II is equipped with an accelera-

tion sensor, a gyro sensor, and a noncontact speed meter, which

provide measurements of the vehicle state variables.

Figs. 9 and 10 show the results of field tests of the observer

in moderate and severe cornering situations. The experiments

demonstrate that the observer is very effective and suitable for

real-time applications due to its high onboard computational

speed.

V. SIMULATION OF OPTIMAL YAW-MOMENT CONTROL

BASED ON THE PROPOSED β OBSERVER

A. Desired Model and State Deviation Equation

As shown in Fig. 1, the control scheme is applied for DYC

system design by using the model matching control method.

The desired state variables of β and γ are determined by a

2-DOF linear model with front wheel steering angle as input

according to (4) and are expressed as follows:

[

β̇d

γ̇d

]

= A

[

βd

γd

]

+

[

b11

b21

]

δf . (18)

In addition, γ should be constrained by its adhesion satura-

tion value as follows:

γd ≤
µg

V
. (19)
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Fig. 9. Experimental field test results of β observer (steering angle =
90◦; v = 40 km/h).

Fig. 10. Experimental field test results of β observer (steering angle =
90◦; v = 60 km/h).

The state deviation variable between the desired value Xd

and actual value X is assumed to be as follows:

E = X − Xd =

[

∆β

∆γ

]

=

[

β − βd

γ − γd

]

. (20)

According to (4) and (18), the differentiation of (20) leads to

the error dynamics

Ė = Ẋ − Ẋd = A.E +

[

b12

b22

]

N. (21)

Equation (21) describes the dynamic relationship between

the direct yaw moment and vehicle motion state deviations. It

shows that, when a vehicle motion deviation appears, exerting a

direct yaw moment can reduce them to make the vehicle regain

stability.

B. Optimal Yaw-Moment Decision Algorithm

Based on the linear quadratic regulator method, the optimal

control input can be calculated by state feedback deviations as

follows:

N ∗ = −k1(β − βd) − k2(γ − γd) (22)

where the feedback gains k1 and k2 related to the local model

are determined so that the following performance index is

minimized:

J =
1

2

∞
∫

0

[

q1∆β2(t) + q2∆γ2(t) + N2(t)
]

dt (23)

where q1 and q2 are the weighting coefficients of the state

deviations, which can be chosen to modulate the controller

sensitivity with respect to β and γ deviations. For this pur-

pose, the coefficient ωβ (0 ≤ ωβ ≤ 1) is introduced in the

performance index as a weighting factor on β deviation. We

define q1 = q2ωβ and q2 = q2(1 − ωβ), and (23) can be rewrit-

ten as

J =
q

2

∞
∫

0

[

ωβ∆β2(t) + (1 − ωβ)∆γ2(t) + N2(t)
]

dt. (24)

Small values of β produce a more important γ matching

control, whereas larger values lead to a more important β

control. In addition, the vehicle stability is more sensitive to β

deviation under low adhesion road conditions than it is under

high adhesion road conditions. Therefore, ωβ is dependent

on β and the road friction coefficient µ and is chosen as

follows:

ωβ =

{

|β|
µ·β0

, if |β| < µ · β0

1, else
(25)

where β0 is a threshold value which has been set to 10◦ based

on the authors’ experience.

The graph of ωβ as a function of β is shown in Fig. 11.
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Fig. 11. Weight of body slip angle deviation for optimal yaw-moment
decision.

Fig. 12. (Top panel) Slip angle and (bottom panel) yaw rate under β control.

C. Simulation Results of Body Slip Angle Control

In the following simulations, full four-wheel vehicle dynam-

ics with nonlinear tire model is used as a mathematical model.

In the simulation study and experimental validation, the

actuation dynamics will not be considered. They rely essentially

on the current control of electric motors. So far, it is well

known that the use of electric motors as actuators is one of the

advantages of EVs and, at the same time, presents a negligible

Fig. 13. Vehicle trajectory with and without β control.

Fig. 14. Control trajectories in β−γ phase plane.

short delay (i.e., a few milliseconds) in the overall controlled

system compared to the vehicle dynamics.

Fig. 12 shows the simulation results with sinusoidal front

steering angle input when the road friction coefficient is 0.3 and

the vehicle is running at a speed of 100 km/h. This can represent

a critical driving situation of continuous lane change maneuver

on slippery road. If the control is set off, β can assume larger

values, causing the vehicle to lose its stability and unable to

accomplish the lane change as in normal situations (Fig. 13).

With the proposed hybrid observer, an accurate estimation of

body slip angle is obtained. By applying DYC based on the

hybrid observer, the yaw rate γ is successfully controlled to

the desired value, and the body slip angle β is guaranteed to

be limited. However, if DYC was based on the linear observer,

the incorrect estimation of body slip angle will lead to control

deterioration.

Fig. 14 shows the β−γ phase plane trajectory related to the

simulation results. Under DYC control, a limited trajectory loop

is drawn by the vehicle within the stable area defined for our

vehicle. Without β control, this trajectory of β−γ phase plane

cannot be satisfied and becomes much larger until the vehicle

leaves the stable area, putting the passengers in danger.

VI. CONCLUSION

This paper has presented an algorithmic solution of the

nonlinear vehicle dynamic control problem, which has been

validated both in a simulation environment and in real time.

A state observer has been designed for an in-wheel-motored

EV with DYC using fuzzy modeling techniques. T–S fuzzy

models were employed for approximating the nonlinear vehicle

dynamics with linear local models. An adaptation mechanism

was introduced to adjust the fuzzy membership functions in

Authorized licensed use limited to: Sheffield University. Downloaded on June 3, 2009 at 05:04 from IEEE Xplore.  Restrictions apply.
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TABLE I
SPECIFICATIONS OF UOT ELECTRIC MARCH II

Fig. 15. Sketch of the “UOT MARCH II.”

response to changes in road friction conditions. The local

observer design was based on the Kalman filter theory and was

combined with an interpolating mechanism which provided the

link between the underlying local dynamics. The quantitative

accuracy and the adaptation performance of the proposed ob-

server have been verified in simulations and experimentally.

We have shown that the designed controller relies critically on

the estimated value of β, and further research and effort will

be devoted into the implementation of a full dynamic stability

control of the UOT MARCH II.

APPENDIX

DESCRIPTION OF “UOT MARCH II”

The EV named “UOT Electric March II” was constructed in

2001 (Table I). The most special feature of this EV is the in-

wheel motor mounted in each wheel. We can control each wheel

torque completely and independently. Regenerative braking is

also available. Former researchers from Hori Laboratory at the

UOT contributed to build this EV by remodeling a Nissan

March. Fig. 15 shows a sketch of the “UOT MARCH II.”

Fig. 16. Photographs of the vehicle. (a) Front motors. (b) Rear motors.
(c) Inverters. (d) Batteries.

Fig. 16 shows the photographs of the main parts of the

vehicle developed in our laboratory.
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