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NEW LATERAL FORCE DISTRIBUTION FOR SEISMIC 

DESIGN OF STRUCTURES 

Iman Hajirasouliha1; Hassan Moghaddam2 

 

Abstract: In the conventional seismic design methods, height wise distribution of equivalent seismic 

loads seems to be related implicitly on the elastic vibration modes. Therefore, the employment of such 

a load pattern does not guarantee the optimum use of materials in the nonlinear range of behavior. 

Here a method based on the concept of uniform distribution of deformation is implemented in 

optimization of the dynamic response of structures subjected to seismic excitation. In this approach, 

the structural properties are modified so that inefficient material is gradually shifted from strong to 

weak areas of a structure. It is shown that the seismic performance of such a structure is better than 

those designed conventionally. By conducting this algorithm on shear-building models with various 

dynamic characteristics, the effects of fundamental period, target ductility demand, number of stories, 

damping ratio, post-yield behavior and seismic excitations on optimum distribution pattern are 

investigated. Based on the results, a more adequate load pattern is proposed for seismic design of 

building structures that is a function of fundamental period of the structure and the target ductility 

demand. 
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Introduction 

Structural configuration plays an important role on the seismic behavior of structures. In recent 

earthquakes, structures with inappropriate distributions of strength and stiffness have performed 

poorly, and most of the observed collapses have been related to some extent to configuration 

problems or wrong conceptual design. Although design procedures have become more rigorous in 

their application, the basic force-based approach has not changed significantly since its inception in 

the early 1900s. Consequently, the seismic codes are generally regarding the seismic effects as 

lateral inertia forces. The height wise distribution of these static forces (and therefore, stiffness and 

strength) seems to be based implicitly on the elastic vibration modes (Green 1981; Hart 2000). As 

structures exceed their elastic limits in severe earthquakes, the use of inertia forces corresponding to 

elastic modes may not lead to the optimum distribution of structural properties. Lee and Goel (2001) 

analyzed a series of 2 to 20 story frame models subjected to various earthquake excitations. They 

showed that in general there is a discrepancy between the earthquake induced shear forces and the 

forces determined by assuming distribution patterns.  

The consequences of using the code patterns on seismic performance have been extensively 

investigated (Anderson et al. 1991; Gilmore and Bertero 1993; Martinelli et al. 2000). Chopra (2001) 

evaluated the ductility demands of several shear-building models subjected to the El- Centro 

Earthquake of 1940. The relative story yield strength of these models was chosen in accordance with 

the distribution patterns of the earthquake forces specified in the Uniform Building Code (UBC). It was 

concluded that this distribution pattern does not lead to equal ductility demand in all stories, and that in 

most cases the ductility demand in the first story is the largest of all stories. Takewaki (1996, 1997) 

proposed a method to find a strength (and stiffness) distribution pattern to receive a uniform ductility 

distribution within the height of structure under a given set of earthquakes. However, the final ductility 

demand in his proposed method is usually less than the ductility capacity of each story. Therefore, the 

proposed strength distribution may not be optimum.  

Moghaddam (1995) proportioned the relative story yield strength of a number of shear building 

models in accordance with some arbitrarily chosen distribution patterns as well as the distribution 

pattern suggested by the UBC-97. This study shows that the pattern suggested by code guidelines 

does not lead to a uniform distribution of ductility and a rather uniform distribution of ductility with a 
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relatively smaller maximum ductility demand can be obtained from other patterns. These findings have 

been confirmed by further investigations (Moghaddam and Hajirasouliha 2004; Moghaddam et al. 

2005; Moghaddam and Mohammadi 2006), and led to the development of a new concept to optimize 

the distribution pattern for seismic performance. Moghaddam and Hajirasouliha (2006) proposed an 

effective optimization algorithm based on the concept of uniform distribution of deformation to 

determine optimum loading patterns according to different dynamic characteristics of structure and 

earthquake ground motion. In the present paper, by conducting this algorithm on shear-building 

models with various dynamic characteristics subjected to 20 earthquake ground motions, the effects of 

fundamental period, target ductility demand, number of stories, damping ratio, post-yield behavior and 

seismic excitations on optimum distribution pattern are investigated. Based on the results of this study, 

a more adequate load pattern is proposed for seismic design of building structures that is a function of 

fundamental period of the structure and the target ductility demand. It is shown that using the 

proposed load pattern could result in a reduction of ductility demands and a more uniform distribution 

of deformations. 

 

Modeling and Assumptions  

The modeling of engineering structures usually involves a great deal of approximation.  Among 

the wide diversity of structural models that are used to estimate the non-linear seismic response of 

building frames, the shear-beam is the one most frequently adopted. In spite of some drawbacks, it is 

widely used to study the seismic response of multi-story buildings because of simplicity and low 

computer time consumption, thus permitting the performance of a wide range of parametric studies 

(Diaz et al., 1994). Lai et al. (1992) have investigated the reliability and accuracy of such shear-beam 

models. All parameters required to define a shear-building model corresponding to the original full-

frame model could be determined by performing a pushover analysis. The corresponding shear 

building model has the capability to consider the higher mode effects for the first few effective modes. 

Near 200 shear-building models with fundamental period ranging from 0.1 sec to 3 sec, and target 

ductility demand equal to 1, 1.5, 2, 3, 4, 5, 6 and 8 have been used in the present study. The range of 

the fundamental period considered in this study is wider than that of the real structures to cover all 
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possibilities. In the shear-building models, each floor is assumed as a lumped mass that is connected 

by perfect elastic-plastic springs which only have shear deformations when subjected to lateral forces 

as shown in Fig. 1. The total mass of the structure is distributed uniformly over its height and the 

Rayleigh damping model with a constant damping ratio of 0.05 is assigned to the first mode and to the 

mode at which the cumulative mass participation exceeds 95%. In all MDOF (Multi Degree of 

Freedom) models, lateral stiffness is assumed as proportional to shear strength at each story, which is 

obtained in accordance with the selected lateral load pattern. In this study, the maximum story drift 

within the structure was used to determine the ductility ratio for damage assessment. 

Twenty selected strong ground motion records are used for input excitation as listed in Table 1. 

All of these excitations correspond to the sites of soil profiles similar to the SD type of UBC-97 and are 

recorded in a low to moderate distance from the epicenter (less than 45 km) with rather high local 

magnitudes (i.e., M>6). Due to the high intensities demonstrated in the records, they are used directly 

without being normalized. 

The above-mentioned models are, then, subjected to the seismic excitations and non-linear 

dynamic analyses are conducted utilizing the computer program DRAIN-2DX (Prakash et al. 1992). 

For each earthquake excitation, the dynamic response of models with various fundamental periods 

and target ductility demands is calculated. 

 

Lateral Loading Patterns 

In most seismic building codes (Uniform Building Code 1997; NEHRP Recommended Provisions 

1994; ATC-3-06 Report 1978; ANSI-ASCE 7-95 1996), the height wise distribution of lateral forces is 

to be determined from the following typical relationship:  
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Where wi and hi are the weight and height of the i
th
 floor above the base, respectively; n is the 

number of stories; and k is the power that differs from one seismic code to another. In some provisions 

such as NEHRP-94 and ANSI/ASCE 7-95, k increases from 1 to 2 as period varies from 0.5 to 2.5 

second. However, in some codes such as UBC-97, the force at the top floor (or roof) computed from 

Equation (1) is increased by adding an additional force Ft=0.07TV for a fundamental period T of 

greater than 0.7 second. In such a case, the base shear V in Equation (1) is replaced by (V-Ft).   

Moghaddam and Mohammadi (2006) introduced an �optimum� loading pattern as a function of the 

period of the structure and target ductility. This loading pattern is a rectangular pattern accompanied 

by a concentrated force λTV at the top floor, where λ is a coefficient that depends on the fundamental 

period, T, and the target ductility, µt. Based on the nonlinear dynamic analyses on shear-building 

models subjected to twenty-one earthquake ground motions; the following expression is suggested for 

λ  (Moghaddam and Mohammadi 2006): 

T
e t

t
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µµλ +−−=                                     (2) 

In the present study, the adequacy of above mentioned loading patterns is investigated. 

 

Concept of Uniform Distribution of Deformation 

As discussed before, the use of distribution patterns for lateral seismic forces suggested by codes 

does not guarantee the optimum performance of structures. Current studies indicate that during strong 

earthquakes the deformation demand in structures does not vary uniformly (Gilmore and Bertero 

1993; Martinelli et al. 2000, Chopra 2001, Moghaddam and Hajirasouliha 2006). Therefore, it can be 

concluded that in some parts of the structure, the deformation demand does not reach the allowable 

level of seismic capacity. Hence, the material is not fully exploited along the building height. If the 

strength of these strong parts decreases, the deformation is expected to increase (Riddell et al. 1989; 

Vidic et al. 1994). Thus, if the strength decreases incrementally, we should eventually obtain a status 

of uniform deformation. It is expected that in such a condition, the dissipation of seismic energy in 

each story is maximized and the material capacity is fully exploited. Therefore, in general, it can be 
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concluded that a status of uniform deformation is a direct consequence of the optimum use of 

material. This is considered as the concept of uniform distribution of deformation, (Moghaddam and 

Hajirasouliha 2004; Hajirasouliha 2004), and is the basis of the optimization method presented in this 

paper. The concept of uniform deformation demand as an optimization technique is not new for 

seismic design and it is generally endeavored to induce a status of uniform deformation throughout the 

structure to obtain an optimum design as in Takewaki (1996, 1997) and Gantes et al. (2000). 

However, in spite of those who assume the concept of uniform deformation as a performance 

objective, the authors are using it as a means for obtaining an optimum design. 

 

Optimum Distribution of Design Seismic Forces 

In structural optimization, an objective function should be expressed in terms of the design 

variables. Assuming that the cost of a member is proportional to its material weight, the least-cost 

design can be interpreted as the least-weight design of the structure. For the shear building models, 

any decrease of material is normally accompanied by a decrease in story strength, and therefore the 

cost objective function f to be minimized can be formulated as: 

Minimize:  ∑
=

=
n

i

iSxf
1

)(                                                              (3) 

Where x is the design variable vector; Si is the shear strength of the i
th
 floor and n is the number 

of stories. For this study, the design variables are taken to be the strength of the stories and an 

identical distribution pattern is assumed for both strength and stiffness. 

Recent design guidelines, such as FEMA 356 and SEAOC Vision 2000, place limits on 

acceptable values of response parameters, implying that exceeding of these acceptable values 

represent violation of a performance objective. The ductility ratio has been widely used as the criterion 

for assessing seismic behavior for the shear building models (Chopra 2001). Therefore, here the 

design variables are chosen to satisfy design constraints as follows: 

Subject to:  ti µµ ≤        (i=1,2,..,n)                                           (4) 
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Where µi and µt are maximum ductility ratio at i
th
 story and target ductility ratio, respectively. The 

concept of uniform distribution of deformation can be employed for evaluation of optimum distribution 

of structural properties for a shear building model with fundamental period of T and target ductility ratio 

of µt. To accomplish this, an iterative optimization procedure has been proposed by Hajirasouliha 

(2004) and Moghaddam and Hajirasouliha (2006). In this approach, the structural properties are 

modified so that inefficient material is gradually shifted from strong to weak areas of a structure. This 

process is continued until a state of uniform deformation is achieved. At this stage, the strength 

distribution pattern is considered as practically optimum. The optimization algorithm is addressed 

extensively in Moghaddam and Hajirasouliha (2006), and it is briefly summarized in the following: 

1. Arbitrarily initial pattern is assumed for height wise distribution of strength and stiffness. 

2. The stiffness pattern is scaled such that the structure has a fundamental period of T. 

3. The structure is subjected to the design excitation, and the maximum story ductility is 

calculated, and compared with the target value. Consequently, the strength is scaled (without 

changing the primary pattern) until the maximum deformation demand reaches the target value. 

This pattern is regarded as the first feasible design. 

4. The COV (coefficient of variation) of story ductility distribution within the structure is calculated 

and the procedure continues until COV decreases down to a prescribed level. 

5. Stories in which the ductility demand is less than the target values are identified and weakened 

by reducing strength and stiffness. To obtain convergence in numerical calculations, the 

following equation is used in the present study (Hajirasouliha, 2004): 

α

µ
µ









=+

t

i
mimi SS ][][ 1                                                    (5) 

Where [Si]m is the shear strength of the i
th
 floor at m

th
 iteration and α is the convergence 

parameter ranging from 0 to 1. This is addressed in the next section that for shear building models, an 

acceptable convergence is usually obtained for α  equal to 0.1 to 0.2. At this stage, a new pattern for 

height wise distribution of strength and stiffness is obtained. The procedure is repeated from step 2 

until a new feasible pattern is obtained. It is expected that the COV of ductility distribution for this 

pattern is smaller than the corresponding COV for the previous pattern. This procedure is iterated until 
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COV becomes small enough, and a status of rather uniform ductility demand prevails. The final 

pattern is considered as practically optimum. Early studies have shown that there is generally a unique 

optimum distribution of structural properties, which is independent of the seismic load pattern used for 

initial design (Moghaddam and Hajirasouliha 2006). 

The proposed method has been conducted on a 10-story shear building with fundamental period 

of 1 sec and target ductility demand of 4 subjected to the Northridge earthquake of 1994 (CNP196). 

Fig. 2 illustrates the variation of COV and total strength from UBC-97 designed model toward the final 

answer. Fig. 2 shows the efficiency of the proposed method that resulted in reduction of total strength 

by 22% in only three steps. All solutions shown in this figure are acceptable designs with maximum 

story ductility of 4. Therefore, reduction of total strength in each step indicates that material capacity is 

more exploited and the structure is moving toward the optimum design. It is also shown in Fig. 2 that 

decreasing the COV is always accompanied by reduction of total strength and the proposed method 

has the capability of converging to the optimum pattern without any oscillation.  

As the strength at each floor is obtained from the corresponding story shear force, for shear 

building models, the final height wise distribution of strength can be converted to the height wise 

distribution of lateral forces. Such pattern may be regarded as the optimum pattern of seismic forces 

for the given earthquake. The lateral force distribution and story ductility pattern of UBC-97 and 

optimum designed models are compared in Fig. 3. The results indicate that to improve the 

performance under this specific earthquake, the above mentioned model should be designed based 

on an equivalent lateral load pattern relatively different from the suggested conventional code 

patterns, e.g. that of UBC-97 guideline. However, this optimum load pattern is not adequate for other 

cases and it depends on the characteristics of the structure and seismic excitation. The effects of 

different parameters on the optimum distribution pattern are addressed next. 

Effect of Convergence Parameter 

In order to study the effect of convergence parameter, α, the previous example has been solved 

for different values of α. Fig. 4 illustrates how the total strength varies as we move from the starting 

pattern (the uniform distribution) toward the final pattern using values of 0.05, 0.1, 0.2, 0.3 and 0.5 for 

α. It is shown in this figure that as α increases from 0.05 to 0.2, the convergence speed increases 
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without any fluctuation. However, when α exceeds 0.3, the method is not stable and the problem does 

not converge to the optimum solution. Fig. 4 indicates that an α value of 0.2 results in the best 

convergence for the design problem discussed herein. The convergence parameter α plays an 

important role in the convergence of the problem, and it is necessary to choose an appropriate value 

of α for each specific case. Numerous analyses carried out in the present study indicate that, for shear 

building models, an acceptable convergence is usually obtained by using α values of 0.1 to 0.2. 

Effect of Seismic Excitation 

To investigate whether the efficiency of the proposed method is dependent on the selected 

seismic excitation, the following seismic records are also applied to the foregoing 10-story shear 

building model: (1) The 1994 Northridge earthquake CNP196 component with a PGA (Peak Ground 

Acceleration) of 0.42g, (2) The 1979 Imperial Valley earthquake H-E08140 component with a PGA of 

0.45g, (3) The 1992 Cape Mendocino earthquake PET090 component with a PGA of 0.66g, and (4) A 

synthetic earthquake record generated to have a target spectrum close to that of the UBC-97 code 

with a PGA of 0.44g. All of these excitations correspond to the sites of soil profiles similar to the SD 

type of UBC. Acceleration response spectra of these records are illustrated in Fig. 5.  

The optimum strength-distribution patterns corresponding to these excitations are determined. In 

Fig. 6, total strength demand for optimum structures are compared with does designed according to 

seismic load pattern suggested by the UBC-97. The figure indicates that for the same ductility 

demand, the optimum design requires less strength as compared with the conventional design.  The 

optimum lateral load patterns correspond to each case are presented in Fig. 7. It is shown in this 

figure that every seismic excitation has a unique optimum distribution of structural properties. The 

optimum pattern depends on the earthquake and it varies from one earthquake to another. However, 

Fig. 7 shows that there is not a big discrepancy between different optimum load patterns correspond 

to the seismic excitations with similar soil profiles. 

To investigate the effect of ground motion intensity on the optimum load distribution, 10-story 

shear building model with fundamental period of 1 sec and target ductility demand of 4 is subjected to 

the Northridge earthquake of 1994 (CNP196) multiplied by 0.5, 1, 1.5, 2 and 3. For each excitation, 

the optimum load distribution pattern is determined as shown in Fig. 8. The results indicate that for a 
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specific fundamental period and target ductility demand, optimum load pattern is completely 

independent of the seismic excitation scale factor. 

Effect of Target Ductility Demand 

In order to study the effect of target ductility demand on optimum distribution pattern, 10 story 

shear- building models with fundamental period of 1 sec and target ductility of 1.5, 2, 4 and 8 have 

been considered. Optimum lateral load pattern was derived for each model subjected to Northridge 

1994 (CNP196) event. Comparing the results, the effect of target ductility demand on optimum 

distribution of seismic loads is illustrated in Fig. 9. The seismic load patterns suggested by most 

seismic codes do not depend on the ductility; however the results of this study indicate that optimum 

distribution is highly dependent on target ductility demand of the structure. Preliminary studies carried 

out by the authors (Moghaddam and Hajirasouliha 2006) showed that, in general, increasing the 

ductility demand results in decreasing the loads at the top stories and increasing the loads at the lower 

stories. 

Effect of Fundamental Period 

To investigate the effect of fundamental period on the optimum distribution pattern, 10 story 

shear-building models with target ductility demand of 4 and fundamental periods of 0.2, 0.6, 1 and 2 

sec have been assumed. For each case, the optimum lateral load pattern was derived for Northridge 

1994 (CNP196) event. The comparison of the optimum lateral load pattern for each case is presented 

in Fig. 10. As shown in this figure, optimum distribution of seismic loads is a function of fundamental 

period of the structure. Previous studies (Moghaddam and Hajirasouliha 2006) show that increasing 

the fundamental period is usually accompanied by increasing the loads at the top stories caused by 

the higher mode effects. 

Effect of Number of Stories 

To study the effect of number of stories on the optimum distribution pattern, the optimization 

algorithm has been conducted on shear-building models with 5, 7, 10 and 15 stories subjected to 

Northridge 1994 (CNP196) event. For each model, the optimum lateral load pattern has been obtained 

for fundamental period of 1 and target ductility demand of 4. It is shown in Fig. 11 that optimum load 
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patterns have a similar trend in shear building models with different number of stories. Hence, for a 

specific fundamental period and target ductility demand, optimum load pattern can be considered 

independent of number of stories. 

Effect of Damping Ratio 

The effect of damping ratio on optimum load distribution pattern is illustrated in Fig. 12 for a 10 

story shear-building model with target ductility demand of 4 and fundamental period of 1 sec; 

subjected to Northridge 1994 (CNP196) event. As shown in this figure, earthquake forces correspond 

to the top floors decrease with an increase in damping ratio. The results were expectable, since 

increasing the damping ratio is usually accompanied by decreasing the higher mode effects which 

mainly affect loads at the top stories. It can be noted from Fig. 12 that optimum load pattern is rather 

insensitive to the variation of damping ratios greater than 3%. Hence, for practical purposes, optimum 

load pattern can be considered independent of the damping ratio. 

Effect of Post-Yield Behavior 

The comparison of the optimum lateral load pattern for different post-yield behavior is presented 

in Fig. 13. As shown in this figure, the optimum distribution pattern is to some extend dependent to the 

secondary slope of post-yield response. However, it is shown that there is not a big discrepancy 

between different optimum load-patterns correspond to the post-yield slopes less than 5%. Therefore, 

for most practical cases, the effect of post-yield behavior on optimum load pattern could be ignored. 

More Adequate Loading Pattern 

Dynamic responses of any structures are dependent on their structural characteristics, frequency 

contents, amplitude, as well as the duration of the seismic excitations. As described before, to improve 

the performance under a specific earthquake, structure should be designed in compliance with an 

optimum load pattern different from the conventional patterns. This optimum pattern depends on the 

design earthquake, and therefore, varies from one earthquake to another. However, there is no 

guarantee that the building structure will experience seismic events, which are the same as the design 

ground motion. While each of the future events will have its own signature, it is generally acceptable 

that they have relatively similar characteristics. Accordingly, it seems that the designed model with 
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optimum load pattern is capable to reduce the maximum ductility experienced by the model after 

similar ground motions. It can be concluded that for design proposes, the design earthquakes must be 

classified for each structural performance category and then more adequate loading pattern must be 

found by averaging optimum patterns corresponding to every one of the earthquakes in each group. 

To verify this assumption, 20 strong ground motion records with the similar characteristics, as listed in 

Table 1, were selected. Time history analyses have been performed for all earthquakes and the 

corresponding optimum pattern has been found for shear-building models with different fundamental 

periods and target ductility demands. Consequently, 3200 optimum load patterns have been 

determined at this stage. For each fundamental period and ductility demand a specific matching load 

distribution has been obtained by averaging the results for all earthquakes. These average distribution 

patterns were used to design the given shear building models. Then the response of the designed 

models to each of the 20 earthquakes was calculated. As an example, the ratios of required to 

optimum structural weight for 10 story shear buildings with T=1 Sec and µt=4 designed with the UBC-

97 load pattern and average of optimum load patterns are illustrated in Fig. 14. It is shown that in this 

case the structure designed according to the average of optimum load patterns always requires less 

structural weight compare to the UBC 97 designed model. It means that the designed model with 

optimum load pattern is capable to reduce the maximum ductility experienced by the model after 

similar ground motions. Similar results have been obtained in this work for other period and target 

ductility demands. In Fig. 15, the ratio of required structural weight to the optimum weight are 

compared for the models designed with the UBC-97 load pattern, average of optimum load patterns, 

and Moghaddam and Mohammadi (2006) proposed load pattern. This figure has been obtained by 

averaging the responses of shear-building models with fundamental period of 0.1 sec to 3 sec, 

subjected to 20 earthquake ground motions. Fig. 15 indicates that in the elastic range of vibration 

(µt=1), the total structural weight required for the models designed according to the UBC-97 load 

pattern are in average 9% above the optimum value. Hence, it can be concluded that for practical 

purposes, using the conventional loading patterns could be satisfying within the linear range of 

vibrations.  

It is shown in Fig. 15 that increasing the ductility demand is always accompanied by increasing in 

the structural weight required for the conventionally designed models compare to the optimum ones. 

This implies that conventional loading patterns lose their efficiency in non-linear ranges of vibration. It 
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is illustrated in Fig. 15 that for conventionally designed structures with high levels of ductility demand, 

the required structural weight could be more than 50% above the optimum weight. It is shown that 

using Moghaddam and Mohammadi (2006) proposed load pattern, in average, results better than 

code type loading pattern for buildings in highly inelastic ranges (i.e. 3ȝ t ≥ ), however; it loses its 

efficiency for the buildings behave almost linearly (i.e.  2ȝ t ≤ ).  

It is illustrated in Fig. 15, having the same period and ductility demand, structures designed 

according to the average of optimum load patterns require less structural weight compare to those 

designed conventionally. The effectiveness of using average of optimum load patterns to reduce 

required structural weight is demonstrated for both elastic and inelastic systems; however its efficiency 

is more obvious for the models with high ductility demand. Such a load pattern is designated as �more 

adequate load pattern�. Similar to optimum load patterns, more adequate loading pattern is a function 

of both the period of the structure and the target ductility demand. 

While more adequate load patterns could be very different in their shape, it is possible to establish 

some general rules. Moghaddam and Hajirasouliha (2006) showed that more adequate load patterns 

can be illustrated in four categories including triangular pattern, trapezoid pattern, parabolic pattern 

and hyperbolic pattern. Despite obvious variation between the adequate load patterns proposed for 

different conditions, this study indicate that for each story there is generally a specific relationship 

between the optimum load pattern, fundamental period of the structure, and target ductility demand. 

Based on the results of this study, the following equation has been suggested: 

)()( i
dT

i
cbTaF tiii

++= µ                                                   (6) 

Where Fi is the optimum load component at the i
th
 story; T is the fundamental period of the 

structure; µt is target ductility demand; ai, bi, ci, and di are constant coefficients at i
th
 story. These 

coefficients could be obtained at each level of the structure by interpolating the values given in Table 

2. Using Equation (6), the optimum load pattern is determined by calculating optimum load 

components at the level of all stories.  

The comparison of the load patterns obtained by Equation (6) and the corresponding load 

patterns obtained by nonlinear dynamic analysis is shown in Fig. 16. As shown in this figure, the 
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agreement between Equation (6) and analytical results is excellent and this equation has good 

capability to demonstrate optimum load patterns for very different conditions. The constant coefficients 

of Equation (6) can be determined for any set of earthquakes representing a design spectrum.  

More adequate load pattern introduced in this paper is based on the shear building models 

subjected to 20 selected earthquakes, as listed in Table 1. However, discussed observations are 

fundamental and similar conclusions have been obtained by further analyses on different models and 

ground motions (Hajirasouliha, 2004). Prior studies have shown that optimum load pattern determined 

by using a shear building model, can be efficiently applied for seismic resistant design of 

concentrically braced frames (Moghaddam et al. 2005). However, the proposed load pattern cannot be 

directly applied to some structural systems such as shear walls, as they behave substantially different 

from shear-building type of structures. More adequate loading pattern proposed in this paper should 

prove useful in the conceptual design phase, and in improving basic understanding of seismic 

behavior of building structures.  

 

Conclusions 

1. A method based on the concept of uniform distribution of deformation is implemented in 

optimization of dynamic response of structures subjected to seismic excitation. It is shown that 

structures designed according to the optimum load pattern generally have better seismic 

performance compare to those designed by conventional methods. 

2. It is shown that that optimum load pattern is highly dependent to fundamental period of the 

structure, target ductility demand and seismic excitation characteristics. However, for practical 

purposes, optimum pattern can be considered independent of ground motion intensity, 

number of stories, post-yield slope and damping ratio.  

3. For a set of earthquakes with similar characteristics, the optimum load patterns were 

determined for a wide range of fundamental periods and target ductility demands. It is shown 

that, having the same story ductility demand, models designed according to the average of 
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optimum load patterns have relatively less structural weight in comparison with those 

designed conventionally. 

4. A more adequate load pattern is introduced for seismic design of building structures that is a 

function of fundamental period of the structure and the target ductility demand. It is shown that 

the proposed loading pattern is superior to the conventional loading patterns suggested by 

most seismic codes.  
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Notations 

The following symbols are used in this paper: 

α  = Convergence parameter in optimization algorithm 

λ = A coefficient to obtain lateral load distribution pattern 

µ = Ductility factor 

µi = Maximum ductility ratio at i
th
 story 

µt = Target ductility ratio 

ai = Constant coefficient at i
th
 story to obtain more adequate loading pattern 

bi = Constant coefficient at i
th
 story to obtain more adequate loading pattern 

ci = Constant coefficient at i
th
 story to obtain more adequate loading pattern 

di = Constant coefficient at i
th
 story to obtain more adequate loading pattern 

Fi = Lateral Force at i
th
 story 

Ft = Top Lateral force 

f = Cost objective function 
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hi = Height of i
th
 story 

k = Positive number as a power 

M = Local magnitudes of a seismic excitation 

n = Number of stories 

si = Shear Strength of i
th
 story 

[si]m = Shear Strength of i
th
 story at m

th
 iteration 

T = Fundamental period of the structure 

V = Base Shear 

wi = Weight of i
th
 story 

x = Design variable vector 
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Table 1. Strong ground motion characteristics 

Earthquake Station M PGA(g) USGS Soil 

Imperial Valley 1979 H-E04140 6.5 0.49 C 

Imperial Valley 1979 H-E04230 6.5 0.36 C 

Imperial Valley 1979 H-E05140 6.5 0.52 C 

Imperial Valley 1979 H-E05230 6.5 0.44 C 

Imperial Valley 1979 H-E08140 6.5 0.45 C 

Imperial Valley 1979 H-EDA360 6.5 0.48 C 

Northridge 1994 CNP196 6.7 0.42 C 

Northridge 1994 JEN022 6.7 0.42 C 

Northridge 1994 JEN292 6.7 0.59 C 

Northridge 1994 NWH360 6.7 0.59 C 

Northridge 1994 RRS228 6.7 0.84 C 

Northridge 1994 RRS318 6.7 0.47 C 

Northridge 1994 SCE288 6.7 0.49 C 

Northridge 1994 SCS052 6.7 0.61 C 

Northridge 1994 STC180 6.7 0.48 C 

Cape Mendocino 1992 PET000 7.1 0.59 C 

Duzce 1999 DZC270 7.1 0.54 C 

Lander 1992 YER270 7.3 0.25 C 

Parkfield 1966 C02065 6.1 0.48 C 

Tabas 1978 TAB-TR 7.4 0.85 C 
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Table 2. Constant coefficients of Equation (6) as a function of relative height 

Relative 

Height 
a b  100 c  100 d 

0 -5.3 38.8 23.7 39.9 

0.1 -8.2 49.0 22.2 29.6 

0.2 -10.6 59.2 19.6 18.4 

0.3 -12.7 70.5 16.5 9.8 

0.4 -12.3 81.0 9.8 5.4 

0.5 -10.5 91.3 4.0 2.2 

0.6 -8.4 103.2 0.1 -1.4 

0.7 -0.8 114.6 -5.4 -3.9 

0.8 10.3 127.2 -8.5 -7.2 

0.9 26.1 140.9 -10.7 -10.0 

1 49.8 157.0 -12.5 -12.1 
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Fig. 1. Typical shear building models 
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Fig. 2. Variation of COV of story ductility demands and total strength from UBC-97 designed model toward the 

final answer, 10-story shear building with T=1 Sec and µt=4, Northridge 1994 (CNP196) 
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Fig. 3. Comparison of UBC-97 and optimum designed models (a): lateral force distribution, (b): Story ductility 

pattern, 10-story shear building with T=1 Sec and µt=4, Northridge 1994 (CNP196) 
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Fig. 4. Variation of total strength for different values of convergence parameters, 10-story shear building with T=1 

Sec and µt=4, Northridge 1994 (CNP196) 

 

 

 

 

Fig. 5. Acceleration response spectra of Northridge earthquake (CNP196), Imperial Valley earthquake (H-

E08140), Cape Mendocino earthquake (PET090), and synthetic earthquake record 
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Fig. 6. Comparison of total strength demand for UBC-97 & Optimum distribution, 10 story shear building, T=1 Sec 

and µt=4 
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Fig. 7. Optimum lateral force distribution for different earthquakes, 10 story shear building with T=1 Sec and µt=4 
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Fig. 8. Optimum lateral force distribution for different ground motion intensities, 10-story shear building with T=1 

Sec and µt=4, Northridge 1994 (CNP196) 
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Fig. 9. Optimum lateral force distribution for different target ductility demands, 10 story shear building with T=1 

Sec, Northridge 1994 (CNP196) 
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Fig. 10. Optimum lateral force distribution for different fundamental periods, 10 story shear building with µt=4, 

Northridge 1994 (CNP196) 
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Fig. 11. Optimum lateral force distribution for different number of stories, 10 story shear building with T=1 Sec 

and µt=4, Northridge 1994 (CNP196) 
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Fig. 12. Optimum lateral force distribution for different damping ratios, 10-story shear building with T=1 Sec and 

µt=4, Northridge 1994 (CNP196) 

 

 

 

 

 

Fig. 13. Optimum lateral force distribution for different post-yield slope, 10 story shear building with T=1 Sec and 

µt=4, Northridge 1994 (CNP196) 
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Fig. 14.   The ratios of required to optimum structural weight for 10 story shear buildings with T=1 Sec and µt=4 

designed with the UBC-97 load pattern and average of optimum load patterns 
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Fig. 15. The ratio of required to optimum structural weight for the models designed with the UBC-97 load pattern, 

average of optimum load patterns, and Moghaddam and Mohammadi (2006) proposed load pattern, Average 

of 20 earthquakes. 
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Fig. 16. Correlation between Equation 6 and analytical results 
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