This is a repository copy of *Autism, the Integrations of 'Difference' and the Origins of Modern Human Behaviour*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/8638/

Version: Accepted Version

Article:

https://doi.org/10.1017/S0959774309000262
Autism, the integrations of ‘difference’ and the origins of modern human behaviour

Penny Spikins

Abstract

It is proposed here that the archaeological evidence for the emergence of ‘modern behaviour’ (160,000–40,000 bp) can best be explained as the rise of cognitive variation within populations through social mechanisms for integrating ‘different minds’, rather than by the development of a single ‘modern human mind’. Autism and the autistic spectrum within human populations are used as an example of ‘different minds’ which when integrated within society can confer various selective benefits. It is proposed that social mechanisms for incorporating autistic difference are visible in the archaeological record and that these develop sporadically from 160,000 years bp in association with evidence for their consequences in terms of technological innovations, improved efficiency in technological and natural spheres and innovative thinking. Whilst other explanations for the emergence of modern human behaviour may also contribute to observed changes, it is argued that the incorporation of cognitive differences played a significant role in the technological, social and symbolic expression of ‘modern’ behaviour.
Introduction

The appearance of modern human behaviour

The appearance of what has been termed ‘modern human behaviour’ has been a key area of archaeological discussion for many years. ‘Modern’ behaviour is identified in the archaeological record through the appearance of new behavioural elements broadly associated with the spread of anatomically modern humans (Stringer 2002, Mellars 1989a, 1989b, 1996, 1999, 2005, 2006, Hensilwood and Marean 2003), see table 1. Attention has particularly focused on technological/economic changes with the appearance of innovative, diverse and standardised flint tool technology (Mellars 1989a, 1989b, 1996, 2005, 2006, Bar-Yosef 2002) widespread bone technology (Mithen 1996, Mellars 1989a, b, 1996, 2005, Bar-Yosef 2002) and marine exploitation (Marean et al 2007) and on social/cognitive changes with the appearance of widespread evidence for the use of ochre (McBrearty and Brooks 2000, Marean 2007), art (Henshilwood et al 2001, Henshilwood and Marean 2003, Connard and Bolus 2003) elaborate burial (Mellars 1989a, 1989b, 1996, 1999) and long distance communication networks (Gamble 1999, Bar-Yosef 2002). The appearance of modern human behavioural traits is also associated with consequences within population dynamics and biology such as significant geographical expansion (Mellars 2006b,c), increases in longevity (Caspari and Lee 2006) and reductions in foraging stress (Kaufman 2001, Underdown 2006). Though there is broad agreement on the archaeological signatures of modern human behaviour (Hensilwood and Marean 2003, Mellars 2005, 2006a,b,c), its origins are variously seen as sudden and dramatic in their arrival (Mellars 2006c) or more slowly adopted (McBrearty and Brooks 2000, D’Errico et al 1998) and to variously exclude (Mellars 1989a, 1989b, 1996, 1999, 2005, 2006b, c) or include (D’Errico et al 1998) archaic species such as Neanderthals.

Modern human behaviour and key cognitive changes

It has been tempting to search for one key cognitive change which might provide a full explanation for the rise of ‘modern’ behaviour through the appearance of the ‘modern human mind’. Proposals for such a key change have included the fluid linkages of mental modules (Mithen 1995, 1996), development of modes of consciousness and trance states (Lewis-Williams ref), advances in working memory (Wynn and Coolenridge 2004), the rise of the capacity for symbolic thought (Mellars 1989a, 1989b, 1996) or changes in the construction of identity (Gamble 2007). Such cognitive changes might theoretically have occurred in the small populations in Africa which gave rise to modern humans (Mellars 2005a, 2005b, 2006). ‘Modern human behaviour’ would thus have spread with the progressive geographical expansion of biologically modern populations. Certainly elements of modern human behaviour are initially represented in Africa at about 100-160,000 years ago, around the time of the development of biologically modern human populations (Hensilwood and Marean 2003, Mellars 2006c, Marean et al 2007, Mellars 2007). MtDNA evidence further supports a potential population expansion out of Africa associated with modern behaviour at 60,000
years ago (Mellars 2006c, 2007) and ‘modern human behaviour’ also shows a marked
development and contrast to that of Neanderthals when modern humans expand into Europe
around 40-30,000 years ago.

However, though attempts have been made to apply directly progressive models of
behavioural changes (see Foley and Lahr 2003; Mellars 2006b,c) the archaeological record is
complex and in many regions defies a simple ‘spread’ model. If there is no simple ‘spread’ of
modern human behaviour the direct link to biology is called into question (Zilhão 2007).
Behavioural changes are for example less abrupt or less marked in Asia where symbolic
behaviour is not immediately expressed (James and Petraglia 2005) whilst in contrast modern
symbolic behaviour and particularly the use of red ochre appears to arise much earlier than
the posited origins of modern humans in Africa (McBrearty and Brooks 2000). In the Levant
(Kaufman 2001, Shea 2003) modern humans are present without any significant behavioural
change at 80,000 years ago and are subsequently replaced by Neanderthals. In Europe so
called ‘transitional industries’ illustrate a capacity in Neanderthals for reproducing ‘modern’
behaviour in personal ornamentation and stone tool types (Harrold 1989, Hublin et al 1996,
Various authors have suggested that the emergence of modern human behaviour had a
significant social component, though the precise character of this remains elusive (Gamble
2007, Zilhão 2007, Petitt 2007) and it is difficult to explain the progressive nature of modern
human behavioural change.

Significant questions
Several questions remain. Despite evidence for significant behavioural changes on a large
temporal and spatial scale, on a regional scale there is little absolute association between
genetically modern humans, recorded in mtDNA evidence and anatomically in cranial and
skeletal material, and ‘modern human behaviour’. Further research or interpretations appear
to be needed. There is no clear ‘map’ between behavioural and biological changes or
explanation for why large scale behavioural changes and population expansion occur
significantly (approximately 100,000 years) later then the biological origin of modern humans,
or the earliest evidence for such behaviour in the archaeological record. The nature and
causes of ‘modern human behaviour’ has remained open to debate (Kuhn and Hovers 2006),
with the situation complicated since the lack of *material expression* of behaviour cannot be
seen as evidence for its absence, the so called ‘Sapient Paradox’ (Renfrew 2007: 79).
Demographic changes have provided a recent key focus for explanations of the adoption of
innovations (Shennan 2001, Hovers and Belfer-Cohen 2006), with larger and more stable
populations more likely to adopt ‘inventions’ to become ‘innovations’ (Hovers and Belfer-
Cohen 2006) but these explanations still fail to explain why such demographic changes take
place. A focus on behavioural traits, without references to a theory of the social or cognitive
structures underlying behaviour is perhaps the root cause of difficulties in understanding this key stage (Hensilwood and Marean 2003).

Here it is argued that a key limitation to interpretations has been the assumption that modern humans can be characterised by a single ‘modern mind’ against which previous species might be compared. Much as there is no one single type of olfactory system that could be the ‘norm’ but instead a range of normal genetically coded variation in biology within populations (Weiss 2007), there may be no single ‘normal’ mind but a range of interrelated variations. A model of the origins of modern human behaviour as based on cognitive differences, potentially maintained through social mechanisms, might provide a better explanation for many of the characteristics of the archaeological record.

The autistic spectrum is used as an example of cognitive differences within populations which, through their integration within society, might play a significant role in the emergence of ‘modern human behaviour’.
Autism and the prehistory of cognitive differences

Autism as a significant ‘difference in mind’
Amongst cognitive based differences in ‘mind’, autism and autistic differences are particularly relevant to the question of cognitive differences and modern human behaviour. Although autism was once seen as a rare and poorly understood ‘disorder’, there have been significant advances in our understanding of the condition in recent years (Baron-Cohen 2006a; 2006b, Baird et al 2006, Grinker 2007). Whilst archaeology as a discipline is only beginning to take up the challenge of autism and population differences in cognition the potential role and significance to society of autistic conditions is increasingly clear.

The significance of autism has potentially been overlooked due to a traditional emphasis on autism as a severe disorder associated with extreme behaviour. Whilst the talents of autistic ‘savants’, such as ‘Nadia’ who had extraordinary drawing abilities despite almost no language (Selfe 1977, Treffert 1989) attract attention, these individuals are not only very rare but also clearly outside ‘society’ particularly given their inability to communicate effectively with others. Indeed the diagnostic criteria for autism reflect a focus on extreme and antisocial behaviour (table 2). In recent years however there has been an increasing focus on other autistic conditions, in particular Asperger’s Syndrome, which, whilst denoting a clear difference in ‘mind’ do not necessarily involve any significant social exclusion. The key significant different between Asperger’s Syndrome and classic autism is that these individuals can use language effectively (table 2) often being relatively successful in society with their ‘difference’ even other unrecognised until later life (Griffin 2006, Attwood 1998). Whilst those with Asperger’s Syndrome share difficulties in empathising (feeling an appropriate emotion in relation to another’s emotion, Baron-Cohen and Wheelwright 2004) with those with autism they may be socially competent, and able to predict behaviour, using a rule based method of socialising which nonetheless often ‘works’ (Baron-Cohen and Wheelwright 2004, Attwood 1998: 114, Baron-Cohen 2006a, 2006b). Consequently these individuals think ‘differently’ but may not behave in an extremely different way to others as they can learn (and discuss) what is ‘acceptable’ as rules (Baron-Cohen 2000; Molley and Vasil 2002) even if they lack the emotional understanding of other people which depends on empathising with another’s emotions.

Temple Grandin, professor of animal behaviour, provides a useful example of the level of effective integration within society which those with autistic conditions can play (Grandin 1995; Grandin and Johnson 2006). With marked language delays and inability to empathise with others she was diagnosed with severe autism in childhood. Through language therapy her communication skill later developed such that she is a leading author, with regular contributions to Science and Nature – effectively becoming someone with Asperger’s Syndrome with a role in society and considerable respect for her analytical abilities.
Several of the features of ‘milder’ autistic conditions such as Asperger’s have been linked to areas of particularly ‘brilliance’ or achievement (table 4) (Fitzgerald 2003; 2005, Fitzgerald and Walker 2006, Fitzgerald and O’Brien 2007, Ortiz 2008). It is not difficult to see how attention to detail, exceptional memory, a thirst for knowledge and narrow obsessive focus can lead to significant achievement in certain realms, particularly when often coupled with a desire for social isolation, a ‘turning away from everyday things’, a motivation for achievement in the advancement of knowledge and a unique single-mindedness even in the context of another’s distress. Indeed those with Asperger’s Syndrome typically have excellent abilities at understanding largely predictable systems such as engineering or computers, or the weather (Hermelin 2002, Baron-Cohen et al 2000) and often show an extraordinarily sophisticated understanding of complex predictable systems (Myers et al. 2004, O’Riordan et al 2001, Plaisted et al 1998). Their abilities to identify laws or patterns in complex data also give capacities for much original insight (Baron-Cohen 2006b: 4). Those with Asperger’s Syndrome may be playing an important role within society.

The prevalence of autistic conditions in populations
The prevalence of autistic conditions has recently been appreciated more clearly. Of course given the different definitions and understandings of the condition the rates of what is classed as ‘autistic’ vary. Some authors place figures of those with autistic conditions as around 1% (Wing 1981), in broad agreement with diagnosis rates based on strictly defined behavioural diagnostic criteria for autistic conditions in the UK from the Office of National Statistics figure of 0.9% (Williams, Higgins and Bryne 2005) and recent wide scale medical studies of 1.2% (Baird et al 2006). However research by Baron-Cohen based on differences in cognitive style would place the autistic extreme of ‘mind’ in the UK at around 2% (Baron-Cohen 2004, Baron-Cohen and Wheelwright 2004: 169). Different definitions of autism may give subtly different ‘rates’ (with rather higher rates if based on cognition rather than behaviour) but there is overall agreement on the persistent presence of numbers of autistic people within the population, and perhaps most significantly broad inter population agreements in rates across other populations (Wakabayashi et al 2006).

The cognitive basis of autism
Those with autistic conditions clearly ‘think differently’ from others. There are different theories as to the neurological basis of autism, such as deriving from under-functioning of mirror neurones (Williams et al 2001) or differences in higher level neural connections (Just et al 2007). However in functional terms, autism is traditionally associated with cognitively based deficiencies in ‘Theory of Mind’ (ToM). Theory of Mind is the ability to conceive of other’s intentions and beliefs. People may have differing abilities at understanding others, reflected in their ‘levels of intentionality’ (the extent to which they can understand the beliefs
of others about the beliefs of others etc) (Dunbar 2003; 2007, Mithen 1996). However whilst autism is associated with low levels of Theory of Mind abilities (Dunbar 2003, Baron-Cohen and Belmont 2005, Burns 2004, 2006), and understanding of intentionality, those with Asperger’s Syndrome may often pass Theory of Mind tests by using rules and logic about other’s beliefs (Baron-Cohen 2000; Molley and Vasil 2002). Indeed such ‘rules’ appear to be sufficient to allow them to cope in most social interactions. However autistic conditions are nonetheless a disadvantage in certain areas of social relationships. Indeed attention has focused recently on inabilities of those with autistic conditions to empathise with others (feel a feeling appropriate to another’s feeling, Baron-Cohen and Wheelwright 2004) and so to conceive of other’s emotional states (Salani et al 2007). Whilst Theory of Mind (other’s beliefs) abilities are reduced, it is the abilities to understand other’s emotions which are most significant in affecting the social relationships of those within autism.

Autism in social relationships
Despite advantages in certain domains, conditions such as Asperger’s Syndrome are generally a disadvantage in intimate social relationships. The ‘something’ missing in autism is the empathetic ability to relate to others emotions, to develop emotional rapport, and to compassionately invest in another’s wellbeing and feelings (Baron-Cohen and Wheelwright 2004, Baron-Cohen 2002, 2004, Salani et al 2007). Empathy and emotional rapport are key to social relationships. Indeed it is empathy, largely missing in those with autistic conditions, which ‘provides the glue which holds society together’ (Baron-Cohen and Wheelwright 2004: 163). Emotional rapport, and reciprocal emotional exchanges form a crucial component of almost all areas of intimate social life. Emotional rapport is essential to child development, forming the basis for cognitive development and secure relationships in later life (Evans 2001, Greenspan and Shanker 2004, Parkinson, Fischer and Manstead 2005, Gross 2006, Goleman 2006, Grieser and Kuhl 1998; Jaffe et al 2001, Falk 2005). Emotional rapport and the emotions based on interpersonal emotional reactions (or social or socio-moral emotions, Damasio 2000, Parkinson, Fischer and Manstead 2005) are also the basis for strong social bonds in adulthood. It is socio-moral emotions based on empathising such as love, remorse and compassion which provide the close social ties that link people together (Batson 1991, Berg, Dickhait and McCabe 1995, Frank 1998; 2001, Nesse 2001, Fiske 2002, Gintis et al 2003, Tuckler, Luu and Derryberry 2005) and form the basis for altruistic acts. Through empathising with others, or the group, and integrating these emotions with rational thought we routinely act on behalf of others even at our own cost (Frank 2001, Nesse 2001, Mukulincer and Shaver 2005, deWaal 2008), something alien to the predominantly self-regarding social relationships of our nearest relatives the chimpanzees (Jenson et al 2006). Indeed, an emotional investment in other’s wellbeing originating in the fleeting compassion of higher primates (deWaal 2008) appears to have a long history, from around 1.5 million years ago with the ‘care’ of debilitated KNM-ER 1808 for several weeks (Cameron and Groves 2004) to
much larger scale investments, even extending over many years in caring for the injured and infirm in Neanderthals (Spikins and Rutherford in prep).

Those with Asperger’s Syndrome function significantly differently within social relationships on two counts. Firstly they fail to interpret complex dynamic emotional signals, the rapid and empathetic chit-chat, gossip and humour of everyday life. Temple Grandin, illustrates this relationship particularly well. Temple is someone with an autistic mind who plays an important role in ‘society’ but remains outside, though nonetheless able to glimpse, the complex web of dynamic and rhythmic interpersonal emotions. She remarks

During the last couple of years I have become more aware of a kind of electricity that goes on between people. I have observed that when several people are together and having a good time their speech and laughter follow a rhythm. They will all laugh together then talk quietly until the next laughing cycle. I have always had a hard time fitting in with this rhythm, and I usually interrupt conversations without realising my mistake. The problem is that I can’t follow the rhythm (Grandin 1995: 91-91).

Secondly those with Asperger’s Syndrome can be motivated by different goals than others, and Fitzgerald and O’Brien (2007: 5) note that they ‘get their psychological highs on their breakthroughs in creative understanding’. Like those which attachment insecurities (Mukilincer and Shaver 2005) they don’t form part of the web of emotional commitment and ‘caring’ for others, which ‘feels good’ for those who act compassionately (Tuckler, Luu and Derryberry 2005). Indeed, one of the key characteristics for diagnosing historical figures with Asperger’s Syndrome has been a failure to take action to care for or protect ill or infirm spouses of children where no clear ‘rules’ exist to proscribe this (Fitzgerald 2005) and Gernsbacher, Dawson and Mottron (2006: 414) illustrate the differing emotional motivations and drive for achievement of those with autism with a quote from the famous inventor Nikola Tesla.

I do not think that there is any thrill that can go through the human heart like that felt by the inventor as he sees some creation of the brain unfolding to success… Such emotions make a man forget food, sleep, friends, love, everything… I do not think you can name many great inventions made by married men. (Pickover 1999: 35).

Life as a ‘high functioning’ autistic person within society can appear as if living in a different culture, which Sacks (1995) describes as being ‘An Anthropologist on Mars’.

The social roles of those with autistic conditions
It is not only the talents of those with Asperger’s Syndrome, but also their motivations which tend to lead them towards particular social roles. We can easily imagine how a unique focus

We can reasonably speculate that analogous social roles for those who were ‘different’ also existed in the past. Though there have not been any explicit studies of autism in ethnographically documented societies it is not difficult to see how such people might play a role in early small scale societies. ‘Difference’ in mind is often accepted and may generate particular social roles in small scale communities (Porr and Alt 2006). In ethnographically documented hunter-gatherers status and respect may be aided by autistic traits such as a unique understanding of technology and natural systems and unique focus (such as a particular proficiency in hunting or in creating precision or complex technology). Amongst the Selk’nam for example a solitary hunter, particularly specialised in hunting cormorants achieved a certain notable status (Bridges 1948). Social roles for difficult or controlling people also exist, for example amongst the !Kung who use such individuals to negotiate with other groups (Lee 1979). At points of stress where it may not be useful to empathise with others distress humble leaders (who are normally preferred in egalitarian societies, Boehm 1993) may be replaced by dominant or controlling ‘war leaders’ perhaps more suited to organising behaviour forcibly (Van Vugt and De Cremer 2002; Van Vugt 2006: 363, Boehm 1993: 233). Clear difference in mind in itself may also generate particular spiritual status (Carod-Artal and Vásquez Cabrera 2007, Porr and Alt 2006).
Selection of those with autistic traits

The situational success of autistic conditions also provide an explanation for their maintenance in populations. Autistic conditions are highly heritable (Folstein and Rutter 1977; Bolton and Rutter 1990; Bailey et al 1995; Bailey et al 1998; Folstein and Rutter 1988; Gillberg 1991; Baron-Cohen 1997; 1998, Lamb et al 2000, Molden and Rubenstein 2006, Alarcón et al 2008) and Baron-Cohen (2006a; 2006b) for example suggests that preferential mating between ‘like minded’ peoples with expressions of Asperger’s Syndrome may be maintaining autism and generating more extreme forms in their children. Baron-Cohen’s ‘assortative mating’ theory is supported by evidence of high rates of autism amongst engineers and within families of engineers and those working in information technology (Baron-Cohen et al 1997; 1998) and geographic ‘hotspots’ of diagnosed severe autism at Cambridge, MIT and Stamford. Alternatively particularly nurturing individuals may be attracted by autistic differences (Attwood 2003, Rodman 2003). Relatively common conditions such as attachment insecurities in development which can constrain abilities to make emotional commitments to others in later life (Mukuliner and Shaver 2005) can make the ‘fairness’ of those with autism attractive partners for some (Rodman 2003), plus the potential arenas for success and achievement for those people those with ‘a dash of autism’ may also make their social status attractive. Autism, as a condition which is common, heritable and not necessarily harmful, even sometimes advantageous (Gernsbacher, Dawson and Mottron 2006) may be being maintained in populations through diverse means.

Autistic conditions in evolutionary perspective

From an evolutionary perspective there may be something particularly significant about autistic individuals. Rejman (2005) sees autism as key to human societies, and in reference to the potential role of autism in human evolution quotes G. B. Shaw as saying ‘The reasonable man adapts himself to the world. The unreasonable man tries to adapt the world to himself. Therefore all progress depends upon the unreasonable man.’ Fitzgerald even boldly remarks that ‘All human evolution was driven by slightly autistic Asperger’s and autistic people. The human race would still be sitting around in caves chattering to each other if it were not for them’ (quoted in Griffin 2006: 27). Autism, and indeed other genetically based cognitive differences, might not be as peripheral to the origins and maintenance of ‘modern human behaviour’ as we might traditionally expect. Although our conscious concept of our own mind as a model for other’s (Humphrey 1984 can make conceiving of widespread autistic conditions in society challenging, ‘mild’ autistic conditions such as Asperger’s Syndrome are clearly something we as archaeologists need to take into account in interpretation of prehistoric societies.
Autism in Prehistory

A knowledge of the situational advantages of autistic conditions and roles of individuals with these conditions can shed insight on key features of the archaeological record, and developments around the Middle-Upper Palaeolithic transition in particular.

One area of early Prehistory which has attracted particular attention within discussions of autism is that of the Upper Paleolithic cave art of south-west Europe. Humphrey (1998) highlights key similarities between such art and the drawings of Nadia, an autistic ‘savant’ who had virtually no command of language but exceptional drawing ability, and Kellman (1998) draws similar analogies between such art and ‘Jamie’ a similarly talented autistic ‘savant’ (Kellman 1998). The similarities are apparently significant, with both art forms showing unusual attention to precise details, exceptional memory abilities and a very literal (rather than metaphorical) rendition of the world. Humphrey concludes that the only explanation may be that the Upper Palaeolithic artists indeed shared cognitive similarities with Nadia, such as a literal view of the world, and may not have had in that case truly ‘modern’ minds. This explanation for the similarities is seen as problematic (Bahn 1998) and certainly is difficult to reconcile with other elements of the archaeological record, such as symbolic burial and personal ornamentation which occur much earlier and are generally interpreted in terms of complex symbolic thought (Milhen 1998b, Tattersall 1998). A further argument against such an interpretation is that even much earlier ‘art’ such as a Blombos Cave (Henshilwood et al 2002a, 2002b, 2004) is not in the precisely realistic style found in south-west Europe but demonstrates an understanding of symbolic, rather than purely literal, thought.

Trehin (2002, 2003) in contrast concludes that the similarities in such Palaeolithic art to that of autistic savants provides evidence that the art was made my autistic savants themselves and stresses the role of such individuals in human evolution. This is equally problematic as an interpretation however and fails to explain the ubiquitousness of this art form, particularly given similarities between parietal and mobiliary art (Bahn and Vertut 1997) and the continuity of art despite apparent rareness of savants with artistic genius, particularly within small scale Palaeolithic populations.

An understanding of the characteristics, prevalence and social roles of those with Asperger’s Syndrome however illustrates that there is no need to recourse to either explanation. Those with Asperger’s Syndrome share cognitive tendencies such as an attention to detail, exceptional memory and precise replication with those with more ‘severe’ (socially debilitating) forms of autism. Not only is Asperger’s Syndrome more common, but we know that these linguistic competent individuals are very influential in the spread of their ideas. Few would doubt the influence of figures such as Einstein, Darwin, Newton, Van Gogh or Mozart, apparently with Asperger’s Syndrome, on science or the arts, and indeed Temple Grandin has had significant influence within the field of animal husbandry and abbatoir design.
(Grandin and Johnson 2006). Those with Asperger’s Syndrome clearly have an influence on ideas and ways of seeing things. Indeed people living in close relationships with those with Asperger’s Syndrome are also known to develop ‘autistic thinking’ (Aston 2001) and it is not difficult to see that influential people with Asperger’s can be the hub of a spread not only of ideas, inventions, concepts but more profoundly of ways of thought. We are after all in modern society able to think ‘autistically’ or in purely rule based and analytical terms, and are explicitly thought such thinking styles through our system of education. That is not to say the influence of those with Asperger’s Syndrome worked in the same manner in early prehistoric societies as in our own nonetheless. The nature of Upper Palaeolithic art may indeed provide evidence for the form of transmission of visual ideas, with Haworth (1998) suggesting that Upper Palaeolithic language was more visually based, powerfully focusing and disseminating thought on visual representation.

Upper Palaeolithic art in south-west Europe may have drawn particular attention in relation to traits of autism but it is not unique in demonstrating ‘autistic’ thinking. Indeed other elements of the archaeological record might display similarly surprising attention to detail, and absolute replication as Palaeolithic art – most notably precise, detailed and standardised technology such as microblade industries at Howiesoon’s Poort (Wurtz 1999, Henshilwood et al 2001, Mellars 2006b, 2007). Rather than evidence for a lack of modern minds these developments are perhaps rather more evidence of the emergence of cognitive modernity as cognitive differences in mind within populations. Indeed if, like many researchers, we view modern human cognitive differences as a spectrum of difference of which the autistic spectrum is only one element (Baron-Cohen 2002, 2004, 2006b, Crespi 2006, Nettle 2005, 2006b), we can see the technological innovations of the Middle-Upper Palaeolithic transition as evidence for the rise of this characteristic ‘spectrum’ and the activities and influence of the ‘technologically minded’ on society.

Viewed with an understanding of the social role of autistic conditions it is difficult to escape the relationship between the ‘package of developments’ (Mellars 2007: 5) in Africa associated with the emergence of modern humans, and the focus on systems, precision and technological order seen in Asperger’s Syndrome and in those with a more ‘technologically minded’ personality. From some of the earliest industries associated with this transition we the emergence of precision working, particularly within microlithic industries such as those of Howiesoon’s Poort (Wurtz 1999, Henshilwood et al 2001), as well as clear attention to detail and adherence to strict rules in the new levels of standardisation of artefact forms (Mellars 2006b, 2007). In terms of rigidly analytical thinking we also see the emergence of a new efficiency in tools, and the use of ‘engineered’ solutions such as projectile weapons (Shea 2003) and more efficient use of blade technology (Mellars 2006, Shea 2003). Such improved efficiencies contribute to reductions in resource stress (Kaufman 2001, Underdown 2006). Rigidly ordered analytical thinking is also illustrated in the emergence of calendrical or rigidly
structured notation systems (Marshack 1991, Robinson 1992). Moreover, perhaps most
tellingly evidence for a range of ‘different thinking’ comes from the emergence of the
applications of significant insights, and a new rapidity in innovation and willingness to ‘break
with the norm’ (Hovers and Belfer-Cohen 2006). The significance of the ‘human revolution’
may be as a revolution captured in differences within society, rather than primarily a
revolution between any single mind and what came before.

Can we therefore accredit the technological changes, and the ‘success’ of modern humans to
the rise of autistic thinking? This would perhaps be simplistic. It might rather be argued that
social changes allowed those who were ‘different’ to be incorporated into society, and their
talents exploited rather than leaving the ‘different’ outside in the cold.
Autism and the social integration of difference

The key to the role of autism in the emergence of modern human behaviour may be argued to lie, not in autistic individuals themselves, but in the cultural mechanisms which allow their integration. It is, after all, ‘culture’ and most particularly the structure of language, which dictates that Einstein is merely talented and ‘eccentric’ whereas Nadia, unable to communicate effectively with language was talented but ‘disordered’. Indeed from this perspective we can begin to at least speculate that several social mechanisms within cultures could have developed in a form and structure which allows the ‘integration of difference’ and formed a bridge between different minds.

Language.
Language appears to be particularly important in integrating those with Asperger’s Syndrome in society. Language provides the ‘codification’ which both structures and ‘codes’ meaning, and gives a permanence to understandings which have a commonality across different minds. As Baron-Cohen illustrates language ability is the key threshold dividing socially functioning individuals with ‘Asperger’s Syndrome’ from those with ‘autism’ (Baron-Cohen 2006a, see also Attwood 1998, 2006), as shown in the diagnostic criteria (table 2 & 3). In this context, whilst Temple Grandin cannot understand dynamic empathetic social interactions she is more than capable of communicating her ideas and opinions (including on her inability to understand complex emotional exchanges) through our common understanding of structured language. Language is by no means perfect in communicating between different minds, and misunderstandings of meaning (particularly in relation to subtle emotional expression) often occur with those with Asperger’s Syndrome. These misunderstandings can normally be explained nonetheless (a dictionary providing Asperger interpretations of common phrases even exists, Stuart-Hamilton 2006). Language can, in a sense, solves even the misunderstanding created through its use.

Symbolic material culture
‘Language’ of course extends beyond spoken words and text. As archaeologists are acutely aware, material culture and material symbolism works in a way which is analogous to language (Hodder 1989, Tilley 1991). In all cultures ‘codes’ of dress and adornment exist and rule based systems of material culture ‘code’ meaning in material objects in similar ways to spoken language or text. Clear material symbols (such as wedding rings) function to explicitly codify emotional relationships and in doing so make them understandable and readable to autistic minds. Subtle material meanings may be lost on certain minds (or their ambiguity exploited by others, Tilley 1991) but nonetheless the key communication and facility for collaboration is made. Language and material symbolism both clearly ‘work’ in making collaboration and communication across different minds possible. As Attwood (2003) illustrates in his discussion of the very different meaning of ‘love’ between those with
Asperger’s Syndrome and their neurotypical partners, different meanings can and do work to ensure communication and collaboration.

Rules to govern relationships outside of emotional attachments
There may also be social mechanisms which help those with autism navigate social relationships. Fiske also points to the role of universal structures to social relationships and rules of social contracts shared by both modern societies and ethnographically documented groups (Fiske 1991, 2002). Beyond close altruistic relationships for example he points to a sphere of ‘tit-for-tat’ relationships which characterise less close social connections, and potentially provide a structure for relating to autistic ‘fairness’ (Fiske 1991, 2002). Further research might clarify other rule based social mechanisms which forge effective communication and collaborations between the analytical and the emotional world of different minds.

Social facilities to accommodate difference and social tensions
Whatever the advantages of integrating autistic minds, the behavioural traits associated with autism (table 2 & 3), such as single mindedness, a lack of concern with social norms, egocentricity, or obsessive concerns with detail also create social tensions. Other social mechanisms identified as ‘modern human behaviour’ might also exist to promote social cohesion within groups pressurised by the integration of ‘different minds’. Mithen (2005) illustrates how performance and music provide a context in modern humans for collaboration, stemming from earlier origins, based on group and herd emotions and a feeling of well being through boundary loss. Involvement in communal dance and music clearly forges a sense of emotional wellbeing and trust which is also important for group cohesion. Equally individuals such as shaman, found universally in hunter-gatherer groups (Aldhouse-Green and Aldhouse-Green 2005) and perhaps with a particularly empathetic or socially orientated personality, may arise to perform a key role in fostering social cohesion. Evidence for music, collaborative ritual (particularly with burial) and shamanic practices have been associated with ‘modern human behaviour’ (table 5).

Certain spheres of social life may also provide a level of lawfulness and predictability which allows extreme systemisers to function ‘sheltered’ from the confusing intensity of dynamic empathetic interactions. It has been suggested that such spheres within modern society provide an environment in which those with Asperger’s Syndrome can thrive – with certain modern environments having high predictability, clear rules, little change and a low intensity or high rule base to social interaction, and in these spheres the areas of ability of extreme systemisers may make a valuable contribution. Griffin (2007) points to the legal system and academia, with Rodman commenting that ‘universities provide a sheltered workshop for autistic thinking’ (Rodman 2003). Certain individuals can also live rather sheltered and focused lives in ethnographically documented groups (such as Talimeot amongst the
Selk’nam, Briggs 1948). A study of social dynamics in Mesolithic Europe supports the separation of different spheres, showing that while in the ‘emotional and social’ arena burial rites are intensely changeable, so changeable in fact that ‘anything goes’ and methods of burial defy any overall generalisation (Schulting 1998), in contrast technology (the area of mechanics and physical systems) remains remarkably constant in this period (Spikins in press). The more clearly structured living spaces characteristic of ‘modern human behaviour’ may provide one example of the rise of spatially differentiated spheres of social relationships, and the possibilities for certain individuals to isolate themselves from intense emotional or unpredictable activities whilst remaining within society (see table 5).

Social controls on potentially antisocial behaviour
Being ‘unreasonable’ may go beyond tolerance and accommodation and difficulties with social norms, an egocentric focus, and controlling or dominant behaviour may also present more serious threats to group autonomy. The ‘different’ and often difficult individual is always present in ethnographic accounts, not matter how strong an ideologically focus exists on collective wellbeing. Amongst the Inuit Briggs notes that tempestuous Niqi and dominant, egocentric dominating Inuttiaq were tolerated whilst their behaviour remained within certain limits for example (Briggs 1980). Tolerance of very different behaviour in small scale societies is typically broad (Carod-Artal and Vásquez Cabrera 2007), but never unlimited where antisocial behaviour is concerned, and ethnographic accounts also provide evidence of the type of mechanism which limit antisocial behaviour. Boehm (1993) studies in detail social dynamics which prevent dominance in hunter-gatherer societies and illustrates that group action motivated by moralistic stances frequently motivates the expulsion or assassination of dominant individuals, Failure to abide by social rules may lead to exclusions for example and Bird-David illustrates that the Nyaka only tolerated a certain amount of egocentric exploitation of the sharing rules by one individual before she was conscientiously avoided (Bird-David 1990; 1992). We can also document the development of social controls in the archaeological record of modern human behaviour (table 5) and document social controls on dominance within the burial record of Mesolithic Europe (Spikins 2008).

A ‘society of difference’
A society made up of ‘different minds’, held together by social processes, is very different from one made up of very similar cognitions (fig. 1), and it is argued that it is the development of a ‘society of difference’ which marked the emergence of modern human behaviour.

Though autistic minds present their challenges to others, their incorporation into society would clearly lead to certain advantages. We might imagine a gradual and progressive adoption of social mechanisms to incorporate differences allowing the talents of autistic individuals to be exploited in technological/economic changes, with consequences for population dynamics (fig. 2). Autistic individuals with a focus on technical or natural systems might be valued ‘specialists’ in technological or natural realms, able to design new technology, analyse
distributions of resources or patterns of animal behaviour. Rigidly analytical thinking (both by autistic individuals and through their influence) might improve technology and foraging efficiency, leading to reduced foraging stress and greater longevity, and an expansion of the resource base carrying the potential for population increase. Autistic and other ‘different’ thinking might also play an important role in challenging and expanding the cognitive capacities, creativity and innovation of modern human populations. A set of ‘different minds’ for example would also give substantial adaptability to environmental changes, with potential for important creativity and innovation from those whose ‘difference’ challenged ‘normal’ thinking. The development of social mechanisms for integrating ‘different minds’ might also have had further effects, perhaps allowing rule based structures to be used in communication with distant unrelated groups of people and even with other species of humans met through expansion, or allowing other differences to be promoted within society. Incorporation of autistic difference might also have other social effects, such as social tensions between ‘different minds’ and potential leadership roles in extreme stress situations which might have played a large role in geographic expansions.

Outside of any potential long term value to society, it may also be possible that changes in emotional commitment (Spikins and Rutherford in prep), and a widespread desire to support those who might not contribute emotionally to the group, perhaps coupled with cognitive abilities through orders of intentionality to believe in common goals (Dunbar 2007) allowed the support of autistic people. Whatever the motivations for their adoption the rise of social mechanisms for integrating the ‘different mind’ may provide an explanation for the coincidence of technological and subsistence innovations with social changes in the archaeological record.
Different minds and the emergence of modern human behaviour in the archaeological record

Whilst we might view the archaeological evidence for the ‘human revolution’ through the lens of autism and conclude that ‘autistic thinking’ played a singularly important role, there is good reason to consider the social context in which such thinking might be incorporated. Given the dependence of those with autistic conditions on social mechanisms which foster inclusion in the present, a more contextualised perspective would be that social changes, allowing greater inclusion of those who are ‘different’, allowed the integration of autistic thinking into society at the ‘human revolution’.

It is certainly notable that on a global level the suite of changes associated with modern human behaviour ‘map onto’ the development of social mechanisms for inclusion, resultant technological and economic changes and population expansion (table 5). Thus we see new ‘rule based’ means of communication being developed in the form of personal ornamentation (explicitly symbolising emotional ties and affiliations). We see potentially early evidence of beads in the Near East in the form of two perforated marine shells at Skhul dated to 100-135kbp (Vanhaeren et al. 2006, D’Errico and Vanhaeren 2007) and selection of shells with natural perforations at Quafzeh dated to 100kbp (McBrearty and Brooks 2000, D’Errico and Vanhaeren 2007) with the clearest evidence (41 marine shell beads) from Blombos Cave, amongst the Still Bay assemblage dated to 75kbp (Henshilwood et al 2004, D’Errico et al 2005, Zilhao 2007). We also see evidence for the means of cementing social ties across communities, such as with the emergence of communal music (Mithen 2005) (with clear evidence for musical instruments restricted to a modern human context), and commonly understood abstract symbols (such abstract art at Blombos cave dated to 75kbp, D’Errico, Henshilwood and Nilssen 2001, Henshilwood et al 2001, 2002). Symbolic communication systems also begin to reflect a sense of shared cohesive community with regional styles (D’Errico and Vanhaeren 2007).

Such capacities for inclusion not only of autistic individuals, but through their influence capacities for analytical ‘autistic thinking’, also match up with resulting technological change with modern human behaviour illustrated by precise, standardised and innovative technology (such as bladelet technology), engineered to specific needs. Technological innovations also include the use of novel materials (eg bone artefacts at Blombos Cave, Henshilwood et al 2002), the rise of multi-component tools (eg hafted inserts at Klasies River Mouth, Deacon and Deacon 1999) and the more elaborate and technological use of fire in hearths (Bar-Yosef 2002). Economic innovations entailing the use of complex ‘engineered’ technology include the emerging exploitation of new marine resources, such as in South Africa at Pinnacle Point (Marean et al 2007) and more difficult terrestrial resources such as cape buffalo or bushpig.

In terms of dealing with the difficulties encountered with ‘difference’ in mind we also see emerging spatial differentiation of spheres of activity (in the form of structured differentiated domestic deposits at sites, Mellars 1996, Pettit 1997) and in means dealing with serious conflicts forcibly (such as the development of projectile technology, Shea 2003: 183, Knecht 1997, Larsen-Peterken 1993, Bar-Yosef 2002). We also see result of the potential exploitation of analytical spatial and memory skills, improved efficiencies in technology and resource exploitation and potentially responses to social tensions in corresponding population expansion, both geographically and into new habitats (Mellars 2006b, 2007).

The sequence of such changes with the emergence of expansion of modern humans ‘out of Africa’ also provides support for the theory. In this context, the earliest evidence for social mechanisms for integration in the form of rule based symbolic communication comes from South Africa. Here we see early sporadic evidence for symbolism such as with the evidence for use of pigment in the Middle Stone Age (Clark et al 2003). At 165,000 (broadly contemporary with emerging modern humans) we see use of red ochre which we presume carried and codified a clear ‘meaning’ at Pinnacle Point, and in association with this technological and subsistence changes in the adoption of marine exploitation patterns and exploitation of shellfish (Marean et al 2007). Somewhat later at Blombos Cave at 75,000 – 80,000 bp, we see more explicitly structured evidence for symbolism, and regular notational marks, associated with subsistence changes (Henshilwood et al 2002a, 2002b, 2004) and precise, standardised, efficient technology with Howiesons Poort (Wurtz 1999, Henshilwood et al 2001). We might interpret this evidence in terms of early signs of social mechanisms for integration which might emerge gradually and perhaps sporadically, possibly until pressure to formalise such mechanisms leads to sustained adoption.

The spread of modern humans and the sequence of emergence of ‘modern human behaviour’ in the Levant supports the scenario of a progressive adoption of social mechanisms and the incorporation of different minds. Here social mechanisms for integration in the form of evidence for a symbolic burial also occurs early but very sporadically at 130-80kbp associated with biologically modern humans and with subtle evidence for more efficient technology (Shea 2003). However these modern humans with ‘incipient methods of integration’ are displaced by Neanderthals in this region at 80kbp (Shea suggests due to Neanderthals advantages in their rugged physique and abilities in confrontational hunting). Modern humans only return to displace Neanderthals with the formalisation of social mechanisms for integration at 43-30kbp. At this date we see widespread symbolic communication, (with the use of red ochre, and personal ornamentation) and elaborate burial ritual associated with detailed, efficient, standardised technology (in the form of prismatic blades, projectile technology). It appears
that social mechanisms may reach a ‘point of no return’ where rigidly analytical thinking (cemented into society through intuitive and emotional support) becomes part and parcel of adaptations and ‘autistic thinking’ provides a key role in supporting and maintaining technological and subsistence efficiency.

The distinctions between modern human and Neanderthal behaviour are however not always clear cut. The evidence for burial of the dead by Neanderthals (Harrold 1980, Belfer-Cohen 1992, Riel-Salvatore & Clark 2001, Pettitt 2002) and for their use of personal ornaments (Hublin et al 1996, Mellars 1999, 2004, Harrold and Otte 2001, Otte 2003) suggests a sophisticated social life and it can be hard to define a ‘threshold’ separating Neanderthals from modern humans. This might be what could be expected if Neanderthals showed some level of coding and structuring of meanings, or other social mechanisms which supported at least a certain level of ‘difference’. It seems likely that Neanderthals had complex language at least (Mithen 2005, Krause et al 2007). The existence of personal ornamentation, such as in the Chatelperronian at St Césaire, might support this interpretation. Nonetheless as we have seen Neanderthal society appears to be ‘different’, socially, technologically, economically and on the level of population expansion to that of modern humans. It may be that the use of personal ornamentation was prompted by interaction with modern humans and demonstrates a ‘hi-jacking’ of mechanisms for within species communication in modern humans to that between two different species. Equally language and some level of symbolic thought might have existed which did not necessarily reach a level or be of a character which might forge communication across cognitive differences.

Undoubtedly various issues and questions remain in applying ‘different minds theory’ to the archaeological record. The development of social mechanisms including symbolism and the emergence of modern human behaviour is yet to be clear in Asia (James and Petraglia 2005) for example, and further research clearly remains to be carried out. Nonetheless whilst other explanations for the emergence of modern human behaviour exist (and are not necessarily
mutually exclusive), the integration of different minds and the subsequent incorporation of particularly autistic talents in society provides a potential important explanation for the character, association and timing of the suite of traits associated with ‘modern human behaviour’ in the archaeological record.
Further Issues

‘Different minds theory’ remains to be explored in depth. The model (fig. 1) suggests that cognitive differences existed prior to the emergence of modern humans, with those with autistic minds excluded from society. However in an alternative scenario the autistic spectrum of difference might be ‘new’ to the genetic and biological construction of modern humans as a species. Autistic talents might provide a new potential which is gradually exploited by modern humans. This alternative scenario is difficult to evaluate on the basis of current evidence. Theory of Mind is documented in chimpanzees (Dunbar 2003, Tomasello, Call and Hare 2003) and recent studies have focused on emotional empathy in other primates (deWaal 2008) however the realm of cognitive differences within other primates (and the extent to which this is integrated as any social advantage) remains to be explored. Autistic differences may be ‘new’ to the biology of emergent modern human populations and ‘exploited’ soon after their development, or may be an infrequent genetic difference observable in earlier species.

Whilst Baron-Cohen (2001, 2002, 2004, 2006a, 2006b, 2006b) and others (Nettle 2006a, Crespi 2006) stress autism as a spectrum of differences displayed across the population, yet others might maintain that autism is a discrete disorder (Happé and Frith 2006). In the former case we might imagine that social mechanisms come into play to integrate substantially or marginally ‘different’ individuals depending on context. In the latter the ‘disorder’ of autism would be maintained through emotional commitments of others and social mechanisms for integration, and its elements of autistic genius and a rigid autistic approach both provide concrete innovations and an influence on the thinking of others. Whilst the author finds the former characterisation of ‘autism’ as a population cline in cognitive abilities the more likely, the latter would generate clearly similar behavioural products in the archaeological record. Further research might elucidate the issue.

There is also the issue of other differences in ‘mind’. Autism was used as the illustration here, and provides a particularly interesting case as there is good evidence that autistic difference is a fundamental biological component of human populations. However ‘difference’ can constructed in different ways and other biological differences also exist in human populations which might have played an equally important role. Nettle and Clegg (2005) highlight the importance of schizophrenia which appears to follow a similar pattern of selection and maintenance in populations as autism. Whilst certain expressions of genes for schizophrenia can be very disadvantageous, at a lower expression they can confer positive advantages in terms of creativity. Schizophrenia, like autism, is also tempered or effected by environment and may only be expressed or diagnosed as ‘disorder’ under certain conditions. The selection and incorporation of schizophrenia/creativity might also have been an importance element of incorporated ‘difference’ in modern human behaviour.
Other biological differences might also be described or researched. Baron-Cohen and Dunbar both stress the emergence of a few potentially significant individuals with extraordinary social skills (and potentially limited technological capacities) in human evolution. Dunbar related those with ‘higher order intentionality’ to roles as ritual leaders, whilst Baron-Cohen relates those with ‘extreme empathy’ to roles in caring situations such as psychotherapists and nurses (Baron-Cohen 2004). These individuals might play a key role in facilitating group action non-coeriously, as we know to be the norm in ethnographically documented small scale hunter-gatherer groups (Boehm 1993; 1999). We might consider that such individuals may have played an important role in social cohesion and the integration of different minds.

Difference may also have been important in modern human behaviour in ways that were almost exclusively social. Although there is evidence for modern sex differences in mind particularly in verbal and spatial reasoning (Halpern 1992, Connellan et al 2001, Baron-Cohen 2002, 2004, 2006c, Nettle 2006a) and some authors would see such differences as the ‘middle ground’ of the autistic spectrum (Baron-Cohen 2002, 2004, Baron-Cohen and Wheelwright 2004) gender based social roles seem to be largely culturally constructed. Gender roles and the sexual division of labour might have been a difference particular to modern humans and significant in their relative success and expansion nonetheless (Balme and Bowdler 2006), perhaps even exploiting concepts of specialised spheres and roles developed through integration of autism or other extremes of ‘difference’.

Other ‘differences’ may also contribute to personalities, social roles and humans as a highly polymorphic, adaptable species and society in other ways. Depression (Murphy and Stich 2000), different attachment styles (Goleman 2006 Mikulincer and Shaver 2005, Mikulincer et al 2005) or other effects of childhood experiences (Bateson and Martin 2000) may also lead to the development of different social roles. Both the active construction, as well as the integration of cognitive ‘difference’ may have been a distinctive part of ‘modern human behaviour’. Further research into the genetic and social construction, incorporation and exploitation of cognitive ‘difference’ in ethnographic populations might contribute to this question.
Conclusions

‘Difference’ in mind may have been particularly significant in the emergence of modern human behaviour. Yet ‘difference’ can also be difficult to discuss or approach. Our attitudes to ‘difference’ pervade our understanding of who we are, and of where we come from, including our understanding of our own evolution and early prehistory. Differences between ourselves and others can seem threatening to our sense of self, or even dangerous in their unpredictability.

It is notable that one of the most enduring images in discussions of early humans has been Carleton Coon’s depiction of a Neanderthal wearing a suit and hat (fig. 3), supposedly unnoticeable in a New York subway (Coon 1939, Stringer and Gamble 1993: 28). On one level this depiction simply illustrates that morphological differences between modern humans and Neanderthals, particularly the pronounced brow ridge of Neanderthals, could easily be disguised. On another however the image implies that if Neanderthals could wield the social mechanisms of society to allow their integration even marked differences, physically or cognitively, might be unproblematic. The image stands well beyond Coon’s interpretations of races, to mean something quite different – it reminds us quite profoundly that as long as the social rules are followed even a Neanderthal might find a place in society. Often it is these rules and structures to relationships with others which allay our fears of what difference might engender and support our sympathies and tendencies to social inclusion. In showing a Neanderthal as suited and ‘social’, that is aware of the social rules and norms of interaction, Coon makes even a different species of human, separated by hundreds of thousands of years of evolution, familiar and approachable.

Cognitive differences within our own species, particularly those which characterise the ‘autistic spectrum’, are far from insignificant. Yet, whatever our own place on the autistic spectrum, we all use and find familiar such social mechanisms to communicate with those around us who may be cognitively very different from ourselves. It is argued here that the existence and incorporation of such difference (and potentially others) may have been a crucial part of modern human success. Indeed, it may not have been one ‘modern human mind’ but this integration of different minds which created what has been dubbed the ‘human revolution’.
Acknowledgements

I would like to thank Terry O'Connor, Steve Roskams, Geoff Bailey, Don Brothwell, Mark Edmonds, Daniel Nettle, Bruce Charlton and Wendy Romer for valuable comments, support, advice and suggestions on earlier drafts of this paper and/or the ideas within it, and also my seminar groups of 2006-7 and 2007-8 for lively discussion and ideas about cognition and Neanderthals. I would also like to thank four anonymous referees for their helpful comments and advice, and various individuals who are cognitively different from myself for welcome inspiration, discussion, support and comments on the concepts in this paper.

References

Baron-Cohen, S & Wheelwright, S. 2004. The Empathy Quotient: An Investigation of Adults with Asperger Syndrome or High Functioning Autism, and Normal Sex Differences, *Journal of Autism and Developmental Disorders* 34, 2, 163-175

Hodder, I. 1989. This is not an article about material culture as text, *Journal of Anthropological Archaeology* 8: 250-69

James, H. V. A. & Petraglia, M. D., 2005. Modern Human Origins and the evolution of behaviour in the Late Pleistocene Record of South Asia. *Current Anthropology* 46, s3-27

Pettitt, P., (2007) Trajectories before the transition, and revolutions that were or were not, *Journal of Human Evolution* 53 (6), p755-759.

Spikins, P. A. 2007. Letters to the Editor, Human Givens 14 (1)

Spikins, P. A. The Bashful and the Boastful: Approaches to authorities in Mesolithic Europe, submitted to Journal of World Prehistory

Social structures and communication mechanisms
- Long-distance exchange networks
- Personal ornamentation
- Symbolic expression and use of pigment
- Notched and incised objects (bone, egg shell, ochre, stone)
- Burials with grave goods, ochre, ritual objects

Technological changes in terms of adoption of innovative technology, standardisation, and precision in technical artefacts
- New lithic technologies
- ‘Improved’ (more efficient) technology
- Standardisation with formal tool categories
- Complex tool designs eg Hafting and composite tools
- Tools in novel materials eg bone, antler
- Special purpose tools eg projectiles, geometrics
- Increased number of tool categories

Subsistence changes, particularly with innovative and structured/standardised exploitation patterns
- Increased diet breadth
- Specialised hunting of large, dangerous animals
- Scheduling and seasonality in resource exploitation
- More efficient foraging strategies
- Intensification of resource extraction (aquatic and vegetable)

Population dynamics
- Increased population densities
- Range of previously unoccupied regions
- Geographic variation in formal categories
- Temporal variation in formal categories
- Long distance procurement and exchange of raw materials
- Curation of exotic raw materials
- Site reoccupation or longer occupation
- Structured use of domestic space
- Regional artefact styles
Table 2. Diagnostic Criteria for 299.80 Asperger's Disorder

[The following is from American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders: DSM IV]

(I) Qualitative impairment in social interaction, as manifested by at least two of the following:
 (A) marked impairments in the use of multiple nonverbal behaviors such as eye-to-eye gaze, facial expression, body posture, and gestures to regulate social interaction
 (B) failure to develop peer relationships appropriate to developmental level
 (C) a lack of spontaneous seeking to share enjoyment, interest or achievements with other people, (e.g., by a lack of showing, bringing, or pointing out objects of interest to other people)
 (D) lack of social or emotional reciprocity

(II) Restricted repetitive & stereotyped patterns of behavior, interests and activities, as manifested by at least one of the following:
 (A) encompassing preoccupation with one or more stereotyped and restricted patterns of interest that is abnormal either in intensity or focus
 (B) apparently inflexible adherence to specific, nonfunctional routines or rituals
 (C) stereotyped and repetitive motor mannerisms (e.g. hand or finger flapping or twisting, or complex whole-body movements)
 (D) persistent preoccupation with parts of objects

(III) The disturbance causes clinically significant impairments in social, occupational, or other important areas of functioning.

(IV) There is no clinically significant general delay in language (E.G. single words used by age 2 years, communicative phrases used by age 3 years)

(V) There is no clinically significant delay in cognitive development or in the development of age-appropriate self help skills, adaptive behavior (other than in social interaction) and curiosity about the environment in childhood.

(VI) Criteria are not met for another specific Pervasive Developmental Disorder or Schizophrenia.
Table 3. Diagnostic Criteria for 299.00 Autistic Disorder

[The following is from American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders: DSM IV]
(I) A total of six (or more) items from (A), (B), and (C), with at least two from (A), and one each from (B) and (C)

(A) qualitative impairment in social interaction, as manifested by at least two of the following:
1. marked impairments in the use of multiple nonverbal behaviors such as eye-to-eye gaze, facial expression, body posture, and gestures to regulate social interaction
2. failure to develop peer relationships appropriate to developmental level
3. a lack of spontaneous seeking to share enjoyment, interests, or achievements with other people, (e.g., by a lack of showing, bringing, or pointing out objects of interest to other people)
4. lack of social or emotional reciprocity (note: in the description, it gives the following as examples: not actively participating in simple social play or games, preferring solitary activities, or involving others in activities only as tools or "mechanical" aids)

(B) qualitative impairments in communication as manifested by at least one of the following:
1. delay in, or total lack of, the development of spoken language (not accompanied by an attempt to compensate through alternative modes of communication such as gesture or mime)
2. in individuals with adequate speech, marked impairment in the ability to initiate or sustain a conversation with others
3. stereotyped and repetitive use of language or idiosyncratic language
4. lack of varied, spontaneous make-believe play or social imitative play appropriate to developmental level

(C) restricted repetitive and stereotyped patterns of behavior, interests and activities, as manifested by at least two of the following:
1. encompassing preoccupation with one or more stereotyped and restricted patterns of interest that is abnormal either in intensity or focus
2. apparently inflexible adherence to specific, nonfunctional routines or rituals
3. stereotyped and repetitive motor mannerisms (e.g. hand or finger flapping or twisting, or complex whole-body movements)
4. persistent preoccupation with parts of objects

(II) Delays or abnormal functioning in at least one of the following areas, with onset prior to age 3 years:

(A) social interaction
(B) language as used in social communication
(C) symbolic or imaginative play

(III) The disturbance is not better accounted for by Rett's Disorder or Childhood Disintegrative Disorder
Table 4. Characteristics of autistic conditions of particular significance for social roles of individuals on the autistic spectrum

Perception/Understanding

A particular focus on detail (O’Riordan et al. 2001, Plaisted et al. 1998, Baron-Cohen 2006a, 2006b) and abilities to differentiate details within large patterns (‘weak central coherence’ Frith and Happe 1994, Shah 1988)

Sometimes exceptional memory capacities (Attwood 1998)

Literal, rule based understanding (Selfe 1983; Humphrey 1998; Myers et al. 2004) of the world, ability to isolate rules and pattern within complex systems (eg engineering or weather patterns, Hermelin 2002, Baron-Cohen et al. 2000)

‘Obsessive’ focus on their area of interest (Attwood 1998:15; Ehlers and Gillberg 1993; Gillberg and Gillberg 1989; Tantam 1988)

Motivation

Due to deficits in empathy (Attwood 1998:15), particular focus on psychological rewards in other realms than social relationships (Wing 1981; Fitzgerald 2004))

Focus on acquiring knowledge about the natural and physical world (Krevelen and Kuipers 1962; Fitzgerald 2004)

Tendency to social isolation, lack of desire to interact with others (Szatmari et al. 1989; Attwood 1998: 25)

Effects on Others

Lack of concern/understanding of social norms (Wing 1981; Attwood 1998; Fitzgerald 2004)

Abilities to develop unique insights (Baron-Cohen 2006b: 4)

Desire to create predictable environments and controllable systems (extending to people) (Baron-Cohen and Wheelwright 2004: 253; Attwood 1998)

Misreading of emotional messages, challenges with understanding and communication (Attwood 1998: 25)

Lack of self-doubt, tendency to attempt to force own viewpoint and so create social tensions or be controlling or emotionally damaging (Attwood 1998:25; Fitzgerald 2004: 31; Baron-Cohen 2006c)

Lack of concern for or action on behalf of others, particularly where there are no rules to proscribe this (Ehlers and Gillberg 1993; Gillberg and Gillberg 1989; Fitzgerald 2004).
Table 5: Archaeological evidence corresponding to key traits illustrating the integration of autistic minds within society

<table>
<thead>
<tr>
<th>Integration of autistic individuals and autistic thinking into society</th>
<th>Archaeological expression (in ‘modern human behaviour’)</th>
<th>Archaeological examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanisms for integrating ‘different minds’:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material symbolism of complex emotional ties</td>
<td>Rise of personal ornamentation</td>
<td>Appearance of body decorations such as shell beads (eg in the Levant, Kuhn et al 2001, or at Blombos Cave, Henshilwood 2004, or in the European Aurignacian White 1993, 1997)</td>
</tr>
<tr>
<td></td>
<td>Elaborate burial</td>
<td>Burials with grave goods, ochre and ritual objects (eg in the Levant at Quafzeh Cave, 90,000 years ago, Hovers et al. 2003)</td>
</tr>
<tr>
<td>Clear material clues of meanings</td>
<td>Use of symbolism</td>
<td>Use of red ochre (eg at Blombos cave, Hensilwood 2002 or at Pinnacle Point, Marean et al 2007)</td>
</tr>
<tr>
<td>Mechanisms for clear communication/collaboration across different understandings and perceptions (eg ‘tit-for-tat’ social structures)</td>
<td>Long distance communication with other groups</td>
<td>Exchange of Venus figurines (eg of Venus figures in Europe, Gamble 1999)</td>
</tr>
<tr>
<td>Mechanisms for dealing with social tensions</td>
<td>Evidence for social rituals and collaborative practices (music, dance, shamanism)</td>
<td>Evidence for music (eg Mithen 2005) and shamanic practices (eg Lewis Williams 2002)</td>
</tr>
<tr>
<td>Mechanisms for dealing with controlling, emotionally damaging or dominant behaviour</td>
<td>Mechanisms to counteract dominance</td>
<td>Projectile technology such as spear throwers (Bar-Yosef 2002, with long-</td>
</tr>
<tr>
<td>Social roles for individuals with autistic talents</td>
<td>Distance combat possibilities, Shea 2003) group unity, moral emotions and group expulsions or assassinations (Boehm 1993, 1999)</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Inclusion of individuals with unique capacities for understanding physical and mechanical systems</td>
<td>Rise of more efficient technology</td>
<td>Bladelets, microliths and backing (eg Howiesons Poort technology, Mellars 2005: 17, Aurignacian bladelets in Europe Mellars 2006c) More efficient blade technology (eg 75,00-80,000 in the Levant, Shea 2003)</td>
</tr>
<tr>
<td></td>
<td>More complex technological designs</td>
<td>Use of novel materials (eg bone artefacts at Blombos Cave, Henshilwood et al 2002)</td>
</tr>
<tr>
<td></td>
<td>More efficient exploitation patterns</td>
<td>Rise of multi-component tools (eg hafted inserts at Klasies River Mouth, Deacon and Deacon 1999)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>More elaborate and technological use of fire in hearths (Bar-Yosef 2002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use of grinding and pounding stones (Wright 1992, Bar-Yosef 2002)</td>
</tr>
</tbody>
</table>

Inclusion of individuals with unique capacities for understanding natural systems | More efficient scheduling of exploitation (eg circulating vs logistical mobility)
<table>
<thead>
<tr>
<th>Understanding of behaviourally complex or difficult prey</th>
<th>Exploitation of new ecological niches</th>
<th>Exploitation of new environments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular exploitation of more dangerous species (eg Cape buffalo and bushpigs at MSA sites in south Africa, Klein 1999)</td>
<td>Development of marine exploitation (eg of shellfish at Pinnacle Point, Marean et al 2007)</td>
<td>Population regional expansion (eg into Europe, Mellars 2006b) and into more inhospitable environments (Finlayson 2004)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inclusion of individuals with concern with small precise details</th>
<th>Precise and detailed technological innovations</th>
<th>Precise, detailed designs (eg Howiesons Poort industry, Mellars 2005, Aurignacian bladelets Mellars 2006c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusion of individuals with concern for ‘rules’</td>
<td>Standardisation of tool technology</td>
<td>Formalised tool types (eg formalised end scrapers at Klasies River Mouth, Singer and Wymer 1983)</td>
</tr>
<tr>
<td>Special purpose tools</td>
<td></td>
<td>Eg defined, specific forms (eg new end scraper forms, Klasies River Mouth, Singer and Wymer 1983, Mellars 2005)</td>
</tr>
<tr>
<td>Individuals with lack of understanding of social norms</td>
<td>Innovative technological or subsistence methods</td>
<td>Innovative categories of subsistence resources (eg of shellfish at Pinnacle Point, Marean et al 2007)</td>
</tr>
</tbody>
</table>

Population consequences of integrating autistic minds

<table>
<thead>
<tr>
<th>Individuals often desiring isolation, and with unique memory capacities</th>
<th>Population expansion, as new lands can be mapped by exploration (refs Mellars 2006)</th>
<th>Genetic evidence for population expansion (Mellars 2006b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social conflicts</td>
<td>Splits in populations</td>
<td>Regionally differentiated tools (eg in the European aurignacian and Gravettian,</td>
</tr>
<tr>
<td>Biological consequences of increased efficiency in resource exploitation</td>
<td>Increased longevity</td>
<td>Caspari and Lee (2006)</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------------</td>
<td>-----------------------</td>
</tr>
</tbody>
</table>