

This is a repository copy of *Current developments in gene therapy for amyotrophic lateral sclerosis.*

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/86326/

Version: Supplemental Material

Article:

Scarrott, J.M., Herranz-Martín, S., Alrafiah, A.R. et al. (2 more authors) (2015) Current developments in gene therapy for amyotrophic lateral sclerosis. Expert Opinion on Biological Therapy.

https://doi.org/10.1517/14712598.2015.1044894

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

SUMMARY OF CLINICAL TRIALS IN ALS			
GENE	AIM OF THE STUDY	FINDINGS	STATUS
VEGF	Intramuscular injection of SB- 509 plasmid that encodes a zinc finger protein transcription factor (ZFP-TF) to upregulate endogenous VEGF.	 Safety profile in a 2010 Phase II clinical trial (NCT00748501). Delayed deterioration in ankle and toe muscle strength was observed in 40% of treated subjects. 	Completed
HGF	A phase I/II safety study (NCT02039401) of VM202 intramuscularly delivered plasmid expressing multiple isoforms of HGF.	 It is currently recruiting participants for the purpose of testing VM202 for: Tolerability and safety. As a treatment for Critical Limb Ischemia and Painful Diabetic Peripheral Neuropathy. 	Ongoing and recruiting participants
SOD1	Phase I clinical trial (NCT01041222). Intrathecal delivery to CNS of ASO targeting SOD1 (ISIS-333611).	 ASOs are a tolerable and effective root of delivery, but unable to cross BBB. No reduction of SOD1 protein in CNS. 	Completed