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Abstract 

In a recent work by Gui et al. (2014) [Gui, Q., Shao, S. and Dong, P. (2014), Wave impact 

simulations by an improved ISPH model, Journal of Waterway, Port, Coastal and Ocean 

Engineering, ASCE, 140(3), 04014005], an incompressible SPH model was presented that 

employs a mixed pressure Poisson equation (PPE) source term combining both the density-

invariant and velocity divergence-free formulations. The present work intends to apply the 

model to a wider range of fluid impact situations in order to quantify the numerical errors 

associated with different formulations of the PPE source term in ISPH models. The good 

agreement achieved between the model predictions and documented data is taken as a further 

demonstration that the mixed source term formulation can accurately predict the fluid impact 

pressures and forces, both in the magnitude and in the spatial and temporal patterns. 

Furthermore, an in-depth numerical analysis using either the pure density-invariant or 

velocity divergence-free formulation has revealed that the pure density-invariant formulation 

can lead to relatively large divergence errors while the velocity divergence-free formulation 

may cause relatively large density errors. As compared with these two approaches the mixed 

source term formulation performs much better having the minimum total errors in all test 

cases. Although some recent studies found that the weakly compressible SPH (WCSPH) 

models perform somewhat better than the incompressible SPH models in certain fluid impact 

problems, we have shown that this could be largely caused by the particular formulation of 

PPE source term in the previous ISPH models and a better formulation of the source term can 

significantly improve the accuracy of ISPH models.  

Keywords: ISPH, PPE, source term error, mixed source term, density-invariant, velocity 

divergence-free, fluid impact 
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Introduction 

  

        The study of fluid impact on structures is of significant importance to understand the 

underlying physics of the hydrodynamic phenomena as well as to evaluate the structure 

stability so as to take effective measures to prevent possible structure damage and functional 

failure. Although laboratory experiments and field measurements were traditionally used to 

study such a problem, numerical simulations have also increasingly been used as an attractive 

alternative technique, being free from the scale effect associated with the physical models and 

much cheaper than the field measurements. 

        In recent years, the mesh-free particle models have become popular to investigate 

different fluid impact problems, as these kinds of models can naturally describe the large 

deformation of free surfaces and material interfaces and thus avoid the complicated mesh 

readjustment, which is unavoidable in the mesh-based approaches. This advantage arises 

from the fact that in a mesh-free particle method the advection term in the hydrodynamic 

equations is calculated directly by each individual particle and thus the numerical diffusions 

can be reduced to minimum. Currently two particle modelling techniques are frequently 

reported in the hydraulic and coastal hydrodynamic computations, i.e. the Moving Particle 

Semi-implicit (MPS) (Khayyer and Gotoh, 2009) and Smoothed Particle Hydrodynamics 

(SPH) (Gomez-Gesteira et al., 2005) methods. 

        The SPH method originated in the astronomic applications (Lucy, 1977) and its 

potentials in the fluid flow computations were developed by Monaghan (1992). In the early 

fluid impact simulations by SPH, the fluid media were treated as slightly compressible so the 

method was regarded as the WCSPH (Monaghan et al., 2003). However, as the computation 

of fluid pressure was based on an equation of state which was in nature related to the 

thermodynamic formulation, relatively large pressure fluctuations and noises were inevitable, 

and this could greatly compromise the simulation accuracy. Following the novel SPH 

projection approach (Cummins and Rudman, 1999), different incompressible SPH (ISPH) 

models were widely developed in recent years. The key feature of this approach is that the 

fluid pressure is solved by using a truly hydrodynamic formulation based on the pressure 

Poisson equation (PPE) in a similar manner to most mesh-based hydrodynamic schemes. 

Quite a few works have demonstrated that the ISPH model could predict a more stable 

pressure and particle fields than the WCSPH in fluid impact situations and also no additional 

numerical smoothing techniques, such as the XSPH or kernel corrections are needed.   

        For ISPH modelling techniques, there exist two general branches, i.e. the density-

invariant ISPH and velocity divergence-free ISPH. The former uses the density difference as 

source term in the PPE while the latter uses the divergence of flow velocity field. The 

density-invariant ISPH was initially proposed by Shao and Lo (2003) and the velocity 

divergence-free ISPH was initially proposed by Hu and Adam (2007) and Lee et al. (2008), 
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both of which were rooted in the projection concept of Cummins and Rudman (1999) but 

they were applied in the free surface flows. However, extensive applications of ISPH for the 

fluid impact problems have disclosed that the density-invariant and velocity divergence-free 

approaches could not provide identical impact pressures and forces, although both schemes 

were consistent in satisfying the incompressible principle. For example, Xu et al. (2009) 

found that the divergence-free ISPH method could not maintain the stability in certain 

situations although it was fairly accurate before the instability set in, while the density-

invariant ISPH method was stable but often associated with the random-noise like 

disturbance. On the other hand, Cummins and Rudman (1999) and Hu and Adam (2007) 

found that if only a discrete velocity divergence-free condition was enforced, larger density-

variation or particle clustering may occur due to the spatial truncation errors of the 

discretization scheme and the density errors could accumulate during long time computation. 

To make full use of the advantage of both projection schemes, Asai et al. (2012) and Gui et al. 

(2014) combined both the density-invariant and divergence-free terms in a simple and 

straightforward PPE source term representation and they found that the wave impact 

predictions on the collapse of a water column were much improved. Similar combination 

technique was also adopted in other particle-based methods like the Consistent Particle 

Method (CPM) (Koh et al., 2013). 

        Recently a number of studies have been carried out to address pros and cons of the 

WCSPH and ISPH for the free surface flow simulations. Hughes and Graham (2010) studied 

two standard dam-break problems and found that the WCSPH performed at least as well as 

the ISPH, and in some respects clearly performed better. Shadloo et al. (2012) studied the 

bluff body flow problem such as the flow over an airfoil and square obstacle, and their 

predictions of a variety of flow parameters indicated that the WCSPH method with suggested 

implementations produced the numerical results as accurate and reliable as those of the ISPH. 

Chen et al. (2013) investigated three benchmark hydrodynamic problems including a liquid 

sloshing and they concluded that their improved WCSPH was much more attractive than the 

ISPH in modelling the free surface incompressible flows, as the former was more accurate 

and stable but also with comparable or even less computational effort. It should be noted that 

the above-mentioned WCSPHs have included some additional numerical treatments to 

improve the model performance, such as the MLS/Shepard density filter (Gomez-Gesteira et 

al., 2010) or XSPH, while there was no such treatment in the ISPHs so the comparisons of 

two techniques were not made on an equal basis.  

        Khayyer and Gotoh (2012) pointed out that the treatment of PPE’s Laplacian and source 
term could heavily influence the simulation accuracy of particle-based models. Motivated by 

these studies, in the present work we aim to make a quantitative investigation on the 

numerical errors from the PPE source term in two different ISPH projection schemes, i.e. the 

density-invariant and divergence-free ISPH, and evaluate their influence on the fluid impact 

predictions. As far as the present knowledge is concerned, there are several documented 
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works on the study of density accumulation errors in the ISPH projection scheme based on 

the velocity divergence-free approach (Cummins and Rudman, 1999; Szewc et al., 2012), but 

there is almost no detailed study reported for the divergence errors in a density-invariant 

ISPH approach. The pressure noises and particle fluctuations in a density-invariant ISPH 

could be attributed to quite a few complicated mechanisms but the velocity divergence error 

could be just one important factor that caused the inaccuracy. In this work we will show that 

with the decrease of divergence error the pressure noises and prediction errors can also be 

reduced accordingly. 

        The structure of this paper is as follows: In the next section, a review of two standard 

ISPH projection schemes and the combined mixed source term formulation by Gui et al. 

(2014) are presented. Then the treatment of free surface and boundary conditions is briefly 

described to close the model. In the model applications and validations, three benchmark 

fluid impact problems including two dam break flows and one solitary wave impact are 

computed by using three different ISPH numerical schemes, respectively, and the 

computational results are validated against either the experimental or numerical data based on 

the MPS/WCSPH. Finally, an in-depth numerical analysis is carried out to quantify the 

density and divergence errors of three different ISPH numerical schemes.  

 

 

ISPH Model with Three Different Projection Schemes 

 

Governing Equations 

        The governing equations to simulate the vertical 2D flows are the mass and momentum 

conservation equations. With regard to the fluid particle in an ISPH scheme, the Lagrangian 

form of the Navier-Stokes (N-S) equations is used: 

0
1

 u
dt

d


                                      Eq. (1) 

ug
u 2

0

1
 


P

dt

d                    Eq. (2) 

where   = fluid particle density; t  = time; u  = particle velocity; P  = pressure; 0  = 

kinematic viscosity; and g  = gravitational acceleration. 

 

ISPH Solution Procedure 

        By using the fractional steps, the N-S equations (1) and (2) are solved by the prediction-

correction method in the incompressible SPH approach, which is based on the two-step 
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projection scheme of Chorin (1968). Cummins and Rudman (1999) first introduced the ISPH 

projection method to enforce the incompressibility in a correction step. The prediction step in 

the ISPH is usually an explicit integration in time using the viscous and gravitational forces. 

So an intermediate particle velocity and position is calculated from the momentum equation 

(2) as: 

                                                      tt )( 2
0* ugu                                                   Eq. (3) 

** uuu  t                              Eq. (4) 

                              tt  ** urr                                 Eq. (5) 

where *u  = changed particle velocity during the prediction step; t  = time increment; tu  

and tr  = particle velocity and position at time t ; and *u  and *r  = intermediate particle 

velocity and position. 

        Then, in the final correction step, the pressure term is incorporated into the momentum 

Eq. (2) to update the intermediate particle velocity and position as below: 

tPtt  


 1*1**

1


uuu               Eq. (6) 

***1 uuu t                  Eq. (7) 

ttt
tt 


 

 2

)( 1
1

uu
rr                                Eq. (8) 

where *  = intermediate particle density after the prediction step; 1tP  = particle pressure; 

and 1tu  and 1tr  = particle velocity and position at time 1t . 

        Recently many other forms of ISPH solution procedures have been used to improve the 

numerical performance. For example, the gravitational force in momentum equation (2) was 

included in the correction step by Liu et al. (2013) to improve the hydrostatic simulation. In 

Chen et al. (2013), a half-time scheme that included two loops within one time step involving 

t  and 1t  values was used and the numerical scheme could achieve second-order accuracy.  

 

Different PPE Source Term Formulations 

        The mass conservation Eq. (1) can be written in a discrete form at the intermediate time 

step as  
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 0

0

1
0

ȡ ȡ
ȡ t


  

 **u                 Eq. (9) 

where 0ȡ  = initial constant particle density. By combining Eqs. (6) and (9), Shao and Lo 

(2003) first proposed the ISPH Pressure Poisson equation (PPE) based on the relative density 

variance as follows: 

0
1 2

0

1
t

ȡ ȡ
P

ȡ ȡ t





  
     

              Eq. (10) 

        Alternatively, by projecting the intermediate particle velocity field onto a divergence-

free space, the divergence of Eq. (6) can be written as: 

1
1

1t
tP

t ȡ 


          
+ *u u

              Eq. (11) 

As for a truly incompressible scheme, the fluid density should be constant and thus Eq. (1) is 

reduced to the following formulation in discrete form 

1 0t +u                         Eq. (12) 

By considering a constant density field and combining Eqs. (9), (11) and (12), the following 

PPE with the velocity divergence source term is obtained (Hu and Adam, 2007; Lee et al., 

2008): 

1

1


  
     

tP
ȡ t

*u
               Eq. (13) 

        Here it should be noted that the projection schemes to enforce the fluid incompressibility 

in Eqs. (10) and (13) are exactly equivalent in the theory, but numerically some researchers 

have found their performances could be different (Asai et al., 2012; Gui et al., 2014). 

Generally it has been agreed that the density-invariant formulation Eq. (10) can well conserve 

the fluid volume and thus is numerically quite stable, but it could generate relatively large 

pressure noises and particle fluctuations (Xu et al., 2009). This is due to that the SPH 

summation scheme of fluid density is very sensitive to the particle position and a small error 

in the particle locations could generate a large density disturbance. On the other hand, the 

velocity divergence-free formulation Eq. (13) is much less sensitive to the error of particle 

positions so it can give very smooth pressure field. However, as the fluid volume is not 

exactly conserved especially after a long time simulation, the model can become unstable due 

to the compression of the fluid and particle penetration of the solid boundaries. 

        To overcome the respective weaknesses of these two projection schemes, a 

straightforward hybrid PPE source term formulation, which combines the previous two 
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approaches through a simple weighting coefficient, has been developed in the Consistent 

Particle Method (CPM) by Koh et al. (2013). Similar works have also been done by Asai et al. 

(2012) and Gui et al. (2014). This hybrid PPE source term is generally represented as:  

                  
tt

Pt 






 
*

2
0

*0
1 )1()

1
(

u





                                 Eq. (14) 

        However, quantifying the value of weighting coefficient   in different applications is 

not an easy task. By trading off between the pressure fluctuation and fluid volume 

conservation, Koh et al. (2013) recommended a value of 0.5 for their benchmark sloshing 

problem. In Asai et al. (2012), they found that the coefficient was not a constant but largely 

dependent on the particle spacing. In Gui et al. (2014), they used the energy dissipation 

principle and related the weighting coefficient with representative height-depth ratio of the 

flow system. An even more advanced weighting coefficient has been developed by Khayyer 

and Gotoh (2011) based on the dynamic instantaneous flow field. It is clear that more works 

are still required in evaluating the weighting coefficient in this type of mixed source term. In 

the present study, as our focus is on evaluating the density and divergence errors of three 

different projection schemes in Eqs. (10), (13) and (14), no further attempt will be made on 

the choice of weighting coefficient  . 

 

Basic SPH Formulations 

        The key feature of the SPH is that it is an interpolation method which allows any 

function and physical value to be expressed in terms of its value at a set of disordered points. 

In numerical simulations the integral interpolant is calculated by a summation interpolant in 

the discrete notation as:  

   
 b

a b ab
b b

A
A m W

ȡ
r

r                                                     Eq. (15) 

where  A r  = any field function; a  and b  are the reference and neighbouring particles, 

respectively; bm  and bȡ  are the particle mass and density, respectively; and 

 ab a bW W ,h r r  = kernel weight function, in which h  = smoothing length. The kernel 

function is the fundamental in the SPH scheme. In this work we use the kernel based on the 

spline function in Monaghan (1992). Only particles within twice of the smoothing length 

contribute to the values of a reference particle. 

        By employing Eq. (15), all the physical values in an SPH framework can be summed. 

For example, the density of a fluid particle is represented by: 
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a b ab
b

mW                 Eq. (16) 

The gradient of pressure at a given particle can be written in many different ways, such as the 

following one used in this paper 

2 2

1 a b
b a ab

b a ba

P P
P m W

  
     

   
  

                       Eq. (17) 

where a abW  is the gradient of the kernel taken with respect to the position of particle a. The 

divergence of vector u  at a given particle can be computed by: 

ababa
b

b
a

a Wm   )(
1

)( uuu


                          Eq. (18) 

        Due to the high sensitivity to the pressure noise and particle disorder, the Laplacian in 

PPE Eqs. (10), (13) and (14) is formulated by using a hybrid of the standard SPH first 

derivative combined with a finite difference scheme as (Shao and Lo, 2003) 

 2 2 2

1 8 ab ab a ab
b

ba a b ab

P W
P m

  
   

  
 r

r   
                          Eq. (19) 

where ab a bP P P   and ab a b r r r  are defined; and   is a small number to maintain non-

singularity and commonly set at 0 1. h  in the SPH practice. Similarly the viscous term in 

momentum Eq. (2) can also be formulated by following the derivation of above Laplacian as  

22
2

0

)(2
)(










 
ab

abaabab

b ba

ba
ba

W
m

r

ru
u                      Eq. (20) 

where baab uuu   is defined. 

 
Free Surfaces and Solid Boundaries  

        At the free surface, the number of particle neighbours is much less than that of the inner 

fluid particles due to the non-existence of particle in the outer flow region. So the free surface 

particles can be conveniently identified by the particle density which drops below 10% of the 

reference density value at 1000 kg/m3 (Shao and Lo, 2003). A zero pressure is then given to 

these surface particles as known condition to solve the pressure Poisson equation. This 

density criterion is often used to judge the free surface particle in a density-invariant ISPH 

projection scheme. On the other hand, in a divergence-free ISPH the divergence of particle 

positions can often be used to identify the free surface particle (Lee et al., 2008), but 

theoretically there should be no issues to swap the two in two different projection schemes. 
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Recently Khayyer et al. (2009) and Liu et al. (2013) introduced a complementary free surface 

criterion based on the particle symmetry, but this criterion must be used together with either 

the density or the divergence criterion. Otherwise the free surface particles could be identified 

incorrectly. In this work, we simply apply the density criterion to judge the free surface 

without further investigation. 

        Generally, there are three common wall boundary treatments widely reported in the SPH 

literatures, i.e. the repulsive boundary in the original WCSPH (Monaghan, 1992), mirror 

particle boundary in Cummins and Rudman (1999) and fixed dummy particle boundary in 

Shao and Lo (2003). The first one is the most straightforward to implement but can generate 

unrealistic flow patterns near the wall region, while the second one could be the most 

accurate in dealing with both the non-slip and slip solid boundaries but at the sacrifice of 

computational effort. Here we adopt the last dummy particle method because this can give 

satisfactory result at reasonable CPU resources. It needs to be pointed out that the dummy 

particles used in the present work are similar to the dynamic boundary particles used by 

Crespo et al. (2007) but they differ in that the former uses the co-located particle arrangement 

and also the dummy particles are not involved in the integration of any equations, while the 

latter boundaries are constituted by the particles initially placed in a staggered grid manner 

and they then move following the same equations of state and continuity as the inner fluid 

particles. 

         In the density-invariant ISPH scheme, two lines of the dummy particles are used in 

order to keep the fluid density at wall particles consistent with the inner fluids. On the other 

hand, in the divergence-free ISPH scheme, by following Monaghan and Kajtar (2009) a 

reduction of the boundary particle spacing is used to prevent particle penetration through the 

solid boundaries. Besides, four layers of the dummy particles are used because more 

neighbouring particles are needed for the calculation of velocity divergence in the pressure 

Poisson equation. In both projection schemes, the velocities of the wall and dummy particles 

are set zero to represent the non-slip boundary condition. The wall particles are also involved 

in the PPE solution during which the homogeneous Neumann boundary condition is imposed. 

  

 

Model Applications and Validations 

 

        In this section, three different ISPH projection schemes as shown in Eqs. (10), (13) and 

(14) are used to study three benchmark hydrodynamic problems, i.e. two dam break flows 

and one solitary wave impact. The aim is to show the computational accuracy of different 

source term treatments as well as investigate the fundamental flow behaviours of different 

impact scenarios.  
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Dam Break Flow Simulations 

        The numerical simulation is carried out in a 2D tank as shown in Fig. 1. The dimension 

of the numerical tank is 1.6 m by 1.6 m in square. The initial static water column of 0.4 m 

wide and 0.8 m high is retained by an instantaneously removed vertical wall. Then the water 

flows along the horizontal bed and hits the right wall generating a high impact pressure. To 

validate the accuracy of ISPH pressure computations, a reference point (P) located on the 

right wall at a distance of 0.02 m from the bottom is used to record the ISPH data. The ISPH 

computed pressures will be compared with the improved MPS results by Lee et al. (2011) 

who used a step by step improvement in their numerical algorithm. 

 
 

Fig. 1 Schematic sketch of dam break problem in Lee et al. (2011) 

 
        In the ISPH simulation, to be consistent with Lee et al. (2011) the initial particle spacing 

was selected as X  = 0.01 m and thus 3200 fluid particles in total were used. The simulation 

was carried out up to 3 s. Here it should be noted that in a series of numerical MPS 

improvements adopted by Lee et al. (2011), a mixed PPE source term that is similar to Eq. 

(14) was also used and they recommended the weighting coefficient in the equation to be 

0.01 ~ 0.05. In the ISPH model, the determination of weighting coefficient   in Eq. (14) was 

made on the energy dissipation mechanism that is related to the height-depth ratio of the flow 

H/L (Gui et al., 2014). By using this principle,   was evaluated to be around 0.03, which 

falls nicely within the value range of 0.01 ~ 0.05 in Lee et al. (2011). 

        Fig. 2 shows the comparison of pressure computations at measuring point P made by the 

ISPH with mixed source term Eq. (14) and the improved MPS proposed by Lee et al. (2011). 

It demonstrates a quite satisfactory agreement between the two numerical time histories of 

the wave impact pressure. Both results reported almost identical peak wave arrival time at 

three different time instants: the first largest one that happened before time t  = 0.5 s, which 

0.4m 

0.8m 

0.02cm 
p 

Water 

1.6m 

Air 
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was due to the dam break wave hitting the right side wall and thus generating a quite large 

pressure impact; the second one that happened around t  = 1.3 s, which was due to the falling 

water plunging down towards the water surface; and the third one that happened about t  = 

2.8 s, which was due to the reflected return dam break wave impacting on the right wall again 

but this time at a much smaller amplitude. The ISPH computations match the first two peak 

values well but underpredict the third one. In the step-by-step improvement of the MPS 

algorithms in Lee et al. (2011), quite a few numerical treatments were used including the 

optimisation of collision coefficient, revision of the source term and gradient model, 

improvement of the surface particle search, etc. while in the present ISPH model only the 

mixed source term formulation is adopted but it can still give equally good prediction. Here it 

should be clarified that the computed pressure at measuring point P was obtained by 

interpolating the pressures of wall particles adjacent to point P on the right wall. 

 

 
 

Fig. 2 Time histories of computed pressures by ISPH and improved MPS model of Lee 
et al. (2011)  

 

        To demonstrate the general dam break flow features, the computed ISPH particle 

snapshots with the velocity contours are shown in Fig. 3 at several typical times. The 

computations showed the dam break flows impacted on the right wall at time t  = 0.44 s and 

ran along against the wall to reach maximum height at t  = 0.6 s. Then the flows plunged 

down on the water surface and created a second splash at t  = 1.34 s. The velocity contours 

indicated that larger flow velocities always appeared near the flow front and smaller flow 

velocities were found upstream of the original dam site. Also, by comparing with the particle 

snapshots computed by Lee et al. (2011) using the original and improved MPS, it can be seen 

that the present ISPH simulations are much better than the original MPS results in view of 

reducing the particle fluctuation. However, the ISPH simulated particle snapshots still contain 

more noises than the improved MPS results, as the latter used several complementary 

numerical schemes to improve the model performance.    
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Fig. 3 ISPH computed particle snapshots with velocity contours at different times 
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        To further demonstrate the difference of using different PPE source term formulations, 

additional two ISPH runs were made, in which only the density-invariant or velocity 

divergence-free scheme as given by Eq. (10) or (13) was used, and the simulation results of 

time history of wave impact pressures are compared with the mixed source term results based 

on Eq. (14) and the improved MPS computations of Lee et al. (2011) in Fig. 4. It showed that 

the pure density-invariant ISPH model predicted a consistently higher pressure evolution and 

also relatively larger pressure fluctuations. Although the general pressure time histories 

followed the correct trend, the pressure amplitude at some time instants can be overestimated 

by up to several times due to the existence of pressure noise. On the other hand, the pure 

velocity divergence-free ISPH model predicted a much smaller and smoother pressure 

process without any pressure fluctuations observed. However, it can barely capture the fi rst 

pressure peak and fail completely in predicting the second and third pressure peaks due to 

numerical damping caused by the compression of the fluid volume. The pressure amplitudes 

were significantly underestimated as a result. In comparison, the mixed source term ISPH 

model provided the most promising result.  

  

 
 

Fig. 4 Time histories of computed pressures (at measuring point P) by three different 
ISPH source terms and compared with improved MPS results of Lee et al. (2011)  

 

Solitary Wave Propagation and Impact  
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slope and a flat reef, then turning into a turbulent bore and colliding with a solid wall which 

is located 83 m away from the offshore wave maker. According to Robertson et al. (2013), 
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the width of the wave flume was 3.7 m although this parameter was not needed in the present 

2D ISPH model. To approximate the actual field tsunami situation, some standing waters 

were retained in front of the onshore solid wall at the start of the simulation. In the ISPH 

computations, we only reproduced one of the experimental tests carried out by Robertson et 

al. (2013), i.e. the initial constant water depth in the flume was 2.66 m and the still standing 

water depth in front of the solid wall was 30 cm. Two different wave heights were studied, 

which were 53.2 cm and 106.4 cm, respectively. The schematic setup of numerical wave 

flume is shown in Fig. 5.  

 

Fig. 5 Schematic setup of numerical flume for solitary wave propagation and impact 
(Robertson et al., 2013) 

 

        In the ISPH runs, the dimensions of the computational domain followed exactly the 

physical experiment. The particle spacings of X  = 0.088 m and 0.1 m were used for the 

two different wave heights, respectively, and thus totally 17000 and 13000 particles were 

involved in the simulations. The generation of initial solitary wave profile was based on the 

SPH particle arrangement following the solitary wave analytical solutions, in which a wave 

profile and velocity field using the particle variables were set at the beginning of the 

computation. Three different ISPH source term formulations, i.e. Eqs. (10), (13) and (14), are 

used to compute the tsunami wave forces on the solid wall and compare with the high-

resolution pressure gauge measurements by Robertson et al. (2013). 

        The ISPH computed time histories of wave impact forces on the wall by using the mixed 

source term formulation Eq. (14) are compared with the experimental data of Robertson et al. 

(2013) in Figs. 6 (a) and (b), for the initial wave height of H  = 53.2 cm and 106.4 cm, 

respectively. It is shown that each time history is characterized by a rapid increase in the 

force load to the maximum, which is the result of direct wave collision with the solid wall 

and the subsequent climbing up of the water. The increase is much more obvious in the larger 

wave height case than the smaller one. As to the maximum wave force arrival time, it is t  = 

25.9m 28.5m 

2.66m Water 

1:12 

  

28.73m 
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17.67 s for the smaller wave and t  = 14.63 s for the larger wave. Here it should be noted that 

the time origin in the present ISPH and that in Robertson et al. (2013) was different. The 

former was defined at the start of the solitary wave propagation, while the latter was defined 

when the wave impact started. After the wave forces reached their peak values, they started to 

decrease slowly due to the running down of the flow. A reflective bore also formed travelling 

away from the wall and thus the residual force loads dissipated over the time.  

 

 

 

Fig. 6 Time histories of computed wave forces by ISPH and experimental data of 

Robertson et al. (2013). (a) Wave height 53.2 cm; (b) Wave height 106.4 cm 

 

t

F
o

rc
e

12 16 20 24

0

10

20

30

40

Improved ISPH
Robertson et al. (2013)

(K
N

)

(s)

(a)

t

F
o

rc
e

12 16 20 24

0

10

20

30

40
Improved ISPH
Robertson et al. (2013)

(K
N

)

(s)

(b)



16 

 

        Fig. 6 shows that the ISPH computations agreed quite satisfactorily with the 

experimental data of Robertson et al. (2013) in that both the force amplitude and evolution 

feature are well reproduced. However, relatively large errors appeared in case of the larger 

wave height of H  = 106.4 cm during the violent wave impact. The experimental data 

exhibited a monotonous increase in the measured forces before the peak with a narrow peak 

zone, while the ISPH predicted a much wider peak force zone and also the force curve has 

double peaks during the wave impact around time t  = 14.5 s, in spite that the first small peak 

is not very distinguishable. This first small force peak happened just a little earlier than the 

second and much larger peak. Although this phenomenon needs to be further investigated, it 

is believed to be caused by the nonlinear nature of the wave. The present solitary wave has a 

height-depth ratio of 0.4, thus it is highly nonlinear. It has been previously reported that the 

smaller amplitude solitary waves can impact on the solid wall with a single force peak, while 

the larger amplitude solitary waves can generate two force peaks due to the nonlinear wave 

dynamics (Cooker et al., 1997). 

        To reveal the spatial and temporal evolution features of the solitary wave during the 

whole simulation, the computed particle snapshots are shown in Fig. 7 at several typical times 

for the case of larger wave height of 106.4 cm. To study the pressure distributions of the 

wave flow, the pressure contours are also shown in the same figure. Fig. 7 shows that the 

wave started to propagate over a flat bed at time t  = 2 s, shoaled over the slope at t  = 4 s and 

broke and plunged downward onto the water at t  = 7.2 s. After the wave breaking, it turned 

into a fully turbulent bore running along the horizontal reef at t  = 9.0 s. The initial wave 

impact on the right wall happened at t  = 13.8 s, after that the wave ran up along the wall to 

its maximum height around t  = 14.2 s. Finally, the wave flow returned down and reflected 

back as a returning bore at time t  = 15.8 s. Besides, it is also seen that the pressure 

distributions in most of the flow regions are nearly hydrostatic, which is indicated by the fact 

that the pressure contours are equally spaced and consistent with the free surface levels. 

However, during the wave breaking at t  = 7.2 s and wave impact at t  = 13.8 s, etc. the local 

pressure patterns deviate remarkably from the hydrostatic law, and the pressure values are 

much larger than the hydrostatic ones. For example, during the initial wave impact at t  = 

13.8 s, very large impact pressure was generated at the impact point on the right wall. The 

findings imply that the hydrostatic assumption used in the Shallow Water Equations (SWEs) 

models can be used for the wave propagation problems with enough accuracy up to the 

violent wave breaking and impacting points, but additional numerical algorithms must be 

included to address the local pressure variations around these zones, otherwise relatively 

large prediction errors could be induced. It is worth mentioning that recently quite a few 

SWEs based SPH models have been developed with promising potentials in simulating the 

shallow water flows (Chang and Chang, 2013; Vacondio et al., 2013; Xia et al., 2013).  

 

 



17 

 

 

 

 

 

 

 

x

y

0 10 20 30 40 50 60 70 80

0

3

6

9

0 6250 12500 18750 25000
=2s

(Pa)

t

(m)

(m
)

P

x

y

0 10 20 30 40 50 60 70 80

0

3

6

0 6250 12500 18750 25000
=4st

(m)

(m
)

x

y

0 10 20 30 40 50 60 70 80

0

3

6 =7.2st

(m)

(m
)

x

y

0 10 20 30 40 50 60 70 80

0

3

6

0 6250 12500 18750 25000
=9st

(m)

(m
)

x

y

0 10 20 30 40 50 60 70 80

0

3

6

0 6250 12500 18750 25000
=13.8st

(m)

(m
)

x

y

0 10 20 30 40 50 60 70 80

0

3

6

0 6250 12500 18750 25000
=14.2st

(m)

(m
)



18 

 

 

  
Fig. 7 ISPH computed particle snapshots with pressure contours at different times 

 

        To evaluate the performance of different PPE source term treatments in ISPH for the 

wave force prediction, the density-invariant source term Eq. (10) and velocity divergence-

free source term Eq. (13) are separately used to re-compute the time histories of wave impact 

forces on the right wall based on the same computational setting. The results are shown in 

Figs. 8 (a) and (b), for the wave height of 53.2 cm and 106.4 cm again, respectively. 

Meanwhile, the mixed source term results based on Eq. (14) and experimental data of 

Robertson et al. (2013) are also shown for a comparison. It can be seen that the computed 

wave forces follow the same trend as the wave impact pressures in the previous dam break 

simulation, in that the pure density-invariant model predicted a higher and more fluctuating 

force evolution while the pure divergence-free model predicted a smaller and smoother force 

evolution, but the ranges of over- and under- predictions are much less than those in the dam 

break flow due to the integration of pressures, which have greatly reduced the large 

fluctuations. For both wave heights, the pure density-invariant ISPH model overestimated the 

peak wave forces by 55% ~ 60%, while the pure divergence-free ISPH model under-

predicted the peak forces by 65% ~ 70%. 
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Fig. 8 Time histories of computed wave forces (on solid wall) by three different ISPH 
source terms and compared with experimental data of Robertson et al. (2013). (a) Wave 

height 53.2 cm; (b) Wave height 106.4 cm 

 

Comparison with WCSPH for another Dam Break Flow 

        As recently found in some SPH studies (Hughes and Graham, 2010; Chen et al. 2013), 

the WCSPH could perform better in the fluid impact simulations in view of obtaining more 

stable and smoother pressure fields. To investigate this, in this section we consider another 

benchmark dam break problem for which a wide range of WCSPH results are available. Here 

the dam break flow as described by Colagrossi and Landrini (2003) is studied. The initial 

column of water covered a rectangular dimension of 2 m wide and 1 m high, and the right 

wall of the numerical tank is positioned 5.366 m from the left wall. A schematic view of the 

numerical tank is shown in Fig. 9. Adami et al. (2012) used the WCSPH with improved solid 

boundary treatment to compute the impact pressure measured in the bottom region of the 

right wall. An initial particle spacing of X  = 0.01 m was used in their simulations. On the 

other hand, Marrone et al. (2011) used a novel  -SPH scheme based on the addition of a 

numerical dif fusion term into the continuity equation with an initial particle spacing X  = 

0.015 m ~ 0.001875 m. Here we will compare our ISPH results computed by using the PPE 

source term Eq. (14) with these two WCSPH solutions to show the robustness of the mixed 

source term formulation.  

 

t

F
o

rc
e

12 14 16 18 20 22 24

0

10

20

30

40

50

60 Improved ISPH
Robertson et al. (2013)
Density gradient
Velocity divergence

(K
N

)

(s)

(b)



20 

 

                             

 

Fig. 9 Schematic view of numerical tank for dam break flow (Colagrossi and Landrini, 

2003) 

 

        For a quantitative validation, in Fig. 10 we compare the temporal pressure profiles on 

the downstream wall for three different ISPH results and the experimental data of Buchner 

(2002). It is shown that the pressure profile obtained with Adami et al. (2012) contained some 

high frequency oscillations although the main pressure plateau was reasonably captured. 

According to Adami et al. (2012), the strong pressure peak around 2/1)/( Hgt  = 6 was caused 

by the plunging wave rolling-up after the flow hit upon the wall, but the numerical peak 

occurred slightly later because the air cushion effect was not considered in their single phase 

simulations. However, it should be noted that Adami et al.’s (2012) results were obtained 

without the implementations of XSPH and density normalization. Thus it can be compared on 

an equal basis with the present ISPH model in which no additional numerical smoothing 

techniques were used. The ISPH results in Fig. 10 indicated that the mixed source term 

formulation provided a very promising pressure time history, in that not only the pressure 

noises were reduced but also several smaller pressure peaks after time  2/1)/( Hgt  = 6 as 

observed in the experiment of Buchner (2002) were also well captured. Although the largest 

pressure peak was still delayed in the ISPH computation, the amplitude of pressure has been 

much better reproduced as compared with Adami et al. (2012). On the other hand, we have to 

admit that the ISPH computations are poorer than the  -SPH results of Marrone et al. (2011) 

until time 2/1)/( Hgt  = 6, which was due to that the latter model included more advanced 

numerical treatments by including the artificial diffusive term into continuity equation to 

remove the spurious high-frequency pressure oscillations. Nonetheless, Marrone et al. (2011) 

only reproduced the largest pressure peak around time 2/1)/( Hgt  = 6.35 (based on their 

particle spacing X  = 0.015 m) and then the pressure curve drastically dropped down. In 

contrast, the ISPH computation also found two subsequent smaller pressure peaks that were 

reported in the experimental data. Besides, we should realize that Marrone et al. (2011) had 

reproduced these small pressure peaks by using very refined particle spacing X  = 0.001875 

m, while the present ISPH model achieved similar results by using X  = 0.02 m.   
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Fig. 10 Time histories of computed pressures by present ISPH, modified WCSPH 

(Adami et al., 2012),  -SPH (Marrone et al., 2011) and compared with experimental 

data of Buchner (2002) 

 

 

Numerical Error Analysis of Different Source Term Treatments 

 

        The preceding model applications have served to demonstrate that the mixed source 

term ISPH model performed much more promisingly than the corresponding source term 

model by using either a density-invariant or a velocity divergence-free formulation. In this 

section, we will carry out a series of numerical error analysis to investigate the PPE source 

term errors and provide a theoretical rational for the robustness of the mixed source term 

formulation. 

        Generally there are two main errors arising from any ISPH projection schemes and they 

are the particle density error and the velocity divergence error. The former is due to the 

change of particle volume from either the compression or expansion, while the latter is 

attributed to the non-conservation of the particle flow field. In a pure density-invariant ISPH 

approach such as in Shao and Lo (2003), we would expect that the conservation of particle 

volume is well observed, but in a pure divergence-free ISPH approach such as in Cummins 

and Rudman (1999), we would expect that the conversation of particle velocity field is well 

followed. As far as the present knowledge is concerned, only a limited number of works have 

been carried out to study the particle density errors in ISPH projection scheme, such as 

documented by Cummins and Rudman (1999), Asai et al. (2012) and Szewc et al. (2012). 

However, with regard to the evaluation of particle velocity divergence errors there are no 
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documented results available. In fact, the understanding of these fundamental errors would be 

very useful for understanding and improving the ISPH numerical schemes, as they could 

greatly influence the model predictions of the macro flow properties such as the impact 

pressure and force, etc.  

        In the following error analysis, the particle density error is quantitatively evaluated 

through the normalized density errors between the corrected and initial constant densities as: 
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where the search of neighbouring particles includes the inner fluid particles only. For the 

velocity divergence error, it is quantified through the average divergence values of corrected 

particle velocities as  
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Numerical Errors in Temporal Domain 

                                     

        Based on the numerical simulations in the previous dam break flow of Lee et al. (2011), 

Figs. 11 (a) and (b) showed the time histories of the particle density and velocity divergence 

errors, respectively, for the three different source term formulations as represented by Eqs. 

(10), (13) and (14). Fig. 11 (a) showed that the particle density error is the smallest for a strict 

density-invariant ISPH model, in which the variation of particle volume is under 1%. In 

contrast, the particle density error is quite large in a pure divergence-free ISPH model, in 

which not only the largest error reached 24% but also the error curve fluctuated greatly. By 

closely examining the relevant particle snapshots and velocity fields as shown in Fig. 3, we 

could easily understand that these large fluctuations are associated with the rapid flow 

deformation and impact. For example, in Fig. 11 (a) the first peak error around time t  = 0.44 

s is the result of dam break flow impacting on the right wall, the second peak error before t  = 

1.5 s is due to the returning flow plunging onto the water surface, and the last peak error 

corresponds to the generated bore flow hitting on the left wall. In addition, Fig. 11 (a) also 

showed the density error of the mixed source term model is only 2% ~ 3% larger than that of 

the strict density-invariant model and it is significantly smaller than the error produced by the 

pure divergence-free model. Some previous works (e.g. Xu et al., 2009) found that the 

divergence-free ISPH model could become unstable in certain circumstances and this could 

be due to the violation of particle volume conservation, or the compression of the fluids. The 
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mixed source term formulation improved the volume conservation of fluid particles and thus 

made the computation more stable.  

 

 
(a) 

 

 

(b) 

 
Fig. 11 Time histories of errors from different source term formulations (for dam break 

flow of Lee et al., 2011): (a) Density error; (b) Velocity divergence error 
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        On the other hand, examining the velocity divergence errors in Fig. 11 (b) reveals that a 

strict density-invariant ISPH formulation could generate relatively large divergence errors 

while a strict divergence-free ISPH formulation could reduce this error by about 50%. It is 

interesting to notice that the fluctuation features of divergence errors in Fig. 11 (b) are quite 

consistent with those of the density errors in Fig. 11 (a), in that the peak errors appear around 

the same time instants when the flows are undergoing the severe impacts and free surface 

deformations. However, it is also found out that the divergence errors in Fig. 11 (b) appear to 

be similar for both the mixed source term model and the pure divergence-free model. The 

reason is likely to be that the density and divergence errors are internally interrelated with 

each other. In a strict divergence-free model, as the particle volume conservation is not 

satisfied as shown in Fig. 11 (a), this could also influence the correct projection of the particle 

velocity fields. Thus the simple imposition of divergence-free condition alone in a particle 

method cannot achieve the best divergence-free flow field, which is different from the grid 

modelling technique. In comparison, in the mixed source term model, as the particle volume 

conservation is improved and the density error is reduced, this can also make the projection 

of particle velocity field more accurate. As a result, the mixed source term ISPH scheme 

achieved the same velocity divergence errors as the pure velocity divergence-free model.   

 
As a further investigation on the different source term formulations, the time histories 

of the particle density and velocity divergence errors are determined as shown in Figs. 12 (a) 

and (b), for the three source terms as represented by Eqs. (10), (13) and (14), based on the 

previous numerical simulations of dam break flow of Colagrossi and Landrini (2003). 

Besides, similar results are also presented for the solitary wave impact case of Robertson et al. 

(2013) in Figs. 13 (a) and (b), for the small wave height of 53.2 cm. 
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(b) 

 

Fig. 12 Time histories of errors from different source term formulations (for dam break 
flow of Colagrossi and Landrini, 2003): (a) Density error; (b) Velocity divergence error 
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(b) 

 

Fig. 13 Time histories of errors from different source term formulations (for solitary 
wave impact of Robertson et al., 2013): (a) Density error; (b) Velocity divergence error 

 

Fig. 12 showed the same error features as those in Fig. 11, in that the mixed source 

term model achieved the most optimum numerical performance in view of reducing the 

density and divergence errors, and also the two errors are consistent with each other for the 

appearance of peak values. In fact this is of no surprise as both cases are for the instantaneous 

dam break flows and thus should have similar hydrodynamic mechanisms. On the other hand, 

the density and divergence errors of solitary wave impact as shown in Fig. 13 have somewhat 

different evolution patterns. For example, Fig. 13 (a) demonstrated that the density error for a 

pure divergence-free source term formulation could be as large as 45% in a long time 

simulation, while Fig. 13 (b) indicated that the divergence error for the mixed source term 

lies somewhere between that of the pure density-invariant and divergence-free models, rather 

than close to the latter as in the two dam break flow cases. At this stage we could only 

attribute this discrepancy to the different hydrodynamic features of the flow and the duration 

of simulation time. However, a very promising phenomenon observed is that both the dam 

break flows and solitary wave impact shared some similar features such as: (1) the mixed 

source term could achieve the optimum density and divergence errors simultaneously; (2) the 

peak density and divergence errors always appear during the violent fluid motions such as 

wave impact. For example, in the solitary wave case, the maximum density and divergence 

errors both occurred around time t  = 18 s as shown in Fig. 13, while in the violent wave 

impact case they happened at t  = 17.67 s as shown in Fig. 6 (a). 
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Numerical Errors in Spatial Domain 

 

In the preceding analysis, we found that relatively large density and velocity divergence 

errors are always associated with the rapid flow deformation and impact. To numerically 

support this statement here we further examine the spatial distribution of these errors for the 

dam break flow of Lee et al. (2011), during the violent flow impact on the right wall. Figs. 14 

(a) and (b) showed the density and divergence errors for the mixed source term model Eq. 

(14), while (c) is the density error for the density-invariant model Eq. (10) and (d) is the 

velocity divergence error for the divergence-free model Eq. (13), respectively.   

 

 

        (a)                                                                    (b) 

 

        (c)                                                                    (d) 

Fig. 14 Spatial distributions of errors from different source term formulations (for dam 
break flow of Lee et al., 2011): (a) Density error for mixed source term; (b) Velocity 

divergence error for mixed source term; (c) Density error for density-invariant model; 

(d) Velocity divergence error for divergence-free model 
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Figs. 14 clearly demonstrate that large density and divergence errors are concentrated within 

the impact region near the right wall, especially around the upward flowing jet where the 

water surface undergoes large deformation. Besides, some of the larger density and 

divergence errors are also found on the free surface particles across the computational 

domain. In comparison, these errors are quite small within the inner fluid region away from 

the solid boundary and free surface. 

 

In some earlier results, we have observed that the velocity divergence errors in the pure 

divergence-free source term model may have arisen from the particle volume conservation. 

To provide a rational for this, Figs. 15 (a) and (b) showed the spatial plot of particle density 

errors at the time when the velocity divergence error is large, for the divergence-free source 

term Eq. (13) model and mixed source term Eq. (14) model, respectively. The result is based 

on the dam break flow of Colagrossi and Landrini (2003) at the stage when the flow 

overturned from the right wall and plunged onto the water surface at normalized time 
2/1)/( Hgt  = 6.25 as shown in Fig. 10. Figs. 15 (a) showed that for a pure divergence-free 

source term model the density error or particle volume non-conservation is obviously larger 

especially within the impact region near the solid boundary, while these errors have been 

effectively reduced in the mixed source term model as shown in Figs. 15 (b).  

 

(a) 

 

(b) 

Fig. 15 Spatial distributions of density errors (for dam break flow of Colagrossi and 

Landrini, 2003) for (a) Divergence-free source term and (b) Mixed source term 
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Finally, to further investigate why the velocity divergence error is large for the density 

gradient source term, the spatial plots of the velocity divergence errors and pressure fields for 

the dam break flow of Lee et al. (2011) during the flow impact on the right wall are shown in 

Figs. 16 (a) and (b), respectively, for the density-invariant source term Eq. (10) model. Figs. 

16 (a) demonstrated a noisy divergence field that is closely correlated with the noisy pressure 

and velocity distribution patterns near the dam site as well as impact zone, as shown in Figs. 

16 (b). 

 

 

(a) 

 

 

(b) 
 

Fig. 16 Spatial distributions of (a) Velocity divergence errors and (b) Pressure and 
velocity fields, for density-invariant source term model (for dam break flow of Lee et al., 

2011) 
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Conclusions 

 
        To improve the ISPH modelling capacity a mixed source term model has been proposed 

by the authors which combines the standard density-invariant and the velocity divergence-

free formulations in a weighted average form. The new model was applied to two benchmark 

dam break flows and one solitary wave impact problem for two different wave heights. By 

comparing with the documented experimental data and numerical results, it was found that 

the mixed source term ISPH model predicted more accurate impact pressure and force as 

compared with the results obtained by using either the density-invariant or the velocity 

divergence-free ISPH model.  

        To further quantify the numerical errors generated from different ISPH source term 

treatments, the temporal and spatial distributions of the particle density and velocity 

divergence errors were investigated. Not only we have found that the numerical errors were 

closely linked with the violent fluid deformation and impact, but also it has been disclosed 

that a strict density-invariant model could generate relatively larger divergence error while a 

strict divergence-free model could generate relatively larger density error. The mixed source 

term model can effectively reduce both errors in an optimum manner and thus gave the best 

numerical performance in predicting the macro flow behaviours.    
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