This is a repository copy of Egg intake and cancers of the breast, ovary, and prostate: dose-response meta-analysis of prospective observational studies.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/86259/

Version: Supplemental Material

Article:

https://doi.org/10.1017/S0007114515002135

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
7,378 publications identified on initial search
- 6,204 PubMed
- 1,174 Embase

460 duplicates removed

6,918 publications screened based on title and abstract

6,833 publications excluded for not meeting the inclusion criteria

85 publications were assessed based on full-text and their references were reviewed for additional publications

66 publications excluded:
- 1 retrospective study
- 53 irrelevant exposure or outcome
- 4 reviews or meta-analyses
- 5 duplicate populations
- 3 no sufficient data for dose-response

19 publications (2 pooled studies) included in analysis:
- Breast cancer: 6 publications (1 pooled study)
 - linear: 6 publications
 - non-linear: 4 publications
- Ovarian cancer: 3 publications (1 pooled study)
- Prostate cancer: 10 publications
 - total prostate cancer: 6 publications
 - fatal prostate cancer: 4 publications
First author, year | RR (95% CI)
--- | ---
Farvid, 2014 | 0.97 (0.81, 1.16)
Pala, 2009 | 1.04 (0.96, 1.13)
Missmer, 2002 | 1.08 (0.99, 1.17)
Key, 1999 | 1.00 (0.78, 1.28)
Gaard, 1995 | 1.04 (0.63, 1.72)
Mills, 1989 | 1.23 (0.48, 3.14)
Overall (I-squared = 0.0%, p = 0.927) | 1.05 (0.99, 1.11)

RR for an increase of five eggs consumed per week
Figure 2B

Number of eggs consumed per week

Best fitting cubic spline

95% confidence interval
Figure 3

<table>
<thead>
<tr>
<th>First author, year</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schulz, 2007</td>
<td>1.69 (0.71, 4.01)</td>
</tr>
<tr>
<td>Genkinger, 2006 (pooled analysis)</td>
<td>1.08 (0.99, 1.17)</td>
</tr>
<tr>
<td>Larsson, 2005</td>
<td>1.02 (0.62, 1.70)</td>
</tr>
<tr>
<td>Overall (I-squared = 0.0%, p = 0.585)</td>
<td>1.08 (1.00, 1.17)</td>
</tr>
</tbody>
</table>

RR for an increase of five eggs consumed per week
Figure 4

Table:

<table>
<thead>
<tr>
<th>First author, year</th>
<th>RR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allen, 2008</td>
<td>0.95 (0.79, 1.15)</td>
</tr>
<tr>
<td>Allen, 2004</td>
<td>1.12 (0.85, 1.48)</td>
</tr>
<tr>
<td>Schuurman, 1999</td>
<td>0.98 (0.69, 1.39)</td>
</tr>
<tr>
<td>Mills, 1989*</td>
<td>0.65 (0.32, 1.29)</td>
</tr>
<tr>
<td>Severson, 1989</td>
<td>1.17 (0.80, 1.71)</td>
</tr>
<tr>
<td>Thompson, 1989</td>
<td>1.00 (0.55, 1.82)</td>
</tr>
<tr>
<td>Subtotal (I-squared = 0.0%, p = 0.687)</td>
<td>1.00 (0.88, 1.14)</td>
</tr>
<tr>
<td>Richman, 2011</td>
<td>2.56 (1.22, 5.41)</td>
</tr>
<tr>
<td>Iso, 2007</td>
<td>1.32 (0.77, 2.24)</td>
</tr>
<tr>
<td>Hsing, 1990</td>
<td>1.07 (0.71, 1.59)</td>
</tr>
<tr>
<td>Snowdon, 1984*</td>
<td>1.95 (0.90, 4.24)</td>
</tr>
<tr>
<td>Subtotal (I-squared = 40.1%, p = 0.171)</td>
<td>1.47 (1.01, 2.14)</td>
</tr>
</tbody>
</table>

RR for an increase of five eggs consumed per week.
Figure 5

- Hsing, 1990
- Iso, 2007
- Snowdon, 1984
- Richman, 2011

RR on log scale