This is a repository copy of *Noise Analysis for Quadratic Equation Error Parameter Tracking*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/86217/

Monograph:

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
University of Sheffield

Department of Control Engineering

Noise Analysis for Quadratic Equation Error Parameter Tracking

M. L. Bransby

Research report No. 13

May 1973
Noise Analysis for Quadratic Equation Error Parameter Tracking

Equation error parameter tracking is a particularly simple analogue technique for estimating parameters of a plant of known structure. A brief description of the method is given below and further details may be found in refs 1, 2.

Although parameter tracking can be applied to both linear and nonlinear processes it will be assumed for simplicity that the plant is described by the equation

\[
(s^2 + \alpha_1 s - 1 + \ldots + \alpha_k)x = (\alpha_{n+1} s^{m-2} - 1 + \ldots + \alpha_m)u
\]

(1)

where \(n \) of the \(\alpha_i \) are unknown. Writing

\[
y_i = s^{2-i}x \quad ; \quad 0 \leq i \leq 2
\]

\[
y_i = -s^{m-i}u \quad ; \quad 2+1 \leq i \leq m
\]

(2)

the plant equation becomes

\[
y_0 + \alpha_1 y_1 + \ldots + \alpha_m y_m = 0
\]

(3)

In order to generate the equation error all the \(y_i \) must be available for measurement. When some of them are not available a generalised equation error may be generated by using matched "state variable filters" (ref 1). In this report we are concerned with the case in which all the \(y_i \) are available for measurement, but these measurements, \(z_i \) are corrupted with zero mean white noise \(\eta_i \) i.e.

\[
z_i = y_i + \eta_i
\]

(4)

Using these signals the equation error

\[
e = z_0 + \hat{\alpha}_1 z_1 + \hat{\alpha}_2 z_2 + \ldots + \hat{\alpha}_m z_m
\]

(5)

is generated where \(\hat{\alpha}_i \) are the estimates (or the known values) of the \(\alpha_i \).

For quadratic equation error parameter tracking the continuous adjustment laws for the \(n \) unknown parameters are

\[
\frac{d\hat{\alpha}_i}{dt} = -K_i \frac{\partial e}{\partial \hat{\alpha}_i}^2
\]

(6)

\[
= -K_i e z_i \quad ; \quad i = 1, \ldots, n.
\]

(7)
For the special case in which the plant parameters are constant this system of equations becomes

\[
\begin{align*}
\dot{\hat{a}}_1 &= K_1 e z_1 \\
\dot{\hat{a}}_2 &= K_2 e z_2 \\
&\vdots \\
\dot{\hat{a}}_n &= K_n e z_n \\
e &= -\hat{a}_1 z_1 - \hat{a}_2 z_2 - \cdots - \hat{a}_n z_n + (\eta_0 + \alpha_1 \eta_1 + \cdots + \alpha_n \eta_n)
\end{align*}
\]

where

\[
\tilde{\alpha}_i = a_i - \hat{a}_i
\]

and where, simply for convenience of notation, it has been assumed that the first \(n \) of the \(a_i \) are unknown. Since all the \(a_i \) are constant the noise terms in brackets may be replaced by a single white noise \(\eta \) with zero mean. The spectral density of this noise will be taken as \(b \). Equation (8) may be simplified further by making the transformations

\[
\begin{align*}
a_i &= \frac{\tilde{\alpha}_i}{\sqrt{K_i}} \quad ; \quad i = 1, \ldots, n. \\
\omega_i &= z_i \sqrt{K_i} \quad ; \quad i = 1, \ldots, n.
\end{align*}
\]

\[
\text{to give}
\]

\[
\dot{\hat{a}}_i = -\omega_i \left(\sum_{k=1}^{n} (a_k \omega_k) + \eta \right) \quad ; \quad i = 1, \ldots, n.
\]

It is convenient at this stage to investigate the stability of equations (11) for the case in which \(\eta = 0 \). Choosing the Lyapunov function

\[
L = \frac{1}{2} \sum_{i=1}^{n} a_i^2
\]

we find that the total derivative

\[
\dot{L} = -\left(\sum_{i=1}^{n} a_i \omega_i \right)^2
\]

which is negative semi-definite. Hence equations (11) are stable.
If \(\lambda = 0 \) continuously, then from equation (11) all the \(a_i \) are constant ie
\[
\frac{a_i}{c_i} = \text{const} \quad ; \quad i = 1, \ldots, n. \tag{14}
\]
and thus
\[
\sum_{i=1}^{n} c_i \omega_i = 0 \tag{15}
\]
This implies that the \(\omega_i \) are linearly dependent. Hence if the signals \(\omega_i \)
are linearly independent \(L = 0 \) is not a trajectory of the system and the equilibrium point \(a_i = 0 \) is asymptotically stable in the large. This result is more complete than those given in refs 1,3.

From the above it is clear that equation (11) represents a linear time-varying stable system excited by white noise. The Fokker-Planck equation (ref.4) of this set of equations is
\[
\frac{\partial}{\partial t} = \sum_{j=1}^{n} \frac{\partial}{\partial a_j} \left(\rho \omega_j \sum_{k=1}^{n} a_k \omega_k \right) + \frac{b}{2} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial^2}{\partial a_j \partial a_k} \left(\omega_j \omega_k p \right) \tag{16}
\]
where \(p \) is the probability density function \(p(a_1, a_2, \ldots, a_n, t) \). Multiplying equation (16) by \(a_1 a_2 a_3 \ldots \ldots a_n \) and integrating by parts with respect to \(a_1, \ldots, a_n \) over the whole range \(-\infty \) to \(+\infty \) (ref.5) produces the following equation for the moment
\[
\hat{M}(A_1, A_2, \ldots, A_n) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} A_1 A_2 \ldots A_n p \, da_1 \, da_2 \ldots da_n \tag{17}
\]
of the probability distribution
\[
\frac{\partial}{\partial t} \hat{M}(A_1, A_2, \ldots, A_n) = \sum_{j=1}^{n} A_j \omega_j \sum_{k=1}^{n} \omega_k \hat{M}(A_1, \ldots, A_{j-1}, A_k, 1, \ldots, A_n) \tag{18}
\]
\[
+ \frac{b}{2} \sum_{j=1}^{n} \sum_{k=1}^{n} \frac{\partial^2}{\partial A_j \partial A_k} \left(A_k \delta_{jk} \right) \hat{M}(A_1, \ldots, A_{j-1}, 1, \ldots, A_{k-1}, \ldots, A_n)
\]
where \(\delta_{jk} \) is the Kronecker delta.

Substituting for \(A_i \) in equation (18) gives the following set of equations for the ensemble (not time) averages of the distribution
\[
\frac{\dot{a}_i}{a_i} = -\omega_i \sum_{k=1}^{n} \frac{a_k \omega_k}{c_k} \quad ; \quad i = 1, \ldots, n. \tag{19}
\]
This equation is similar to equation (11) with \(\eta = 0 \). Hence the equilibrium point \(\overline{a_i} = 0 \) is asymptotically stable in the large so long as the input signals are linearly independent.

Substituting for \(A_i \) in equation (18) also gives the following set of equations for the covariances of the distribution

\[
\overline{a_i a_j} = -\omega_i \sum_{k=1}^{n} \omega_k a_{ik} a_{kj} - \omega_j \sum_{k=1}^{n} \omega_k a_{kj} a_{ji} + \omega_i \omega_j b
\]

(20)

To investigate the stability of these equations about the equilibrium point \(\overline{a_i a_j} = \frac{b}{2} \delta_{ij} \); \(i,j = 1, \ldots, n \) we define

\[
\epsilon_{ij} = \overline{a_i a_j} - \frac{b}{2} \delta_{ij} \quad ; \quad i,j = 1, \ldots, n.
\]

(21)

and equation (20) becomes

\[
\dot{\epsilon}_{ij} = -\sum_{k=1}^{n} \omega_k (\omega_i \epsilon_{kj} + \omega_j \epsilon_{ki}) \quad ; \quad i,j = 1, \ldots, n.
\]

(22)

We choose the Lyapunov function

\[
L = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \epsilon_{ij}^2
\]

(23)

which has the derivative

\[
\dot{L} = -\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \epsilon_{ij} \omega_k (\omega_i \epsilon_{kj} + \omega_j \epsilon_{ki})
\]

(24)

\[
= -\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \epsilon_{ij} \epsilon_{ik} \omega_k \omega_j
\]

\[
= -\sum_{i=1}^{n} \left(\sum_{k=1}^{n} \epsilon_{ik} \omega_k \right)^2
\]

(25)

(26)

which is negative semi-definite. Again if the \(\omega_i \) are linearly independent it follows that the equilibrium point \(\overline{a_i a_j} = \frac{b}{2} \delta_{ij} \) is asymptotically stable in the large. Using equations (10) this equilibrium point corresponds to \(\overline{a_i a_j} = \sqrt{K_i K_j} \delta_{ij} \); \(i,j = 1, \ldots, n. \).
The results of the above analysis may be summarized as follows.
If the inputs, antwort to the parameter tracking system are linearly independent then the means and co-variances of the parameter deviations \(\delta_i \) tend to zero and the variances tend to \(\frac{K_i b}{2} \). Since the response of any estimation scheme to noisy measurements is fundamental it is clear that these results are of great importance to our understanding of quadratic parameter tracking.

The result that the variance of the deviations is independent of the form of the input signals is particularly interesting. It would appear that this no longer holds if there is coloured measurement noise, or if "state-variable filters" are used. It is also worth noting that although it is easily shown that at any time the parameter deviations are normally distributed, no information has been obtained on either the second order probability distribution or the autocorrelation and crosscorrelation functions of the \(\delta_i \). It would appear that the mathematics involved in this is much more complex.

References

