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ABSTRACT

Motivation: The role of personalised medicine and target treatment in
the clinical management of cancer patients has become increasingly
important in recent years. This has made the task of precise
histological substratification of cancers crucial. Increasingly genomic
data are being seen as a valuable classifier. Specifically, copy number
alteration (CNA) profiles generated by next-generation sequencing
(NGS) can become a determinant for tumours subtyping. The
principle purpose of this study is to devise a model with good
prediction capability for the tumours histological subtypes as a
function of both the patients covariates and their genome-wide CNA
profiles from NGS data.

Results: We investigate a logistic regression for modelling tumour
histological subtypes as a function of the patients’ covariates and their
CNA profiles, in a mixed model framework. The covariates, such as
age and gender, are considered as fixed predictors and the genome-
wide CNA profiles are considered as random predictors. We illustrate
the application of this model in lung and oral cancer datasets, and the
results indicate that the tumour histological subtypes can be modelled
with a good fit. Our cross-validation indicates that the logistic
regression exhibits the best prediction relative to other classification
methods we considered in this study. The model also exhibits the best
agreement in the prediction between smooth-segmented and circular
binary-segmented CNA profiles.

Availability: An R package to run a logistic regression is available in
http://www1.maths.leeds.ac.uk/~arief/RICNALR/

Contact: a.gusnanto@leeds.ac.uk

1 INTRODUCTION

patients (Gusnantet al. , 2012). Our objective in this current
study is to analyse multiple samples from two tumour sulgype
simultaneously and develop informatic techniques to sgpdahem
using their CNA profiles, so that subsequent patients coelogtter
stratified in a predictive manner.

Currently, methods for studying groups of CNA profiles tend
to focus on looking for similarities in a homogeneous grodp o
samples (Mermett al., 2011) or to look for regions of the genome
where two groups of samples are very different (de Roetdal. ,
2010). We are focusing less on the genomic regions involaad,
more on the problem of separating similar groups of sampies a
predicting to which group a new sample belongs. More spediific
our focus is in utilising the whole (genome-wide) CNA praddile
stratify tumour subtypes, in addition to other covariatepatients
characteristics. This strategy enables us to have a widgurpiof
the contribution of each genomic region in the stratifiaatia light
of the contribution of the other regions.

To model the tumour subtypes, we investigate logistic resion
within a random effects model framework, where the contidms
of patients’ clinical characteristics are considered asdfigffects
and those of the CNA profiles are considered as random effects
Since our interest is in the prediction of tumour subtypesief
samples, we perform a cross-validation to identify the jotézh
error of the model. We compare this prediction error wittsthfxom
other classification methods.

As a test data set, we have analysed a cohort of lung tumours,
all of which are from the two closely related subtypes, squasn
cell carcinoma (SCC) and adenocarcinoma (ADC). Until rdgen
these have been treated as part of the larger subgroup redhesth
lung carcinoma (NSCLC), but there is growing evidence that t
two groups should be treated as separate diseases (Gagda)., 2

Next-generation sequencing (NGS) technology has greafigtormed  As a validation data set, we analysed another cohort of tiaert
our way of interrogating genomes and advanced our undeiisin  tumour subtypes, oral squamous cell carcinoma (OSCC) aald or
of genomic changes such as copy number alterations (CNA). Weerrucous carcinoma (OVC). These subtypes have very eliffer
have previously shown that CNA data can be generated fronprognoses and clinical management, but there can be hjgtalo
routine diagnostic biopsy specimens in a very efficient reansing  uncertainty in distinguishing between them (Rekha and Ainga
multiplexed, low-coverage sequencing (Woetlal , 2010) and  2010).

developed a robust algorithm to analyse these data in dhaVi The results of our analysis indicate that the logistic resjien
enables us to stratify tumour subtypes and investigate rgeno
wide contribution of each genomic region to the stratifmatiThe
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results also indicate that the logistic regression has goedictive
value for new samples: advantageously, this predictiorchseaed
regardless of the segmentation methods involved in thenastn of
CNA. The latter advantage is important because a numberotgzo
exist to obtain CNA estimates from next-generation seq’ugric
data, and they use a variety of pre-processing steps, sugh
normalisation, and a number of different segmentation ousth

=
7]

Before we discuss those results, we discuss first the Ioﬁist'P

regression in the next section.

2 METHODS
2.1 Patients, sequence data and alignments

Seventy six lung cancer patients were included in this study Leedsg
Teaching Hospital (UK), comprising of two groups: squamoascinomas.
(38 patients) and adenocarcinoma (38 patients). We reddmepatientsg
clinical characteristics, but in this study we only considge and gendér
as covariates. For a validation of our methods, samples fi@2ral cancef
patients were collected from Leeds Teaching Hospitals ((@Kieen Victoria
Hospital (Sussex, UK), University of Torino (Italy) and th&tional Guard
Hospital (Saudi Arabia), comprising of 45 OSCC samples andOyC
samples. Unfortunately, for this cohort of patients, weldawot obtain the
patients’ clinical characteristics, and only work withith@NA profiles. The
main body of this manuscript will deal largely with the lunancer dataset.
The experimental validation using the oral cancer datasitvainly be
presented in the supplementary material.

Details on sample preparation, DNA extraction and librargparation
are described by Wocet al. (2010). Sequences were aligned using the bwa
suite version 0.5.9-r16 (Li and Durbin, 2009) against assgring19 of the
human genome. Only sequences that could be uniquely alignedvith
mapping quality> 37 were used.

2.2 Normalisation and CNA estimate

The copy number alteration (CNA) profile from each lung tumasi
calculated by ‘depth of coverage’ from their sequencestiismpurpose, the
optimal window size for this group of samples is estimatadgislGSoptwin
package to be 150 kbp (Gusnamtoal., 2014). The sequence data from 76
cancer patients are not directly comparable because ahdyithe tumour
samples are contaminated with normal cells by differentrelegyy To deal
with this problem, we performed a normalisation using theAGbrm
package Gusnantet al. (2012) to obtain the CNA estimates. An example
of CNA estimates is presented in Figure 1 for patient LS67¢kvhan be in
two forms depending on the segmentation method used:

1. Smooth estimate, where CNA is estimated as smooth segchbénés
Huanget al. (2007). The main characteristic of the estimate is that the
segmented line is smooth and follows the sudden ‘'jumps’ dnaps’
in the CNA profile. This is illustrated in the top row of Figute

. DNACopy estimate, where CNA is estimated as circular fyina
segmented lines (Olsheat al. , 2004). The main characteristic of the
estimate is that the segmented line tends to form relatieely constant
segments. This is illustrated in the bottom row of Figure 1.

With 150 kbp window size, we approximately have slightly sdnan
20,000 windows to cover the whole genome. In this study, wauee
the CNA estimates from the sex chromosomes and the centeoregions,
where some missing values can be problematic in the analjier we
remove them, we have CNA estimates from 17,571 genomic wiedo
two different forms as described above. For each form of Chlimte, the
CNA profiles from the patients are summarised in a matrix bé si6 by
17,571.

LS67 — Smooth CNA
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Fig. 1. Example of CNA estimates from one patient, LS67.

2.3 Logistic regression

At this stage, our data consist of three components: (1) ey tumour
histological subtype (squamous carcinoma=1, adenocanar0), (2)age
andgenderas covariates, and (3) the CNA estimates across 17,571 genom
windows. To model the binary histological subtype, logigtgression is
a natural choice because we can extend the standard modebkavith
the second type of predictors namely CNA profiles. One of theédiate
challenges dealing with this type of data is the dimensiorthef CNA
profiles. We have a data matrix of sizex ¢ where76 = n < ¢ = 17,571.
A standard logistic regression will fail in the computatibecause the
number of variables far exceeds the number of observatibogroceed,
we extend the standard model by assuming that the paranoéteNA to
follow a Normal distribution.

Specifically, in vector notation, considgras a vector of binary tumour
histology withy; = 1 if the tumour is squamous carcinoma amd= 0
if the tumour is adenocarcinoma, for= 1,2,...,n. We assume thay
follow a Binomial(14) distribution with i is the probability of the tumour
being squamous carcinoma. In logistic regression, we model

h(u) = XB + Zv @)

whereh(-) is a logit link function that applies elementwis¥, is a matrix
of fixed covariates of size x p, 3 is ap-vector of fixed effects for matrix
X, Z is matrix of CNA estimates of size x ¢, and~y is a g-vector of
random effects for matri¥. We assume that;, j = 1,. .., g would follow
a Normal(072) distribution.

The joint log likelihood of the parameters is given by

log L(B,v,7%) = log p(y|) + log p(7) @)

wherep(y|v) is the likelihood based on conditional distributionpgjiven
v, andp(~) is the likelihood based on the Normal distribution of random
effectsy. Given the datay; , y2, . . . , yn, the log likelihood is given by

log L(3,7,7%) = 3 (ys log - +(1-y1) log(1—s)} 2 2 377 @)
i J

1

2

wherep; is a logistic function ofg and~, and\ =




Stratifying tumour subtypes

2.3.1 Estimation off and~ at fixed\ The estimation of3 and- in
(3) can be performed using iterative weighted least squandsS) at a fixed
value of\. At a fixed value of\ and starting values g8° and~°, IWLS is
performed to find the solution of mixed model equation

) @

(F5ok s ) (0) = (

Z'y-1Xx z's-lz 4 D! 0

pi(1 — pi)
is the working vectory: is a diagonal matrix with

Bii = pi (1 — p5),
p=(1+exp{—(XB+Z)}) "', andD = 721, wherel, is an identity

matrix of sizeq.
Specifically, in them-th iteration,

X'y-1ly
Z's-ly

where 7" denotes transpose,

Vi =xif+ 2y +

1. update the working vectoy (™) and £(") based on3(™~1) and
(m—1)
~

2. calculatey(™) = (z'2-1Z + D~1)~1z/s- 1y
3. calculates(™) = (X’S-1X)~1x/n-1y

where in steps (2) and (3) we use the current valuexaind Y. We
iterate the above steps until convergence and, at conv@gere obtain the
estimates3 and5. The dimension of matriXZ’S~1Z + D~1) is in the
order of 17,571 x 17,571 so that its inversion is a computational bottle
neck in the iteration. To overcome this problem, we use a caational
modification that are discussed further in Section 2.4.

The approximate standard errors fi\)andﬁ are given by the square root
of the diagonal of

(X'$71X)7! )

and

(Zz's7'z+ D" H7, (6)

respectively, wheré = ¥ + 7227/,

2.3.2 Estimation ofr? given 8 and v We estimate3 and ~
above at a given value of2, and 72 can be estimated as the one that
minimises Akaike’s Information Criterion (AIC) or througinoss-validation.
The calculation of AIC in practice is described further irctian 2.4.

2.4 Computational consideration

The size of the matrixZ’S~1Z+ D~1) involved in the above computation
is in the order of 17,571 17,571. To reduce the computational burden
we consider a modification of the computation to find the smtubf the
above estimation problem. We can overcome this problem jesenting
the matrixZ (of sizen x q) as a multiplication of special matrices in singular
value decomposition (SVD) (Eileet al., 2001). Let us define

Z=UQV’

whereU and( are of sizen xn, andV is of sizegxn, such thal/’U = I,
V'V = I, (butVV’ # 1), andQ is a diagonal matrix of singular values
of Z.

Using this decomposition, the relevant part in 4 can be t&wrias

(UQ)S™HUQ) + Mg)v* = (UQ)'S™'Y )

In the estimation o2 (Section 2.3.2), we minimise the AIC
AIC = —2log L(f) + 2df
where
L(u) = > {wilog i + (1 — i) log(1 — i)}
i

andy is calculated in a logistic function usirﬁ]and? (via7*). The degrees
of freedom is computed as

df = trace{((UQ)'z—l(UQ) DT (UQ)YSHUQ) + M)}
(see Pawitan (2001)).

2.5 Cross validation

In building a logistic regression to model tumour histolpgye wanted to
consider how well the model can be employed to make prediaifonew
observations. To obtain the prediction of the histologyeldasn the CNA
profiles, we performed a cross validation. We randomly spbibservations
into training set of sizex; and validation set of size, (nt + n, = n) such
that

Xt

Yt Zy

, X =

’Z = .
Yov Xy Zy

Ihe training set serves as the set by which we estimate thelpathmeters
(B¢ and~:. The estimates are then used in the validation set to obtadem

prediction

Go=1 (h—l {XU@ + Zqﬁt} > 0.5) , @)
wherel (-) equals one (squamous group) if the expression inside tic&édisa
is true, and zero (adenocarcinoma group) otherwise.

From this prediction, we obtain how many tumour histologieshe
validation set are misclassified (classification error).n@img v,
(Yo1 Yo2 -+ Yon,)" and, from @)gJo = (Jo1 Yoz - Gon,), We
define the classification error as

Ny

CE = Z I(yvk: 7 Yok)-

k=1

(©)

We also calculate this error as percentages out,Qfwvhich are presented in
the supplementary material.

In our application, we perform the cross validation 100 8nwehere,
out of 76 observations, 38 observations are randomly select be in the
training set and the remaining 38 observations are in thdatan set. To
see whether the classification error obtained by logisticassion is within
a reasonable range, we need to consider other classificattimods in the
cross validation. This enables us to get a better view of #réopmance
of the logistic regression model (Section 2.3) in the prgaticof tumour
histology.

Some classification models that we consider in the crosdatain are: (1)
k-nearest neighbour (KNN) with = 1,...,7, (2) diagonal-quadratic and
diagonal-linear discriminant-analysis (DA), (3) partieést squares (PLS),
(4) elastic net, (5) lasso, (6) neural network, (7) suppedter machines,
and (8) smoothed logistic regression (SLR, Huahgl. (2009)). For this
purpose, we only use the CNA profiles based on the smooth arfdl CB
segmentation, i.eX; and X, are just vector of ones and; is just an

wherey = V~*. Based on this representation, the updating equation inestimate of fixed intercept (from the training set). Notet tie elastic-net

step (2) in the above iteration gives an update+for(hence alsoy), and at

convergence we obtain the estima?hsndﬁ (via5*). The SVD is only done
once before IWLS, as the quantities that are updated in tneedteration are
only Y(m) 2(m)  g(m) and~ (™) (via ~*(™)). With this representation,
the dimension of the matrix inversion reduces dramatidatiyn ¢ x ¢ to a

managable: x n.

and lasso models are essentially logistic regression viftereint penalties
to the likelihood that that we describe in Section 2.3. Tadeonfusion, we
reserve the term "logistic regression” for the one we déscin Section 2.3.
We use the terms "elastic-net” and "lasso” to refer to thastig regression
with elastic net and lasso penalties, and use the acronyrR™ &l refer to

the smoothed logistic regression.
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2.6 Agreement in prediction between segmentation
methods

A concern that we have in the analysis is whether the choisegrhentation
method that we use to estimate CNA really does determine hehet
patient’s tumour histology is misclassified or not, given lassification
model. In other words, if a patient’s tumour is predicted @sreocarcinoma
based on smooth-segmented CNA, is it also predicted as eai@imoma
based on CBS-segmented CNA? To answer this question, westisoate
the agreement in prediction between these two very diffesegmentation
methods.

Let us denoteZ*® and Z<¢ as CNA profiles based on the smooth and CBS
segmentation, respectively. Let us also delﬁﬁandﬁf to be the fixed and
random parameter estimates from the training set using OnNflgs based
on smooth segmentation. Similarly, we denﬁgband as the estimates in
the training set using CNA profiles based on CBS (DNACopy)ngation
We distinguish the predicted tumour histology in the vdlola set using
CNA profiles based on the smooth and CBS segmentation as

g = 1(n{xuB; + 257} > 05) and (10)

- (h L {Xvﬁt 745 } >0. 5) 1)
respectively.

Denotingys = (U3, 5o --- Uon,) @NATE = (T Uy .- Tin,)

we measure the agreement in prediction between the two segtioa

methods as
- Z 1(Yy; = va

A high value ofx indicates that, given a classification model, the predictio
in the validation using CNA profiles based on smooth segntientds in
agreement with those based on the CBS segmentation.

2.7 Software

An R package calleNALRis available from the corresponding author’s
webpage (see 'Availability’ in the abstract section), utihg some tools
to combine the results of normalisation frad@NAnormpackage (Gusnanto
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Fig. 2. Mean of CNA profiles within the squamous group and
adenocarcinoma group (lung cancer dataset), based on d$moot
segmentation and CBS (DNACopy) segmentation.

exclusive to the squamous group, just more common. If we rely
the classification of tumour histology only on the patterattive
observe in th&q region, then effectively we ignore the contribution
of other genomic regions in the genome, as well as risk mis-
classifying any sample which happens by chance to have d smal
number of CNAs in the "wrong” places. Our results below sisgge
that the histology prediction of new samples does not neciégs

etal , 2012). TheCNAnormpackage normalises each sequence individually, improve if the prediction relies only on CNA profiles from sem

and theCNALRpackage will select relevant quantities from @8lAnorm

output. TheCNALRpackage contains functions to handle the CNA profiles

across patients and fit a logistic regression.

3 RESULTS

In this section, we mainly present the results for the lungcea
dataset. For the oral cancer dataset, we present its resaiftdy in
the supplementary material.

3.1 CNA profiles

In this section, we briefly describe the summary of the pmfile<

within each histology. Figure 2 shows (point-wise) meanghef
CNA profiles across the patients within each of the squamads a
adenocarcinoma groups. One point in Figure 2 corresponds to

genomic window, and is the mean of CNA at the same genomic

window (as illustrated in Figure 1) across different paten each
histology group. The figure indicates that the means of CNAiless
between the two groups share many similarities, althougheso

Q

genomic windows.

3.2 Model fit
Smooth CNA DNACopy CNA
o
~ o _|
©
8 i
<
[} ©
B < i
o
v | ©
n
8 T T T T g - T T T T
2 4 6 8 2 4 6 8
log A log A

Fig. 3. Estimation of\ in the model by minimising AIC for CNA profiles in

differences can be observed. For example, we observe that thg cancer dataset.

overall gains irBq and2p regions are higher in the squamous group

than those in the adenocarcinoma group.
Although the pattern in e.g3q region indicates a separation

We fit the logistic regression on the covariates and CNA psfil

between the squamous and adenocarcinoma groups, this dbes mf the patients. An important parameter to be estimated fitoen

mean that a modelling is not needed. Gaingjnand 3¢ are not

model isA, and this is described in Figure 3. The figure indicates that




Stratifying tumour subtypes

Summary of fixed predictors
Predictor Estimate Std. Error z value p-value
(without CNA profiles)

Age 0.02279 0.02801 0.814 0.416
Gender  -0.65864  0.46839 -1.406 0.160 i ’ i “
(with smooth CNA profiles) 002

Smooth CNA

0.006 —

Estimates

Age 0.02702 0.08789 0.3075 0.7585 oo -
Gender -0.83923  1.32923 -0.6313 0.5278 S I N S N N
(With DNACOpy CNA profiles) chrl chr2 chr3 chra chrs  chré chl.7 thB. chr10 chr12 chri4 chrl7  chr20
Age 0.02840 0.08444 0.3363 0.7366 Genomic Regions
Gender  -0.73667 1.32644 -0.5554 0.5783 DNACopy CNA

0.006 —

Table 1. Summary of the fixed predictors (age and gender) in the logist

regression without the inclusion of the CNA profiles (topleabafter the :Z:: :

inclusion of smooth CNA profiles (midlle table), and DNACGNA profiles O'OOO | | | v

(bottom table). = " r
o T T T T T T T T 1

Estimates

chrl chr2  chr3 chrd chr5 chré chr7 chrg chr10 chri2  chrl4 chrl6  chrl9

the optimalX in the model is estimated asp(6) andexp(6.5) for
CNA profiles using smooth segmentation and CBS segmentation
respectively. R

Using the optimal), the results of estimation in the (fixed)

Genomic Regions

Fig. 4. Estimates of the random effects in the full model, using CNA

covariates are presented in Table 1. The table indicatésndime of profiles from sm(.)Oth.and CBS. (DN.AC.O Py) segmentation n i ¢ancer
dataset. Genomic windows with missing values (such as icghtremere

the (fixed) covariates is statistically .Significa}nt ('y?a/alue> .0'05.)' regions) are removed from the figure. We currently do notuitkel sex and

These results suggest that there is no significance differém  iochondrial chromosomes in the analysis. The red dotherhorizontal

patients’ age and gender distribution between the squarands  axis indicate 4549 (smooth) and 3633 (DNACopy) genomicavisd(25.9%

adenocarcinoma groups. and 19.8%) that have significant differences of CNA profilesvben the
The random effects estimates of the logistic regression arsquamous and adenocarcinoma groups, using a permutatichoche A

presented in Figure 4. An immediate pattern that we couldisee more detailed view of the random effects estimates in eagmgsome is

the magnitude of the estimates for the genomic windows irBthe ~Presented in the supplementary material.

region. This pattern suggests that CNA gains in the regiotritute

to increase the probability of the tumour to be classified itite

squamous group, and CNA losses to the adenocarcinoma gboup. Smooth CNA DNACopy CNA

the other hand, negative estimates as we see in most of ckooneo ~ * %) com 165 i

4 indicate that CNA gains in the region contribute to inceetise

probability of the tumour being classified as adenocarcmgnoup ¢ E

and CNA losses to the squamous group. § g
The model fit for our analysis is presented in Figure 5. Theréigu

indicates that the logistic regression can fit the data vetj, where 0(ad) |emmo 0 (ad) Jemmo

the tumour histology is correctly classified. 00 02 04 06 08 10 0o 02 04 06 08 10
In Figure 4, we need to be careful in interpreting the pattern S T ST

P(Squamous) P(Squamous)

of the random effects estimates. None of the individual oamd
effects estimates is statistically significant, in the sehst all of the
95% individual confidence interval for the random effectslide  Fig. 5. The observed tumour histology against its model fit basetefull
zero. This does not mean that there is no information coetain l0gistic regression model using smooth and DNACopy CNAlesoii the
in the data. This is just a result of the estimation of morentha 'Ung cancer dataset. The vertical lines mark the 50% prolitgtio be in
17,000 parameters from just 76 observations. This is altoano the Sg_uamous histological group. Probability more than 5% normally
N . . _classified to the Squamous group.

contradiction when we consider that the model has a good fit as
shown in Figure 5. From the construction of the model, algfou
the individual random effects estimates are not significémere
is a linear combination of window-wise CNA profiles that jiyn
classify the tumour histology.

to the other classification models that we consider in oudystu
The use of KNN and discriminant analysis give a relativelghhi
classification error. This high error is consistent regzsslof the
o number of neighbour in KNN or the type of discriminant anays
3.3 Cross validation The partial least squares (PLS) gives relatively low medifin
The results of cross validation for the lung cancer dataset a classification error, which are comparable to that of thdskig
presented in Figure 6. The figure indicates that the logisticregression. In building the classification rule, PLS expathé space
regression has the lowest median classification error irpaoison  on the CNA mean differences (see for example Barker and Rayen
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Classification error: Smooth segmentation
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Fig. 6. Classification error from 100 cross validations (38 obseioas in

each of the training set and validation set) using only theoatim and
CBS-segmented CNA profiles in the lung cancer dataset adiffesent

classification models: logistic regression ("Log”), k-nest neighbour with
k = 1,2 ("K1"-"K2"), diagonal quadratic ("DA1") and linear ("DA2" )

discriminant analysis, partial least squares ("PLS”), slic net ("Net”),

lasso ("Las”), neural network ("NN"), support vector maahes with C-
classification ("SV1"), nu classification ("SV2"), and bodnconstraint
classification ("SV3”), and smoothed logistic regressidgisiR”). The

horizontal dotted line is the median of classification erafrthe logistic
regression. Figures with "K3"-"K7” are presented in the spfementary
material. The significance of the classification error betweair of methods
are also presented in the supplementary material.

(2003)), without being weighted by the between-class daxae
matrix. Given that CNA profiles can exhibit dramatic changés
copy number, PLS ignores the between-class covariancexr(iag.
focus on the differences on copy number) to give a good ptiedic
The elastic-net and lasso models give a slightly higher aredi
classification error than that of the logistic regressionewtwe

Classification error: Smooth segmentation
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Fig. 7. Classification error from 100 cross validations (52 and 50

observations in the training set and validation set, resipety) in the oral
cancer dataset using only the smooth- and CBS-segmented p@ififes
across different classification models: logistic regress{’Log”), k-nearest
neighbour withk = 1,2 ("K1"-"K2"), diagonal quadratic ("DA1")
and linear ("DA2") discriminant analysis, partial least s@res ("PLS"),
elastic net ("Net”), lasso ("Las”), neural network ("NN”),support vector
machines with C-classification ("SV1"), nu classificatiofSy¥2"), and
bound-constraint classification ("SV3”), and smoothedi#tig regression
("SLR”). The horizontal dotted line is the median of classtion error
of the logistic regression. Figures with "K3"-"K7” are presnted in the
supplementary material. The significance of the classifinatrror between
pair of methods are also presented in the supplementaryriahte

cancer data. The figure indicates that the logistic regsasand

SLR have the lowest prediction error in both smooth and CBS
(DNAcopy) segmented CNA profiles. Support vector machines

with nu-classification has a low prediction error compagétol the
logistic regression, only when using the smooth-segmeGtsé
profiles.

use smooth-segmented CNA profiles, but not when we use CBS- Still within the cross validation, Figure 8 presents how tve

segmented CNA profiles. This is an interesting result bexaussegmentation methods (smooth and CBS segmentation) agree i

the elastic-net and lasso models produce sparse solutictmeon

parameters where some of the estimates are zero estimatetthe choice of segmentation method does matter — in terms of

Effectively, a variable selection is embedded inside thesification

prediction within the validation set. If the agreement i&,ldhen

classification error — when we use a particular classificatiethod.

models. Our results indicate that when we use smooth-seégmhen The contrary can be said if the agreement is high. Figure i8atels

CNA profiles as predictors,
necessarily produces higher prediction (or lower errorh tbe
CBS-segmented CNA profiles, the variable selection stiégithe
same low median of classification error as that of logistizession
(Section 2.3).

For the oral cancer data, we have a more challenging situatio The overall results of our cross validation suggest that the

where it is sometimes more difficult to distinguish oral sgoas

the variable selection does nothat we have a high agreement when we use logistic regreasbn

support vector machines. PLS, elastic net, and lasso mbdeks

lower agreement in the lung cancer data compared to thetilogis

regression, and this agreement increases in the oral cdatzito
be comparable to the logistic regression.

logistic regression is able to achieve a low classificativaravhile

cell carcinoma (OSCC) from oral verrucous carcinoma (OVC)maintaining high agreement in prediction between the shaatd

histologically. Figure 7 describes the prediction errortlie oral

CBS-segmented CNA profiles.




Stratifying tumour subtypes
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Fig. 8. Agreement between smooth segmentation and CBS segmentati
in prediction from 100 cross validations in the lung cancextabet (top
panel) and oral cancer dataset (bottom panel) across diffeclassification
models: logistic regression (’Log”), k-nearest neighbowvith &
1,2 ("K1"-"K2"), diagonal quadratic ("DA1") and linear ("DA2" )
discriminant analysis, partial least squares ("PLS"), slic net ("Net”),
lasso ("Las”), neural network ("NN”), support vector machés with C-
classification ("SV1”), nu classification ("SV2"), and bodrconstraint
classification ("SV3”"), and smoothed logistic regressiotSI(R"). For
the oral cancer dataset (bottom panel) the agreement for @Ad DA2
are below 0.6. The horizontal dotted line is the median ofeagrent
in the logistic regression. Figures with "K3"-"K7” are presnted in the
supplementary material.

4 DISCUSSION

In predicting tumour histology, the main challenge is to sidar

a model with low classification error. Further than that, we

?Wood etal ,

of CNA between neighbouring genomic windows. The lasso
and elastic net models achieve comparable classificatian as
the logistic regression only when the CNA profiles are CBS-
segmented. The CBS (DNACopy) segmentation generally ¢sitpu
long segments, and the variable selection effect that thertethods
produce does not impair the prediction because the gen@uiians
that survive the penalisation are able to represent thenrtion of

the whole segment.

We have demonstrated the ability of the proposed method to
distinguish between two subtypes of lung cancer. We thadaiald
this method in a separate cohort of oral cancer patients,seho
diagnosis is not always straightforward, but whose progns
very different. However, in theory, it could be used to digtiish
between any subtypes of tumour, or to make predictions about
disease progression, drug resistance, or outcome.

Currently, several molecular classifiers are used to djeigh
cancer subtypes, among them mRNA or protein expressiorseThe
are both selective methods. The study of mRNA usually irelv
the removal of non-coding RNA and micro RNA, the roles of vihic
are increasingly becoming apparent. The study of proteinession
usually involves only a few known proteins. Both of these et
will also involve further depletion of valuable sample mék
Where there is no known mRNA or protein signature, our method
may prove useful in finding previously unsuspected diffeesnin
the genomes of two sample groups. Low coverage sequencing is
also possible with extremely low quantities of badly deg@h®NA
2010). If mRNA or protein tests are available, then
their results can be easily added to the logistic regressigthod as
additional predictors and will further improve performanc

5 CONCLUSION

We have investigated the use of logistic regression to nodebur
histology and include the genome-wide CNA profiles as ptedic
The model enables us to include clinical characteristic$ixesl
covariates and CNA profiles as random predictors in a single
modelling framework. The model exhibits a good fit and, in a
cross-validation, shows minimal classification error. Thedel
also demonstrates the best agreement in prediction bet@isién
profiles produced by two very different segmentation meshod

are also interested in the agreement between smooth- and CBS
segmented CNA profiles in the prediction of new tumour sample ACKNOWLEDGEMENT

This is critical when we consider that the CNA profiles are
derived from low-coverage next-generation sequence Hatahtive
undergone several preparation steps. This includes, bubts
limited to, mapping to the reference genome, filtering, ropti
window estimation, normalisation (including normalisatidue to
contamination), and segmentation. To have a classificatiethod

Funding This work was supported by the Yorkshire Cancer
Research [L341PG] and Betty Woolsey Endowment. MS is
supported by the Saudi Arabian Ministry of Higher Educatidimg
Fahd Medical City, Saudi Arabia.

with a good prediction while having a minimum dependency on a

previous preprocessing step is a great advantage.

The logistic regression described in Section 2.3 (also know
as Tikhonov regularisation is well known to tend to group
variables (genomic window) together (Zou and Hastie , 2005)
This property of the logistic regression is likely to prednme in
prediction, in terms of classification error and agreemeativben
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