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ABSTRACT
Motivation: The role of personalised medicine and target treatment in
the clinical management of cancer patients has become increasingly
important in recent years. This has made the task of precise
histological substratification of cancers crucial. Increasingly genomic
data are being seen as a valuable classifier. Specifically, copy number
alteration (CNA) profiles generated by next-generation sequencing
(NGS) can become a determinant for tumours subtyping. The
principle purpose of this study is to devise a model with good
prediction capability for the tumours histological subtypes as a
function of both the patients covariates and their genome-wide CNA
profiles from NGS data.
Results: We investigate a logistic regression for modelling tumour
histological subtypes as a function of the patients’ covariates and their
CNA profiles, in a mixed model framework. The covariates, such as
age and gender, are considered as fixed predictors and the genome-
wide CNA profiles are considered as random predictors. We illustrate
the application of this model in lung and oral cancer datasets, and the
results indicate that the tumour histological subtypes can be modelled
with a good fit. Our cross-validation indicates that the logistic
regression exhibits the best prediction relative to other classification
methods we considered in this study. The model also exhibits the best
agreement in the prediction between smooth-segmented and circular
binary-segmented CNA profiles.
Availability: An R package to run a logistic regression is available in
http://www1.maths.leeds.ac.uk/∼arief/R/CNALR/
Contact: a.gusnanto@leeds.ac.uk

1 INTRODUCTION
Next-generation sequencing (NGS) technology has greatly transformed
our way of interrogating genomes and advanced our understanding
of genomic changes such as copy number alterations (CNA). We
have previously shown that CNA data can be generated from
routine diagnostic biopsy specimens in a very efficient manner using
multiplexed, low-coverage sequencing (Woodet al. , 2010) and
developed a robust algorithm to analyse these data in individual

∗to whom correspondence should be addressed

patients (Gusnantoet al. , 2012). Our objective in this current
study is to analyse multiple samples from two tumour subtypes
simultaneously and develop informatic techniques to separate them
using their CNA profiles, so that subsequent patients could be better
stratified in a predictive manner.

Currently, methods for studying groups of CNA profiles tend
to focus on looking for similarities in a homogeneous group of
samples (Mermelet al. , 2011) or to look for regions of the genome
where two groups of samples are very different (de Rondeet al. ,
2010). We are focusing less on the genomic regions involved,and
more on the problem of separating similar groups of samples and
predicting to which group a new sample belongs. More specifically,
our focus is in utilising the whole (genome-wide) CNA profiles to
stratify tumour subtypes, in addition to other covariates or patients
characteristics. This strategy enables us to have a wider picture of
the contribution of each genomic region in the stratification, in light
of the contribution of the other regions.

To model the tumour subtypes, we investigate logistic regression
within a random effects model framework, where the contributions
of patients’ clinical characteristics are considered as fixed effects
and those of the CNA profiles are considered as random effects.
Since our interest is in the prediction of tumour subtypes ofnew
samples, we perform a cross-validation to identify the prediction
error of the model. We compare this prediction error with those from
other classification methods.

As a test data set, we have analysed a cohort of lung tumours,
all of which are from the two closely related subtypes, squamous
cell carcinoma (SCC) and adenocarcinoma (ADC). Until recently
these have been treated as part of the larger subgroup non-small cell
lung carcinoma (NSCLC), but there is growing evidence that the
two groups should be treated as separate diseases (Gazdar , 2010).

As a validation data set, we analysed another cohort of two related
tumour subtypes, oral squamous cell carcinoma (OSCC) and oral
verrucous carcinoma (OVC). These subtypes have very different
prognoses and clinical management, but there can be histological
uncertainty in distinguishing between them (Rekha and Angadi ,
2010).

The results of our analysis indicate that the logistic regression
enables us to stratify tumour subtypes and investigate genome-
wide contribution of each genomic region to the stratification. The
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results also indicate that the logistic regression has goodpredictive
value for new samples: advantageously, this prediction is achieved
regardless of the segmentation methods involved in the estimation of
CNA. The latter advantage is important because a number of tools
exist to obtain CNA estimates from next-generation sequencing
data, and they use a variety of pre-processing steps, such as
normalisation, and a number of different segmentation methods.

Before we discuss those results, we discuss first the logistic
regression in the next section.

2 METHODS

2.1 Patients, sequence data and alignments
Seventy six lung cancer patients were included in this studyfrom Leeds
Teaching Hospital (UK), comprising of two groups: squamouscarcinoma
(38 patients) and adenocarcinoma (38 patients). We recorded the patients’
clinical characteristics, but in this study we only consider age and gender
as covariates. For a validation of our methods, samples from102 oral cancer
patients were collected from Leeds Teaching Hospitals (UK), Queen Victoria
Hospital (Sussex, UK), University of Torino (Italy) and theNational Guard
Hospital (Saudi Arabia), comprising of 45 OSCC samples and 57 OVC
samples. Unfortunately, for this cohort of patients, we could not obtain the
patients’ clinical characteristics, and only work with their CNA profiles. The
main body of this manuscript will deal largely with the lung cancer dataset.
The experimental validation using the oral cancer dataset will mainly be
presented in the supplementary material.

Details on sample preparation, DNA extraction and library preparation
are described by Woodet al. (2010). Sequences were aligned using the bwa
suite version 0.5.9-r16 (Li and Durbin, 2009) against assembly hg19 of the
human genome. Only sequences that could be uniquely alignedand with
mapping quality≥ 37 were used.

2.2 Normalisation and CNA estimate
The copy number alteration (CNA) profile from each lung tumour is
calculated by ‘depth of coverage’ from their sequences. Forthis purpose, the
optimal window size for this group of samples is estimated using NGSoptwin
package to be 150 kbp (Gusnantoet al. , 2014). The sequence data from 76
cancer patients are not directly comparable because inevitably the tumour
samples are contaminated with normal cells by different degrees. To deal
with this problem, we performed a normalisation using the CNAnorm
package Gusnantoet al. (2012) to obtain the CNA estimates. An example
of CNA estimates is presented in Figure 1 for patient LS67, which can be in
two forms depending on the segmentation method used:

1. Smooth estimate, where CNA is estimated as smooth segmented lines
Huanget al. (2007). The main characteristic of the estimate is that the
segmented line is smooth and follows the sudden ’jumps’ and ’drops’
in the CNA profile. This is illustrated in the top row of Figure1.

2. DNACopy estimate, where CNA is estimated as circular binary
segmented lines (Olshenet al. , 2004). The main characteristic of the
estimate is that the segmented line tends to form relativelylong constant
segments. This is illustrated in the bottom row of Figure 1.

With 150 kbp window size, we approximately have slightly more than
20,000 windows to cover the whole genome. In this study, we exclude
the CNA estimates from the sex chromosomes and the centromere regions,
where some missing values can be problematic in the analysis. After we
remove them, we have CNA estimates from 17,571 genomic windows in
two different forms as described above. For each form of CNA estimate, the
CNA profiles from the patients are summarised in a matrix of size 76 by
17,571.
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Fig. 1. Example of CNA estimates from one patient, LS67.

2.3 Logistic regression
At this stage, our data consist of three components: (1) the binary tumour
histological subtype (squamous carcinoma=1, adenocarcinoma=0), (2)age
andgenderas covariates, and (3) the CNA estimates across 17,571 genomic
windows. To model the binary histological subtype, logistic regression is
a natural choice because we can extend the standard model to deal with
the second type of predictors namely CNA profiles. One of the immediate
challenges dealing with this type of data is the dimension ofthe CNA
profiles. We have a data matrix of sizen×q where76 = n ≪ q = 17, 571.
A standard logistic regression will fail in the computationbecause the
number of variables far exceeds the number of observations.To proceed,
we extend the standard model by assuming that the parametersof CNA to
follow a Normal distribution.

Specifically, in vector notation, considery as a vector of binary tumour
histology withyi = 1 if the tumour is squamous carcinoma andyi = 0
if the tumour is adenocarcinoma, fori = 1, 2, . . . , n. We assume thaty
follow a Binomial(1,µ) distribution withµ is the probability of the tumour
being squamous carcinoma. In logistic regression, we model

h(µ) = Xβ + Zγ (1)

whereh(·) is a logit link function that applies elementwise,X is a matrix
of fixed covariates of sizen × p, β is ap-vector of fixed effects for matrix
X, Z is matrix of CNA estimates of sizen × q, andγ is a q-vector of
random effects for matrixZ. We assume thatγj , j = 1, . . . , q would follow
a Normal(0,τ2) distribution.

The joint log likelihood of the parameters is given by

log L(β, γ, τ2) = log p(y|γ) + log p(γ) (2)

wherep(y|γ) is the likelihood based on conditional distribution ofy given
γ, andp(γ) is the likelihood based on the Normal distribution of random
effectsγ. Given the datay1, y2, . . . , yn, the log likelihood is given by

log L(β, γ, τ2) =
X

i

{yi log µi+(1−yi) log(1−µi)}−
1

2
λ

X

j

γ2
j (3)

whereµi is a logistic function ofβ andγ, andλ = 1
τ2

.
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2.3.1 Estimation ofβ andγ at fixedλ The estimation ofβ andγ in
(3) can be performed using iterative weighted least squares(IWLS) at a fixed
value ofλ. At a fixed value ofλ and starting values ofβ0 andγ0, IWLS is
performed to find the solution of mixed model equation

„

X′Σ−1X X′Σ−1Z

Z′Σ−1X Z′Σ−1Z + D−1

« „

β

γ

«

=

„

X′Σ−1Y

Z′Σ−1Y

«

(4)

where ”′” denotes transpose,

Yi = x′

iβ + z′iγ +
yi − µi

µi(1 − µi)

is the working vector,Σ is a diagonal matrix with

Σii = µi(1 − µi),

µ = (1 + exp{−(Xβ + Zγ)})−1, andD ≡ τ2Iq whereIq is an identity
matrix of sizeq.

Specifically, in them-th iteration,

1. update the working vectorY (m) and Σ(m) based onβ(m−1) and
γ(m−1)

2. calculateγ(m) = (Z′Σ−1Z + D−1)−1Z′Σ−1Y

3. calculateβ(m) = (X′Σ−1X)−1X′Σ−1Y

where in steps (2) and (3) we use the current values ofΣ and Y . We
iterate the above steps until convergence and, at convergence, we obtain the
estimatesbβ andbγ. The dimension of matrix(Z′Σ−1Z + D−1) is in the
order of17, 571 × 17, 571 so that its inversion is a computational bottle
neck in the iteration. To overcome this problem, we use a computational
modification that are discussed further in Section 2.4.

The approximate standard errors forbβ andbγ are given by the square root
of the diagonal of

(X′S−1X)−1 (5)

and
(Z′Σ−1Z + D−1)−1, (6)

respectively, whereS = Σ + τ2ZZ′.

2.3.2 Estimation ofτ 2 given β and γ We estimateβ and γ

above at a given value ofτ2, and τ2 can be estimated as the one that
minimises Akaike’s Information Criterion (AIC) or throughcross-validation.
The calculation of AIC in practice is described further in Section 2.4.

2.4 Computational consideration
The size of the matrix(Z′Σ−1Z+D−1) involved in the above computation
is in the order of 17,571× 17,571. To reduce the computational burden
we consider a modification of the computation to find the solution of the
above estimation problem. We can overcome this problem by representing
the matrixZ (of sizen×q) as a multiplication of special matrices in singular
value decomposition (SVD) (Eilerset al. , 2001). Let us define

Z = UQV ′

whereU andQ are of sizen×n, andV is of sizeq×n, such thatU ′U = In,
V ′V = In (but V V ′ 6= Iq), andQ is a diagonal matrix of singular values
of Z.

Using this decomposition, the relevant part in 4 can be rewritten as
`

(UQ)′Σ−1(UQ) + λIq

´

γ∗ = (UQ)′Σ−1Y (7)

whereγ = V γ∗. Based on this representation, the updating equation in
step (2) in the above iteration gives an update forγ∗ (hence alsoγ), and at
convergence we obtain the estimatesbβ andbγ (via bγ∗). The SVD is only done
once before IWLS, as the quantities that are updated in the above iteration are
only Y (m), Σ(m), β(m), andγ(m) (via γ∗(m)). With this representation,
the dimension of the matrix inversion reduces dramaticallyfrom q × q to a
managablen × n.

In the estimation ofτ2 (Section 2.3.2), we minimise the AIC

AIC = −2 log L(bµ) + 2df

where

L(µ) =
X

i

{yi log µi + (1 − yi) log(1 − µi)}

andbµ is calculated in a logistic function usingbβ andbγ (via bγ∗). The degrees
of freedom is computed as

df = trace
n

`

(UQ)′Σ−1(UQ) + λI
´

−1 `

(UQ)′Σ−1(UQ) + λI
´

o

(see Pawitan (2001)).

2.5 Cross validation
In building a logistic regression to model tumour histology, we wanted to
consider how well the model can be employed to make prediction of new
observations. To obtain the prediction of the histology based on the CNA
profiles, we performed a cross validation. We randomly splitn observations
into training set of sizent and validation set of sizenv (nt +nv = n) such
that

y :=

2

4

yt

· · ·
yv

3

5 , X :=

2

4

Xt

· · ·
Xv

3

5 , Z :=

2

4

Zt

· · ·
Zv

3

5 .

The training set serves as the set by which we estimate the model parameters
bβt andbγt. The estimates are then used in the validation set to obtain model
prediction

byv = I
“

h−1
n

Xv
bβt + Zvbγt

o

≥ 0.5
”

, (8)

whereI(·) equals one (squamous group) if the expression inside the brackets
is true, and zero (adenocarcinoma group) otherwise.

From this prediction, we obtain how many tumour histologiesin the
validation set are misclassified (classification error). Denoting yv =
(yv1 yv2 . . . yvnv

)′ and, from (8) byv = (byv1 byv2 . . . byvnv
)′, we

define the classification error as

CE =

nv
X

k=1

I(yvk 6= byvk). (9)

We also calculate this error as percentages out ofnv , which are presented in
the supplementary material.

In our application, we perform the cross validation 100 times where,
out of 76 observations, 38 observations are randomly selected to be in the
training set and the remaining 38 observations are in the validation set. To
see whether the classification error obtained by logistic regression is within
a reasonable range, we need to consider other classificationmethods in the
cross validation. This enables us to get a better view of the performance
of the logistic regression model (Section 2.3) in the prediction of tumour
histology.

Some classification models that we consider in the cross validation are: (1)
k-nearest neighbour (KNN) withk = 1, . . . , 7, (2) diagonal-quadratic and
diagonal-linear discriminant-analysis (DA), (3) partialleast squares (PLS),
(4) elastic net, (5) lasso, (6) neural network, (7) support vector machines,
and (8) smoothed logistic regression (SLR, Huanget al. (2009)). For this
purpose, we only use the CNA profiles based on the smooth and CBS
segmentation, i.e.Xt and Xv are just vector of ones andbβt is just an
estimate of fixed intercept (from the training set). Note that the elastic-net
and lasso models are essentially logistic regression with different penalties
to the likelihood that that we describe in Section 2.3. To avoid confusion, we
reserve the term ”logistic regression” for the one we describe in Section 2.3.
We use the terms ”elastic-net” and ”lasso” to refer to the logistic regression
with elastic net and lasso penalties, and use the acronym ”SLR” to refer to
the smoothed logistic regression.

3
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2.6 Agreement in prediction between segmentation
methods

A concern that we have in the analysis is whether the choice ofsegmentation
method that we use to estimate CNA really does determine whether a
patient’s tumour histology is misclassified or not, given a classification
model. In other words, if a patient’s tumour is predicted as adenocarcinoma
based on smooth-segmented CNA, is it also predicted as adenocarcinoma
based on CBS-segmented CNA? To answer this question, we alsoestimate
the agreement in prediction between these two very different segmentation
methods.

Let us denoteZs andZd as CNA profiles based on the smooth and CBS
segmentation, respectively. Let us also denotebβs

t andbγs
t to be the fixed and

random parameter estimates from the training set using CNA profiles based
on smooth segmentation. Similarly, we denotebβd

t andbγd
t as the estimates in

the training set using CNA profiles based on CBS (DNACopy) segmentation.
We distinguish the predicted tumour histology in the validation set using
CNA profiles based on the smooth and CBS segmentation as

bys
v = I

“

h−1
n

Xv
bβs
t + Zs

vbγs
t

o

≥ 0.5
”

and (10)

byd
v = I

“

h−1
n

Xv
bβd
t + Zd

v bγd
t

o

≥ 0.5
”

, (11)

respectively.
Denotingbys

v = (bys
v1 bys

v2 . . . bys
vnv

)′ andbyd
v = (byd

v1 byd
v2 . . . byd

vnv

)′,
we measure the agreement in prediction between the two segmentation
methods as

κ =
1

nv

nv
X

j=1

I(bys
vj = byd

vj). (12)

A high value ofκ indicates that, given a classification model, the prediction
in the validation using CNA profiles based on smooth segmentation is in
agreement with those based on the CBS segmentation.

2.7 Software
An R package calledCNALRis available from the corresponding author’s
webpage (see ’Availability’ in the abstract section), including some tools
to combine the results of normalisation fromCNAnormpackage (Gusnanto
et al. , 2012). TheCNAnormpackage normalises each sequence individually,
and theCNALRpackage will select relevant quantities from theCNAnorm
output. TheCNALRpackage contains functions to handle the CNA profiles
across patients and fit a logistic regression.

3 RESULTS
In this section, we mainly present the results for the lung cancer
dataset. For the oral cancer dataset, we present its resultsmainly in
the supplementary material.

3.1 CNA profiles
In this section, we briefly describe the summary of the profiles
within each histology. Figure 2 shows (point-wise) means ofthe
CNA profiles across the patients within each of the squamous and
adenocarcinoma groups. One point in Figure 2 corresponds toa
genomic window, and is the mean of CNA at the same genomic
window (as illustrated in Figure 1) across different patients in each
histology group. The figure indicates that the means of CNA profiles
between the two groups share many similarities, although some
differences can be observed. For example, we observe that the
overall gains in3q and2p regions are higher in the squamous group
than those in the adenocarcinoma group.

Although the pattern in e.g.3q region indicates a separation
between the squamous and adenocarcinoma groups, this does not
mean that a modelling is not needed. Gains in2p and3q are not
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Fig. 2. Mean of CNA profiles within the squamous group and
adenocarcinoma group (lung cancer dataset), based on smooth
segmentation and CBS (DNACopy) segmentation.

exclusive to the squamous group, just more common. If we rely
the classification of tumour histology only on the pattern that we
observe in the3q region, then effectively we ignore the contribution
of other genomic regions in the genome, as well as risk mis-
classifying any sample which happens by chance to have a small
number of CNAs in the ”wrong” places. Our results below suggest
that the histology prediction of new samples does not necessarily
improve if the prediction relies only on CNA profiles from some
genomic windows.

3.2 Model fit
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Fig. 3. Estimation ofλ in the model by minimising AIC for CNA profiles in
lung cancer dataset.

We fit the logistic regression on the covariates and CNA profiles
of the patients. An important parameter to be estimated fromthe
model isλ, and this is described in Figure 3. The figure indicates that
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Summary of fixed predictors
Predictor Estimate Std. Error z value p-value
(without CNA profiles)
Age 0.02279 0.02801 0.814 0.416
Gender -0.65864 0.46839 -1.406 0.160

(with smooth CNA profiles)
Age 0.02702 0.08789 0.3075 0.7585
Gender -0.83923 1.32923 -0.6313 0.5278

(with DNACopy CNA profiles)
Age 0.02840 0.08444 0.3363 0.7366
Gender -0.73667 1.32644 -0.5554 0.5783

Table 1. Summary of the fixed predictors (age and gender) in the logistic
regression without the inclusion of the CNA profiles (top table), after the
inclusion of smooth CNA profiles (midlle table), and DNACopyCNA profiles
(bottom table).

the optimalλ in the model is estimated asexp(6) andexp(6.5) for
CNA profiles using smooth segmentation and CBS segmentation,
respectively.

Using the optimalbλ, the results of estimation in the (fixed)
covariates are presented in Table 1. The table indicates that none of
the (fixed) covariates is statistically significant (i.e.p-value> 0.05).
These results suggest that there is no significance difference in
patients’ age and gender distribution between the squamousand
adenocarcinoma groups.

The random effects estimates of the logistic regression are
presented in Figure 4. An immediate pattern that we could seeis
the magnitude of the estimates for the genomic windows in the3q
region. This pattern suggests that CNA gains in the region contribute
to increase the probability of the tumour to be classified into the
squamous group, and CNA losses to the adenocarcinoma group.On
the other hand, negative estimates as we see in most of chromosome
4 indicate that CNA gains in the region contribute to increase the
probability of the tumour being classified as adenocarcinoma group
and CNA losses to the squamous group.

The model fit for our analysis is presented in Figure 5. The figure
indicates that the logistic regression can fit the data very well, where
the tumour histology is correctly classified.

In Figure 4, we need to be careful in interpreting the pattern
of the random effects estimates. None of the individual random
effects estimates is statistically significant, in the sense that all of the
95% individual confidence interval for the random effects include
zero. This does not mean that there is no information contained
in the data. This is just a result of the estimation of more than
17,000 parameters from just 76 observations. This is also not a
contradiction when we consider that the model has a good fit as
shown in Figure 5. From the construction of the model, although
the individual random effects estimates are not significant, there
is a linear combination of window-wise CNA profiles that jointly
classify the tumour histology.

3.3 Cross validation
The results of cross validation for the lung cancer dataset are
presented in Figure 6. The figure indicates that the logistic
regression has the lowest median classification error in comparison
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Fig. 4. Estimates of the random effects in the full model, using CNA
profiles from smooth and CBS (DNACopy) segmentation in the lung cancer
dataset. Genomic windows with missing values (such as in thecentremere
regions) are removed from the figure. We currently do not include sex and
mitochondrial chromosomes in the analysis. The red dots on the horizontal
axis indicate 4549 (smooth) and 3633 (DNACopy) genomic windows (25.9%
and 19.8%) that have significant differences of CNA profiles between the
squamous and adenocarcinoma groups, using a permutation method. A
more detailed view of the random effects estimates in each chromosome is
presented in the supplementary material.
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Fig. 5. The observed tumour histology against its model fit based on the full
logistic regression model using smooth and DNACopy CNA profiles in the
lung cancer dataset. The vertical lines mark the 50% probability to be in
the Squamous histological group. Probability more than 50%are normally
classified to the Squamous group.

to the other classification models that we consider in our study.
The use of KNN and discriminant analysis give a relatively high
classification error. This high error is consistent regardless of the
number of neighbour in KNN or the type of discriminant analysis.

The partial least squares (PLS) gives relatively low medianof
classification error, which are comparable to that of the logistic
regression. In building the classification rule, PLS expands the space
on the CNA mean differences (see for example Barker and Rayens
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Fig. 6. Classification error from 100 cross validations (38 observations in
each of the training set and validation set) using only the smooth- and
CBS-segmented CNA profiles in the lung cancer dataset acrossdifferent
classification models: logistic regression (”Log”), k-nearest neighbour with
k = 1, 2 (”K1”-”K2”), diagonal quadratic (”DA1”) and linear (”DA2” )
discriminant analysis, partial least squares (”PLS”), elastic net (”Net”),
lasso (”Las”), neural network (”NN”), support vector machines with C-
classification (”SV1”), nu classification (”SV2”), and bound-constraint
classification (”SV3”), and smoothed logistic regression (”SLR”). The
horizontal dotted line is the median of classification errorof the logistic
regression. Figures with ”K3”-”K7” are presented in the supplementary
material. The significance of the classification error between pair of methods
are also presented in the supplementary material.

(2003)), without being weighted by the between-class covariance
matrix. Given that CNA profiles can exhibit dramatic changesof
copy number, PLS ignores the between-class covariance-matrix (i.e.
focus on the differences on copy number) to give a good prediction.

The elastic-net and lasso models give a slightly higher median
classification error than that of the logistic regression when we
use smooth-segmented CNA profiles, but not when we use CBS-
segmented CNA profiles. This is an interesting result because
the elastic-net and lasso models produce sparse solution onthe
parameters where some of the estimates are zero estimated.
Effectively, a variable selection is embedded inside the classification
models. Our results indicate that when we use smooth-segmented
CNA profiles as predictors, the variable selection does not
necessarily produces higher prediction (or lower error). On the
CBS-segmented CNA profiles, the variable selection still gives the
same low median of classification error as that of logistic regression
(Section 2.3).

For the oral cancer data, we have a more challenging situation
where it is sometimes more difficult to distinguish oral squamous
cell carcinoma (OSCC) from oral verrucous carcinoma (OVC)
histologically. Figure 7 describes the prediction error inthe oral
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Fig. 7. Classification error from 100 cross validations (52 and 50
observations in the training set and validation set, respectively) in the oral
cancer dataset using only the smooth- and CBS-segmented CNAprofiles
across different classification models: logistic regression (”Log”), k-nearest
neighbour withk = 1, 2 (”K1”-”K2”), diagonal quadratic (”DA1”)
and linear (”DA2”) discriminant analysis, partial least squares (”PLS”),
elastic net (”Net”), lasso (”Las”), neural network (”NN”),support vector
machines with C-classification (”SV1”), nu classification (”SV2”), and
bound-constraint classification (”SV3”), and smoothed logistic regression
(”SLR”). The horizontal dotted line is the median of classification error
of the logistic regression. Figures with ”K3”-”K7” are presented in the
supplementary material. The significance of the classification error between
pair of methods are also presented in the supplementary material.

cancer data. The figure indicates that the logistic regression and
SLR have the lowest prediction error in both smooth and CBS
(DNAcopy) segmented CNA profiles. Support vector machines
with nu-classification has a low prediction error comparable to the
logistic regression, only when using the smooth-segmentedCNA
profiles.

Still within the cross validation, Figure 8 presents how thetwo
segmentation methods (smooth and CBS segmentation) agree in
prediction within the validation set. If the agreement is low, then
the choice of segmentation method does matter – in terms of
classification error – when we use a particular classification method.
The contrary can be said if the agreement is high. Figure 8 indicates
that we have a high agreement when we use logistic regressionand
support vector machines. PLS, elastic net, and lasso modelshave
lower agreement in the lung cancer data compared to the logistic
regression, and this agreement increases in the oral cancerdata to
be comparable to the logistic regression.

The overall results of our cross validation suggest that the
logistic regression is able to achieve a low classification error while
maintaining high agreement in prediction between the smooth- and
CBS-segmented CNA profiles.
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Fig. 8. Agreement between smooth segmentation and CBS segmentation
in prediction from 100 cross validations in the lung cancer dataset (top
panel) and oral cancer dataset (bottom panel) across different classification
models: logistic regression (”Log”), k-nearest neighbourwith k =
1, 2 (”K1”-”K2”), diagonal quadratic (”DA1”) and linear (”DA2” )
discriminant analysis, partial least squares (”PLS”), elastic net (”Net”),
lasso (”Las”), neural network (”NN”), support vector machines with C-
classification (”SV1”), nu classification (”SV2”), and bound-constraint
classification (”SV3”), and smoothed logistic regression (”SLR”). For
the oral cancer dataset (bottom panel) the agreement for DA1and DA2
are below 0.6. The horizontal dotted line is the median of agreement
in the logistic regression. Figures with ”K3”-”K7” are presented in the
supplementary material.

4 DISCUSSION
In predicting tumour histology, the main challenge is to consider
a model with low classification error. Further than that, we
are also interested in the agreement between smooth- and CBS-
segmented CNA profiles in the prediction of new tumour sample.
This is critical when we consider that the CNA profiles are
derived from low-coverage next-generation sequence data that have
undergone several preparation steps. This includes, but isnot
limited to, mapping to the reference genome, filtering, optimal
window estimation, normalisation (including normalisation due to
contamination), and segmentation. To have a classificationmethod
with a good prediction while having a minimum dependency on a
previous preprocessing step is a great advantage.

The logistic regression described in Section 2.3 (also known
as Tikhonov regularisation) is well known to tend to group
variables (genomic window) together (Zou and Hastie , 2005).
This property of the logistic regression is likely to predominate in
prediction, in terms of classification error and agreement between
the segmentation methods, because there are some dependencies

of CNA between neighbouring genomic windows. The lasso
and elastic net models achieve comparable classification error as
the logistic regression only when the CNA profiles are CBS-
segmented. The CBS (DNACopy) segmentation generally outputs
long segments, and the variable selection effect that the two methods
produce does not impair the prediction because the genomic regions
that survive the penalisation are able to represent the information of
the whole segment.

We have demonstrated the ability of the proposed method to
distinguish between two subtypes of lung cancer. We then validated
this method in a separate cohort of oral cancer patients, whose
diagnosis is not always straightforward, but whose prognosis is
very different. However, in theory, it could be used to distinguish
between any subtypes of tumour, or to make predictions about
disease progression, drug resistance, or outcome.

Currently, several molecular classifiers are used to distinguish
cancer subtypes, among them mRNA or protein expression. These
are both selective methods. The study of mRNA usually involved
the removal of non-coding RNA and micro RNA, the roles of which
are increasingly becoming apparent. The study of protein expression
usually involves only a few known proteins. Both of these methods
will also involve further depletion of valuable sample material.
Where there is no known mRNA or protein signature, our method
may prove useful in finding previously unsuspected differences in
the genomes of two sample groups. Low coverage sequencing is
also possible with extremely low quantities of badly degraded DNA
(Wood et al. , 2010). If mRNA or protein tests are available, then
their results can be easily added to the logistic regressionmethod as
additional predictors and will further improve performance.

5 CONCLUSION
We have investigated the use of logistic regression to modeltumour
histology and include the genome-wide CNA profiles as predictors.
The model enables us to include clinical characteristics asfixed
covariates and CNA profiles as random predictors in a single
modelling framework. The model exhibits a good fit and, in a
cross-validation, shows minimal classification error. Themodel
also demonstrates the best agreement in prediction betweenCNA
profiles produced by two very different segmentation methods.
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