This is an author produced version of *From mycoheterotrophy to mutualism: Mycorrhizal specificity and functioning in Ophioglossum vulgatum sporophytes.*

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/86085/

Article:

https://doi.org/10.1111/nph.13263

This is the peer reviewed version of the following article: Field, K.J., Leake, J.R., Tille, S., Allinson, K.E., Rimington, W.R., Bidartondo, M.I., Beerling, DJ. and Cameron, D.D. (2015) From mycoheterotrophy to mutualism: Mycorrhizal specificity and functioning in Ophioglossum vulgatum sporophytes. New Phytologist, 205 (4). 1492 - 1502, which has been published in final form at http://dx.doi.org/10.1111/nph.13263. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
From mycoheterotrophy to mutualism: mycorrhizal specificity and functioning in *Ophioglossum vulgatum* sporophytes

Katie J. Field1*, Jonathan R. Leake1, Stefanie Tille1, Kate E. Allinson1, William R. Rimington2,3,4, Martin I. Bidartondo2,3, David J. Beerling1 and Duncan D. Cameron1

1 Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK

2 Department of Life Sciences, Imperial College London, London SW7 2AZ, UK

3 Jodrell Laboratory, Royal Botanic Gardens, Kew, TW9 3DS, UK

4 Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK

* Corresponding author:

Katie J. Field (k.field@sheffield.ac.uk)

Tel: +44-(0)114 2220093

Fax: +44-(0)114 2220002
Summary

- Mycorrhizal functioning in the fern *Ophioglossum* is complex and poorly understood. It is unknown whether mature *O. vulgatum* sporophytes form mutualistic associations with fungi of the Glomeromycota and with what specificity. Are green sporophytes able to ‘repay’ fungal carbon invested in them by mycorrhizal partners during the initially heterotrophic gametophyte and early sporophyte stages of the lifecycle?

- We identified fungal partners of *O. vulgatum* sporophytes using molecular techniques and supplied them with 33P-orthophosphate and *O. vulgatum* sporophytes with 14CO$_2$. We traced the movement of fungal-acquired nutrients and plant-fixed carbon between symbionts and analysed natural abundance 13C and 15N isotope signatures to assess nutritional interactions.

- We found fungal specificity of *O. vulgatum* sporophytes towards a mycorrhizal fungus closely related to *Glomus macrocarpum*. Our radioisotope tracers revealed reciprocal carbon-for-phosphorus exchange between fern sporophytes and fungal partners, despite competition from surrounding vegetation. Monocultures of *O. vulgatum* were enriched in 13C and 15N, providing inconclusive evidence of mycoheterotrophy when experiencing competition from the surrounding plant community.

- We show mutualistic and specific symbiosis between a eusporangiate fern and fungi of the Glomeromycota. Our findings suggest a ‘take now, pay later’ strategy of mycorrhizal functioning through the lifecycle *O. vulgatum*, from mycoheterotrophic gametophyte to mutualistic above-ground sporophyte.

Key words: Competition, mycoheterotrophy, mycorrhiza, Ophioglossaceae, *Ophioglossum vulgatum*, pteridophyte, specificity, symbiosis
Introduction

The symbiosis between plants and arbuscular mycorrhizal fungi dates back more than 450 million years to the colonisation of the land by plants (Read et al., 2000; Bonfante & Selosse, 2010). To better understand the role of mycorrhizal fungi in land plant evolution, there is increasing interest in resolving relationships between plants and their fungal partners to determine how these associations may have changed both across the land plant phylogeny and functionally through coevolution (Bidartondo et al., 2004; Merckx & Bidartondo 2008; Arnold et al., 2010; Merckx et al., 2012; Merckx et al., 2013). Advances in molecular and physiological ecology have provided new insights into the evolutionary history of the symbiosis in the major clades of plants and fungi (Wang et al., 2010; Bidartondo et al., 2011, Field et al., 2012, 2014). However, important knowledge-gaps regarding the fungal partners of plants in key nodes of the land plant phylogeny remain (Fig. 1). In particular, neither the identity of mycorrhizal fungi nor their functional roles have been determined in the widely distributed (Singh et al., 2009) basal euphyllophyte (“true-leaved plant”) genus *Ophioglossum*, thought to have evolved prior to the break-up of Gondwana (Parris, 2001).

In common with >1,000 species of lycophytes and ferns, the subterranean gametophyte generations of *Ophioglossum* are achlorophyllous, nourished with organic carbon and nutrients via mycorrhizal fungi (Boulland, 1979; Leake, 1994; Winther & Friedman, 2007). This form of nutrition, termed mycoheterotrophy, has evolved many times in land plants (Leake, 1994; Bidartondo, 2005; Merckx & Freudenstein, 2010) with examples ranging from a liverwort, to lycopsods, ferns and angiosperms (Fig. 1). The initial developmental stages of *Ophioglossum* sporophytes are also achlorophyllous (Bruchmann, 1904) and mycoheterotrophic. However, mature sporophytes consist of a characteristic blade-like green photosynthetic shoot (the trophophore) (Fig. S1a), often accompanied by an epiphyllous fertile sporophore, in which the functional role of mycorrhiza has not been investigated. Because of the life-stage changes from heterotrophy to autotrophy mycorrhizal functioning in *Ophioglossum* is both complex and poorly understood.

Ophioglossum vulgatum L. (Fig. S1a), is one of the most widespread and abundant grassland species in the Ophioglossaceae (GRIN taxonomic database). Sporophytes of *O. vulgatum* are initially subterranean, achlorophyllous and colonised by aseptate fungi that form irregular hyphal swellings in the plant tissues (Bruchmann, 1904; Boulland, 1979). These fungi must provide the main carbon and nutrient supplies required to enable development of the underground root axis from which shoots develop (Bruchmann, 1904).
Recent studies of achlorophyllous gametophyte and photosynthetic sporophyte generations of lycopsids (Lycopodium and Huperzia) and ophioglossoid ferns (Botrychium) have revealed specificity and intergenerational fidelity in their arbuscular mycorrhizal fungal associates (AMF) (Winther & Friedman, 2007, 2008, 2009). This suggests carbon invested by AMF partners in supporting a mycoheterotrophic gametophyte and early subterranean sporophyte may be repaid by established green sporophytes. Such ‘take now, pay later’ mycorrhizal functioning has been suggested as the basis of fungal specificity and overall mutualism through the mycoheterotrophic-to-autotrophic life stages of many green-leaved orchids (Cameron et al., 2008). However, experimental evidence for photosynthate ‘pay back’ to fungal symbionts of any of the lower tracheophytes is currently lacking. Studies of mycorrhiza specificity and functioning in these plants are of particular interest for species like O. vulgatum that often inhabit plant species-rich permanent grasslands that host a highly diverse community of AMF ranging from 24 to more than 70 phylotypes (Vandenbussche et al., 2002; Johnson et al., 2004; Dumbrell et al., 2011).

Intergenerational fungal specificity opens the possibility of intergenerational carbon subsidy from green-leaved sporophytes to achlorophyllous gametophytes via a shared fungal partner, a form of ‘parental nurture’ suggested by Leake et al. (2008). This contrasts with the suggestion that stabilization of mutualistic interactions in AM symbioses with autotrophs involves the plants providing organic carbon strictly in proportion to the nutrients delivered by the fungus (Fitter, 2006; Kiers et al., 2011). Under the latter model of mutualism in the chlorophyllous sporophyte, any fungal ‘reward’ for carbon investment in the gametophyte and early stages of sporophyte establishment would be conditional upon ongoing nutrient demand by the plant and its supply from the fungus. However, tight regulation of carbon-for-nutrient exchange is not universal but represents only one position along the mutualism-parasitism continuum model of mycorrhizal symbiosis proposed by Johnson et al. (1997; Johnson & Graham, 2013).

There has been convergent evolution of mycoheterotrophic protocorm structures in lower tracheophyte gametophytes and the mycoheterotrophic seedlings of higher plants like orchids (Leake et al., 2008). In the case of O. vulgatum, the underground early stages of sporophyte ontogeny and anatomy closely parallel those of the mycoheterotrophic seedling stages of members of the angiosperm genera Monotropa (Leake et al., 2004) and Pyrola (Hashimoto et al., 2012; Hynson et al., 2013a) along with those of the family Orchidaceae (see Fig. S1a-b), in which germination leads to the formation of a simple branched root system from which
shoots later arise by adventitious buds, often only after several growing seasons underground. Sprouting from detached roots has been reported in *O. vulgatum* (Bruchmann, 1904; Wardlaw, 1953), providing a means of asexual reproduction and possible reversion to mycoheterotrophy when roots are detached from photosynthetic shoots, a frequent trait of mycoheterotrophic plants. It may be possible to assess the extent to which green-leaved plants, such as trophophore-bearing *O. vulgatum*, are partially mycoheterotrophic through measurements of their tissue

13C and 15N natural abundance as these isotopes are often enriched in fully mycoheterotrophic plants (Gebauer & Meyer, 2003; Cameron & Bolin, 2010; Hynson *et al.*, 2013b). However, the extent of relative 13C and 15N enrichment of AM plants with putative and established mycoheterotrophy has proved inconsistent (Courty *et al.*, 2011; Hynson *et al.*, 2013b).

Mycorrhizal colonization of *O. vulgatum* sporophytes has been reported many times, with exquisite line drawings of hyphae in roots by Bruchmann (1904) and degenerated arbuscule-like structures by Boullard (1979), as well as detailed light and electron micrographs of vesicles and coils by Schmidt and Oberwinkler (1996), all of which are consistent with Paris-type AMF (Zhang *et al.*, 2004). However, the fungal symbiont(s) in *O. vulgatum* have not been identified and their functional roles are unknown for the green trophophore-bearing fern sporophytes.

This study aims to address the following questions:

1. Do *O. vulgatum* sporophytes form mycorrhizal associations with AMF, and if so, with what specificity?
2. Are mycorrhizal associations in the photosynthetic sporophyte generation mutualistic, i.e. based on exchange of plant-carbon for fungal-acquired nutrients?
3. To what degree are fern shoots supported (via mycoheterotrophy) or out-competed by surrounding vegetation within mixed communities?

Materials and methods

Plant material and fungal identification

Sporophytes of a natural population of *O. vulgatum* were collected as turf monoliths 30 cm (w) x 40 cm (l) x 20 cm (d) sampled from across an area of base-rich grassland of
approximately 100 m x 20 m at the margins of mature deciduous woodland at Treborth Botanic Gardens, Bangor, UK in July 2009 (Fig. S2). The vegetation community consisted of grasses and forbs, dominated by *Plantago lanceolata*, *Ranunculus repens*, *Trifolium pratense*, *Agrostis capillaris*, *Festuca rubra*, and *Rubus fruticosus*. Weeding created experimental mesocosms comprising three community types: *O. vulgatum* in monoculture, *O. vulgatum* within a mixed community of grasses and forbs, and the mixed community vegetation only. Care was taken to ensure each turf contained ten *O. vulgatum* shoots and regular weeding maintained the composition of each community. Each mesocosm was replicated four times, giving a total of 12 experimental turfs. We created a further four plant-free soil monoliths in which all plants were removed to provide controls for diffusion rates in our 33P and 14C isotope tracer studies described later.

We inserted soil-filled, cylindrical plastic cores (20 mm diameter, 90 mm length) with two windows cut out from 30 mm below the top of the tube in a position below the soil surface when the cores are inserted vertically, with 25 mm remaining above ground, covered by 35 µm pore-size nylon mesh (Johnson *et al.*, 2001). The mesh was fine enough to exclude roots while being coarse enough to allow fungal hyphal ingrowth (Fig. S3). The cores were filled with native soil from the turfs mixed with 5 % v/v of sand-sized basalt grains added to increase AM hyphal proliferation (Field *et al.*, 2012). We inserted ten cores vertically into each turf regularly spaced with one further, glass wool-filled core inserted centrally for below-ground gas sampling.

The mesocosms were maintained under controlled glasshouse conditions designed to provide conditions similar to early summer (see SI) at the Arthur Willis Environment Centre, University of Sheffield, UK. Turfs were maintained for three months to allow plant and fungal acclimation, community stabilisation and colonisation of the mesh cores by fungi. In late October 2009, the mesocosms were moved outdoors for vernalization for three months over the winter. At the beginning of February 2010, the turfs were returned to the glasshouse to induce early emergence of the *O. vulgatum* sporophytes, which commenced in the first weeks of March 2010 (Fig. S2).

Roots were randomly sampled from individual *O. vulgatum* plants from six different mesocosms and cleared and stained for quantification of mycorrhizal colonisation following Trouvelot *et al.* (1986) (details in SI). In parallel, fungal DNA was extracted and sequenced for a further six *O. vulgatum* root samples taken from plants removed from separate turfs in July 2009 (Fig. S4) following the protocols of Desirò *et al.*, 2013 (details in SI).
Representative DNA sequences have been deposited in GenBank (accession numbers KJ952225-6, KM065416-20).

Quantification of reciprocal plant-fungal 14C for 33P exchange

Plant-to-fungus C transfer and fungus-to-plant 33P assimilation was quantified using methods adapted from Johnson et al. (2001, 2002) and Field et al. (2012, 2014). Following emergence of *O. vulgatum* shoots in March/April 2010, 1.4 MBq of 33P (specific activity 148 GBq mmol$^{-1}$) as 38 µl of H_3^{33}PO$_4$, comprising 312 ng 33P (Perkin Elmer, UK) in total were added to each turf, including plant-free soil monoliths, via a perforated central capillary tube in each of the ten mesh-windowed cores established the previous year.

After 28 d the turfs were prepared for 14C labelling. Anhydrous lanolin was applied to the rim of each mesh windowed core and the top sealed with a plastic cap. The glass wool-filled core in each turf was sealed with a rubber septum (SubaSeal, Sigma) to allow non-destructive monitoring of below-ground 14CO$_2$ respiration. The turfs remained in the greenhouse but were each enclosed in a gas-tight transparent Perspex chamber into which 2 MBq of 14CO$_2$, comprising 13.7 µg 14C, was released from NaH14CO$_3$ by addition of 2 ml 10% lactic acid soon after sunrise (07:00 h). After 1 h, and every 4 h thereafter, we sampled 1 ml of the headspace air in the Perspex chambers above each turf through a rubber septum (SubaSeal, Sigma) using a syringe. Similarly, a sample of 1 ml of air from the glass-wool filled mesh cores was taken after 1 h and every 2 h thereafter. We ceased air sampling and removed turfs from the labelling chambers following a peak in 14CO$_2$ detected in below-ground gas samples occurring between 14 and 16 h post-14CO$_2$ release. This time-point indicates maximum flux of 14C-labelled photosynthates to symbionts and other soil micro-organisms through inclusion of the isotope in below-ground respired CO$_2$. The air samples were injected through a SubaSeal into gas-evacuated vials containing 10 ml CarboSorb (Perkin Elmer, Beaconsfield, UK). Permafluor scintillation cocktail (Perkin Elmer, Beaconsfield, UK) was then added (10 ml) and 14C measured by liquid scintillation counting (Packard Tri-Carb 3100TR, Isotec, UK).

Once the 14C detected in the glass-wool filled mesh windowed cores had peaked, we removed the soil-filled cores and placed them into individual airtight containers with 2 ml 2M KOH to trap respired 14CO$_2$. Cores were incubated with fresh 2M KOH every 2 h for a further 6 h. We transferred 1 ml of each KOH sample used to trap 14CO$_2$ into a scintillation vial containing 10
ml Ultima Gold scintillation cocktail and radioactivity was measured by liquid scintillation (Packard Tri-carb 3100TR, Isotech).

We removed above-ground vegetation from each turf and divided the samples into *O. vulgatum* and ‘plant community’ tissue samples. We sieved the soil to extract and separate the *O. vulgatum* and plant community roots. For the plant-free soil monoliths the bulk soil outside the mesh cores was sieved, homogenized and subsampled for 33P determination to test for diffusion and non-plant-mycorrhiza mediated transfer of isotope from the cores to the surrounding soil.

All plant and soil samples were freeze-dried, weighed and homogenised into a powder using a Yellowline A10 Analytical Grinder (IKA, Germany). Samples underwent acid-digestion before mixing with Emulsify-Safe (Perkin Elmer, Beaconsfield, UK) and 33P activity measured by liquid scintillation counting (details in SI). The 33P content in plant tissues was calculated by following the equation in Cameron *et al.* (2007) after decay correction and scaled to plant biomass to give total plant 33P (see SI).

To quantify 14C present within each sample, between 10 and 100 mg of freeze-dried homogenized sample were placed into individual Combusto-Cones (Perkin Elmer), oxidised in a Model 307 Packard Sample Oxidiser, (Isotech, UK) with the 14CO$_2$ trapped in 1:1 v/v Carbosorb: Permafluor scintillation cocktail and counted (Packard Tri-Carb 3100TR, Isotech). Total C fixed by the plants and made available to AM fungal networks within soil cores (hereafter termed ‘fungal carbon’) was determined by calculating the difference in 14C found in the soil cores in vegetated turfs compared to those in the plant-free soil monoliths.

The calculated quantity of 14C allocated from the plants into the mesh-windowed cores as fungal carbon, after correction using the plant-free controls, was expressed as a function of total volume of atmospheric CO$_2$ in the labeling chamber and the proportion of the supplied 14CO$_2$ label fixed by the plants (Cameron *et al.*, 2008) (see SI).

Natural abundance 13C and 15N enrichment and total % N

Relative abundances of 13C and 15N and tissue %N were determined using Isotope Ratio Mass Spectrometry. Between 2 and 5 mg of freeze-dried homogenised root and shoot tissues of *O. vulgatum* and community plants from all experimental turfs ($n = 3$ for each tissue type in each turf) were weighed out into 6 x 4 mm tin capsules (Sercon Ltd, UK) and analysed using a continuous flow Isotope Ratio Mass Spectrometer (PDZ 2020 IRMS, Sercon Ltd, UK).

Data are expressed as δ values, which were calculated using the following equation:
\[\delta^{13}C \text{ or } \delta^{15}N = 1000[(R_{\text{sample}} / R_{\text{standard}}) - 1] \]

Where \(R \) = molar ratio of \(^{13}\text{C} / ^{12}\text{C} \) or \(^{15}\text{N} / ^{14}\text{N} \) of the sample or standard (Hynson et al., 2013b). Air was used as the reference standard for \(^{15}\text{N} \) and commercially available poplar leaf standards for \(^{13}\text{C} \) after every 10 samples analysed. The detector was regularly calibrated to commercially available reference gases.

Statistical analyses

The effect of monoculture of *O. vulgatum* versus growth in grassland community, and the effects on the community of the presence or absence of *O. vulgatum* on biomass, \(\delta^{13}\text{C} \) and \(\delta^{15}\text{N} \), \%N, \(^{33}\text{P} \) uptake and \(^{14}\text{C} \) allocation were tested using ANOVA with post-hoc Tukey testing where appropriate. Data were checked for normality and homogeneity of variance. Where assumptions for ANOVA were not met, data were transformed using Log\(_{10}\) and arcsine-square-root transformations as indicated in Table 1. All statistics were calculated in Minitab v12.21 (Minitab Inc., US). Different letters in figures denote statistical significance (following transformation where necessary, see Table 1) where \(P < 0.05 \) and error bars show \(\pm 1 \) standard error.

Results

Mycorrhizal colonisation and fungal identification.

Ophioglossum vulgatum roots (\(n = 6 \) plants) showed a 100% frequency of mycorrhizal colonisation (Table S1) with both coils and arbuscules being present (Fig. S5). The mean colonisation intensity was just over 40% of root segments examined. Arbuscule abundance was low, with a mean of 7% of root segments examined. The six *O. vulgatum* sporophytes contained a fungal associate from the Glomeraceae that corresponded closely with the published sequences for *Glomus macrocarpum*, one also harboured a member of Diversisporaceae (Fig. 2; GenBank accession numbers KJ952225-6, KM065416-20).

Biomass

Ophioglossum vulgatum roots and shoots had 4 and 8.5 times greater biomass respectively when grown in monoculture than in the plant community turfs (Fig. 3a, Table 1) even though the mesocosms contained identical numbers of *O. vulgatum* shoots (Fig. S4). The
surrounding plant community showed no difference in root or shoot biomass whether *O. vulgatum* sporophytes were present or had been removed from the turf (Fig. 3a).

The root:shoot biomass ratio of *O. vulgatum* more than doubled when the ferns were grown within mixed community turfs compared to monocultures, and in the community it was 22 times higher than the surrounding vegetation (Fig. 3b). There was no significant difference in root:shoot biomass ratio of the community vegetation whether the ferns were present or removed.

Plant-to-fungus carbon transfer into soil compartments.

Ophioglossum vulgatum monocultures supplied the fungal networks within soil cores with just over half the amount of carbon provided by the grassland community turfs, although the shoot biomass of monoculture *O. vulgatum* was only 1/8th of that of the community (Fig. 3a and 4a). Removal of *O. vulgatum* had no effects on total fungal C allocated into the soil cores by the plant community.

Carbon allocation to fungus in the mesh-windowed cores per unit of shoot biomass, was more than four times higher for monocultures of *O. vulgatum* than for the plant community turfs, (Fig. 4b, Table 1) irrespective of whether the latter contained *O. vulgatum* or not.

Shoots of the grassland community retained just over double the amount of new photosynthate (^{14}C + ^{13}C) found in *O. vulgatum* shoots grown in monoculture. The suppressed shoots of *O. vulgatum* grown in the community turfs contained negligible amounts of new photosynthate (Fig. 4c). In monoculture, *O. vulgatum* allocated three-fold more photosynthate to its roots than the grassland community, and the community-suppressed ferns showed negligible photosynthate allocation to roots (Fig. 4c, Table 1).

The concentration of new photosynthate in *O. vulgatum* monoculture shoots was between three and four-fold higher than in the shoots of the plant community [two-sample *t* (4 df) = -6.47, *P* = 0.0029], and 17-fold higher than in the fern when grown in the community turfs [two-sample *t* (3 df) = 9.39, *P* = 0.0026] (Fig. 4d, Table 1). Similarly, new photosynthate concentration in roots of monocultures of the fern exceeded substantially those of the turfs [two-sample *t* (3 df) = 6.89, *P* = 0.0063] and the suppressed ferns in the community turfs [two-sample *t* (3 df) = 7.31, *P* = 0.0053] (Fig. 4d).
Fungus 33P uptake from mesh-windowed soil cores and transfer to plants

We were unable to detect any 33P transfer from mesh-walled cores to bulk-soil in the plant-free mesocosms, indicating that transfer of 33P to the plants in the vegetated mesocosms was driven by plant-fungal associations. The uptake of 33P into \textit{O. vulgatum} shoots was strongly affected by competition from other plants, falling from 4 ng when grown in monoculture to less than 0.06 ng when grown in the grassland community (Fig. 5a, Table 1). In monoculture \textit{O. vulgatum} took up \textasciitilde{}30\% of the total 33P that was assimilated by the grassland community on its own, whereas when grown in direct competition with the community, the fern took up <0.7\% of the 33P gained by neighbouring plants. Removal of \textit{O. vulgatum} had no effect on 33P uptake into shoots of the community plants (Fig. 5a).

33P concentration in shoots of \textit{O. vulgatum} grown in monoculture was 2.4 times higher than in the shoots of the plant community without the fern. In the plant community-grown \textit{O. vulgatum} shoot 33P concentrations declined by nearly an order of magnitude (8.6) to become no longer significantly different to that of shoots of the surrounding plants (Fig. 5b).

\textit{Plant N concentration and natural abundance} 15N and 13C

Overall, \textit{O. vulgatum} shoots had higher N concentrations than community shoots, being 43\% higher than the community shoot concentrations when grown separately, and 83\% higher than the community values when grown together [two-sample \textit{t} (10 df) = 3.35, \textit{P} = 0.012].

Root \%N in \textit{O. vulgatum} was consistently higher than in the both root and shoots of the community plants, but this was not statistically significant (Fig. 6a, Table 1). Monoculture and community-grown \textit{O. vulgatum} showed no significant differences in shoot or root \%N, and there was no effect of removal of the fern on the \%N in the community plant shoots or roots (Fig. 6a).

\textit{Ophioglossum vulgatum} shoots and roots had greater 15N abundance than the grassland community plants (Fig. 6b). The mean 15N abundance in \textit{O. vulgatum} shoots grown in monoculture was higher than that of community plants by \(\delta^{15}\text{N}\) values of 3.2 \(\%\) (two-sample \textit{t} (10 df) = 5.53, \textit{P} = 0.0003), although there was no significant difference between fern \(\delta^{15}\text{N}\) values when it was grown in monoculture or within a mixed community. Overall, \textit{O. vulgatum} root tissues had greater abundance of 15N than the grassland community plant roots \(\delta^{15}\text{N}\) values by 1.6 \(\%\), (two sample \textit{t} (13 df) = 2.52, \textit{P} = 0.026). There was no significant
difference in root 15N abundance between ferns grown in a mixed community or those grown in monoculture (Fig. 6b, Table 1).

Ophioglossum vulgatum shoots contained a greater abundance of 13C when grown in monoculture compared to the shoots of the community turfs [two-sample t (7 df) = 4.04, $P = 0.0049$], and compared to the fern grown in the plant community (Fig. 6c, Table 1). 13C was more abundant in *O. vulgatum* grown within mixed community turfs than in the community with which it was growing, but it was not different from the shoots of the community from which it had been excluded the previous year. There was no significant difference between the δ^{13}C values in the plant communities with, and without, *O. vulgatum* present (Table 1).

Root tissue 13C abundance showed similar responses to the shoots, but the differences were not significant (Fig. 6c).

Discussion

Do *O. vulgatum* sporophytes form mycorrhizal associations with AMF, and if so, with what specificity?

Our study provides the first definitive evidence that photosynthetic sporophytes of a eusporangiate fern in the genus *Ophioglossum* form mutualistic mycorrhizal associations with a fungus in the Glomeromycota. Field-collected roots of *Ophioglossum vulgatum* were all colonised by a mycorrhizal symbiont closely related to *Glomus macrocarpum* (Fig. 2 and Fig. S5). The fungus formed hyphal coils and arbuscules throughout the root cortex, consistent with previous reports indicating ‘Paris-type’ AMF colonization in the sporophyte of *O. vulgatum* (Russow, 1872; Bruchmann, 1904; Boullard, 1976; Schmidt and Oberwinkler 1996; Zhang *et al.*, 2004).

Glomus macrocarpum is widely distributed throughout grassland, herbaceous and woodland habitats, being especially abundant in association with *Acer* tree species (Klironomos & Kendrick 1996). While there are a number of reports of this fungal species increasing host plant biomass production and phosphorus uptake (Nandini & Tholkappian, 2012), it is also the causal agent of tobacco stunt disease (Guo *et al*. 1994). Large reproductive structures formed by *G. macrocarpum* and stunting of some host plants suggest that colonisation by this fungus can place a high carbon demand on host, potentially representing a substantial carbon source for the mycoheterotrophic gametophytes of *O. vulgatum*. Moreover, *G. macrocarpum*...
is a derived species of *Glomus* (Glomeraceae) (Fig. 2), a feature shared with the fungal symbionts of members of the sister Ophioglossaceae genus *Botrychium* (Winther & Friedman, 2007). Both *B. lanceolatum* and *B. crenulatum* have specialised on a narrow range of Glomeromycota fungi (Merckx et al., 2012). The specialisation of some ferns on these closely related fungal taxa suggests that plant and fungal partners have co-evolved through phylogenetic tracking of the partnership over millions of years, as has been shown in the highly AM-specific mycoheterotroph genus *Afrothismia* (Burmanniaceae) in which more recently diverged members of this genus associate with Glomeromycete fungi that have diverged from a specific fungal partner of the ancestral plants (Merckx & Bidartondo, 2008).

The apparent specificity of *O. vulgatum* is consistent with the high fungal specificity in the sister genus *Botrychium* where it is linked to intergenerational gametophyte–sporophyte fidelity (Winther & Friedman, 2007), and contrasts to many other fern species which typically host several species of Glomeromycota fungi (West et al., 2009). Fungal specificity and intergenerational fidelity is documented in several lycopods (see Fig. 1) including *Lycopodium clavatum* and *Huperzia* spp. (Winther & Friedman, 2008). In these cases, fidelity is maintained, even though there is no fungal colonisation across the gametophyte–sporophyte tissue junctions (Ligrone et al., 1993; Winther & Friedman, 2007, 2008). In the *Botrychium* species studied by Winther & Friedman (2007), and in *Psilotum nudum* (Winther & Friedman, 2009; Fig. 1), the mycoheterotrophic gametophytes show extreme fungal specificity, each plant typically only associated with a single fungal partner. However, the green shoot stage of sporophyte generations often host several mycorrhizal fungi in its roots in addition to retaining the specific partner of the gametophytes. The single *O. vulgatum* root that contained a fungus from the Diversisporaceae in addition to *G. macrocarpum*, may be an example of this, but a larger number of plants across a number of sites would need to be sampled to resolve this issue.

We were unable to find or raise any *O. vulgatum* gametophytes to test for intergenerational fidelity in its AMF. Assuming this specificity occurs at all developmental stages, we concur with the previously published notion that parental nurture may occur from photosynthetic sporophyte–to–mycoheterotrophic gametophyte via interconnecting fungal partners, as suggested for members of the Lycopodiaceae and Ophioglossaceae (Winther & Friedman, 2008; Leake et al., 2008).
Are mycorrhizal associations in the photosynthetic sporophyte generation mutualistic, i.e. based on exchange of plant-carbon for fungal-acquired nutrients?

Using isotope tracers, we clearly demonstrate the reciprocal exchange of plant-carbon for fungal-acquired nutrients (N and P) between the green sporophyte of *O. vulgatum* and its fungal partner, *G. macrocarpum*. This life-stage dependent trophic switch from heterotrophic juvenile to autotrophic adult is not uncommon and has been observed across a diverse array of tracheophytes including most orchids (Leake and Cameron 2010). The substantial carbon allocation to the external mycorrhizal mycelium in our *O. vulgatum* monocultures provides the first experimental evidence that carbon invested by a fungus in supporting the heterotrophic juvenile life stage of a eusporangiate fern may be repaid with photosynthates later.

In this ‘take now, pay later’ form of mutualism, fungal partners may have to wait many years before they are repaid for their investment of carbohydrate in the plants (Cameron et al. 2008; 2006). This contrasts with the view that mycorrhizal mutualism in plant communities is stabilized by a ‘biological market’ in which plant photosynthate is exchanged for fungal-acquired nutrients in a tightly coupled pay and reward system. This is conceptualized as involving either preferential photosynthate supply to fungal partners that are delivering the greatest amounts of growth-limiting nutrients (Fitter, 2006; Kiers *et al.* , 2011), or fungal partners preferentially allocating nutrients to host plants supplying the greatest amount of photosynthate (Fellbaum *et al.*, 2012; Fellbaum *et al.*, 2014). Clearly, in plants that for part of their lifecycles do not photosynthesize, during which time they are mycoheterotrophic, the biological market model of mutualism cannot be operational (Sélosse & Rousset, 2011). We hypothesise that high fungal specificity and fidelity through mycoheterotroph-to-autotroph plant lifecycles, stabilizes the symbiosis through selection for net overall fitness benefits for both partners over their lifetimes. However, such a symbiosis does leave the fungi vulnerable to exploitation in cases where the plants do not repay them in full as in complete mycoheterotrophs (Leake & Cameron 2010).

To what degree are fern shoots supported (via partial mycoheterotrophy) or out-competed by surrounding vegetation within mixed communities?

The major impact of the plant community is to partially suppress both trophophore and root biomass, together with reducing 33P uptake by *O. vulgatum*. Moreover, under competition
from the grassland community the root:shoot ratio of *O. vulgatum* increased, likely reflecting reduced shoot growth in response to light, water or most likely, nutrient limitation. Together, these observations demonstrate the superior competitive ability of the community vegetation compared to this fern.

Previous work has shown the efficiency of phosphorus exchange for photosynthates between plants and AM fungi increases with the evolution of increasing plant complexity from liverworts to a fern and angiosperm (Field et al., 2012). This is consistent with the results of the present study. In nature, *O. vulgatum* often occurs in mixed communities adjacent to woodlands where there is likely to be at least some grazing pressure. We did not simulate grazing or mowing of the community, consequently the herbaceous plant community grew taller, and probably produced denser shade than in the woodland margin site from which the *O. vulgatum* turfs originated. The fern trophophore has a small photosynthetic area, simple vasculature and limited root surface area, so is poorly adapted to compete for light, water and nutrients with the more structurally advanced angiosperm community. Although we did not measure it directly in this investigation, low rates of photosynthesis are reported in *O. vulgatum* (Löhr, 1968). We expect this to also be the case in the shaded examples within mixed community turfs presented here.

Partial mycoheterotrophy is typically accompanied by a suite of distinguishing physiological characteristics, including elevated tissue 13C and 15N contents. Such traits have been seen in green-leaved orchids as well as in mycoheterotrophic orchid protocorms and fully mycoheterotrophic adult orchids (Gebauer & Meyer, 2003; Leake & Cameron, 2010; Hynson et al., 2013b; Stöckel et al., 2014;) along with some mycoheterotrophic plants associated with AM fungi (Cameron & Bolin 2010; Merckx et al. 2010; Courty et al. 2011). Under suppression by the plant community, we expected that if the sporophyte were able to revert to partial mycoheterotrophy, this would be reflected in the stable isotope abundances of 15N and 13C compared to *O. vulgatum* grown in monoculture. In contrast to our expectations, the 13C abundance of fern shoots was higher when grown in monoculture and there were no differences in 13C in roots or 15N in both roots and shoots of fern monocultures versus the ferns grown in the grassland community (Fig. 6d). However, the fern consistently contained higher concentrations of these isotopes than the mixed-species community, most likely resulting from high rates of carbon allocation belowground to their mycorrhizal partner and to storage, both causing preferential respiratory losses of 12C, and storage of N resulting in
enrichment in 15N. When grown in the turf, O. vulgatum trophophores have δ^{13}C values closer to those of the community plants, either as a result of reduced allocation of C to below-ground storage (Fig. 4c-d) or mycoheterotrophic carbon gain from surrounding vegetation. Unfortunately, our experimental design does not allow us to resolve the extent to which either (or both) processes are involved and this issue warrants further investigation.

Conclusions and perspectives:

This study represents the first assessment of mycorrhizal functioning in a eusporangiate fern revealing the association is mutualistic in mature sporophytes. The symbiosis appears to operate on a ‘take-now, pay-later’ basis (Cameron et al., 2008) with fully mycoheterotrophic subterranean gametophytes and early achlorophyllous sporophyte stages (Bruchmann, 1904; Boullard, 1979; see Fig. 1), followed by the photosynthetic trophophore of the sporophyte participating in bidirectional exchange of organic carbon-for-nutrients with a fungus closely related to Glomus macrocarpum. Whether the sporophyte then reverts to mycoheterotrophy during its below-ground dormancy period from mid-summer until early spring of the following year requires further investigation.

Our findings support the hypothesis that other early-diverging trachaeophytes with mycoheterotrophic gametophytes that retain the same fungal partners as in their sporophytes, are also likely to operate this form of mutualism. This strengthens the view that specificity and fidelity may be important in stabilizing the benefits of mutualistic interactions for mycoheterotroph-to-autotrophic lifecycle transitions in plants. Our findings provide clear evidence of the strength of competitive interactions and suppression of the growth of O. vulgatum sporophytes by angiosperms, but we were unable to establish the extent to which sporophytes are mycoheterotrophic when the trophophore is not present. Further experimental work is required to resolve the relative carbon contributions of ophioglossoid ferns to shared mycorrhizal networks and whether this carbon contributes to the establishment of the subterranean gametophyte and initial stages of the sporophyte generations.

Acknowledgments

We thank Nigel Brown, Treborth Botanic Gardens, Bangor for field logistics, Dr Heather Walker for stable isotope analyses and Irene Johnson for technical support. The work was
funded though a NERC award (NE/F019033/1). DDC is supported by a Royal Society University Research Fellowship. We thank the anonymous referees and the editor for comments that have improved the manuscript.

Tables

Table 1. Summary of differences in resource allocation and acquisition (F ratio from ANOVA) in root and shoot tissues of *Ophioglossum vulgatum* and community vegetation. All two-way ANOVA have 3, 24 d.f., and 3, 15 d.f. for one-way ANOVA. *P < 0.05, **P<0.01, ***P<0.001; post-hoc Tukey test (n = 4). Where assumptions for ANOVA were not met, data were transformed as indicated in the table.

<table>
<thead>
<tr>
<th>Turf treatment</th>
<th>Tissue type</th>
<th>Turf x tissue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry mass (g)</td>
<td>37.59 ***</td>
<td>0.04</td>
</tr>
<tr>
<td>(log(10) transformed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Root : shoot (g)</td>
<td>13.05 ***</td>
<td></td>
</tr>
<tr>
<td>(log(10) transformed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fungal C / above-ground plant biomass (ng g⁻¹)</td>
<td>7.70 *</td>
<td></td>
</tr>
<tr>
<td>Fungal C (ng)</td>
<td>4.43 *</td>
<td></td>
</tr>
<tr>
<td>Total ¹⁴C in plant tissues (ng)</td>
<td>41.72 ***</td>
<td>28.72 ***</td>
</tr>
<tr>
<td>(log(10) transformed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>¹¹³C in plant tissues (ng g⁻¹)</td>
<td>268.36 ***</td>
<td>127.20 ***</td>
</tr>
<tr>
<td>(arcsine square root transformed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>³³P in shoot tissues (ng)</td>
<td>58.98 ***</td>
<td></td>
</tr>
<tr>
<td>(arcsine square root transformed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>³³P in plant tissue (ng g⁻¹)</td>
<td>11.51 **</td>
<td></td>
</tr>
<tr>
<td>(arcsine square root transformed)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant tissue % N</td>
<td>7.48 **</td>
<td>12.19 **</td>
</tr>
<tr>
<td>³¹⁵N in shoots</td>
<td>11.20 ***</td>
<td>1.93</td>
</tr>
<tr>
<td>³¹⁻⁳C in shoots</td>
<td>10.63 ***</td>
<td>22.95 ***</td>
</tr>
</tbody>
</table>
Figure legends

Figure 1. Evolution of mycoheterotrophy in land plants. Lineages where myco-heterotrophy is present indicated with bold branches, dashed branches show clades with myco-heterotrophic gametophytes. Text in brackets indicates genus/families within clades displaying myco-heterotrophic properties. Clades with arbuscular mycorrhizas are indicated with an asterisk (adapted from Bidartondo, 2005 and Field et al., 2012).

Figure 2. Molecular identification of fungal symbionts within root tissues of *O. vulgatum* sporophytes showing phylogenetic placement within AM fungi. Taxonomy follows Schüßler et al. (2011). Maximum likelihood tree produced in MEGA v.5, evolutionary model T92 + G + I with 10,000 bootstrap replicates.

Figure 3 (a) Total dry mass of above-ground and below-ground plant tissues in experimental turfs (g). (*n* = 4) **(b)** Root:shoot dry mass ratios of plant tissues in experimental turfs (*n* = 4), ± 1 S.E. Letters show statistical significance, where *P* < 0.05 (ANOVA, Tukey post-hoc, data log(10) transformed to meet assumptions for ANOVA). Note that the letter codes in (a) compare both root and shoot biomass.

Figure 4 (a) Total carbon allocated by plant assemblages to below-ground mycorrhizal networks per gram of above-ground plant biomass (ng g⁻¹) **(b)** Total carbon allocated by plant assemblages to mycorrhizal fungal networks within turfs (ng) **(c)** Total new photosynthate (ng) within plant tissues following the ¹⁴C labelling period **(d)** Tissue concentration of new photosynthate following the ¹⁴C labelling period (ng g⁻¹). Error bars show ± 1 S.E. Different letters denote statistical significance, where *P* < 0.05 (ANOVA, Tukey post-hoc, data transformed using log(10) and arcsine-square-root transformations where assumptions of ANOVA were not met) *n* = 4.

Figure 5 (a) Total ³³P assimilation into above-ground tissues of plants in experimental turfs (ng) **(b)** ³³P concentration (ng g⁻¹) of above-ground *O. vulgatum* and mixed community plant tissues (*n* = 4). Error bars show ± 1 S.E. Different letters indicate where *P* < 0.05 (ANOVA, Tukey post-hoc. Data arcsine-square-root transformed where assumptions for ANOVA not met).

Figure 6 (a) Total tissue % N of plants within turfs **(b)** δ¹⁵N enrichment of plant tissues within turfs **(c)** δ¹³C enrichment in above-ground biomass for *O. vulgatum* and mixed community plants in experimental turfs **(d)** δ¹³C vs. δ¹⁵N enrichment of plant tissues (*n* = 4).
In all panels, error bars show ± 1 S.E. Different letters denote statistical significance, where $P < 0.05$ (ANOVA, Tukey post-hoc).

References

diversity and community composition in grassland microcosms. *New Phytologist* 161: 503-515

Merckx VS, Janssens SB, Hynson NA, Specht CD, Bruns TD, Smets EF. 2012. Mycoheterotrophic interactions are not limited to a narrow phylogenetic range of arbuscular mycorrhizal fungi. Molecular Ecology 21: 1524-1532.

Russow E. 1872. Vergleichende Untersuchungen betreffend die Hitologie der vegetativen und sporenbildenden Organe und die Entwickelung der Sporen der Leitbündel-kryptogamen. In: Mémoires de l’Acadame Impériale des Sciences de St-Pétersbourg,

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5