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Abstract
We recently identified a novel susceptibility variant, rs865686, for estrogen-receptor positive breast cancer at 9q31.2. Here,
we report a fine-mapping analysis of the 9q31.2 susceptibility locus using 43 160 cases and 42 600 controls of European ancestry
ascertained from 52 studies and a further 5795 cases and 6624 controls of Asian ancestry from nine studies. Single nucleotide
polymorphism (SNP) rs676256 was most strongly associated with risk in Europeans (odds ratios [OR] = 0.90 [0.88–0.92];
P-value = 1.58 × 10−25). This SNP is one of a cluster of highly correlated variants, including rs865686, that spans ∼14.5 kb. We
identified two additional independent association signals demarcated by SNPs rs10816625 (OR = 1.12 [1.08–1.17];
P-value = 7.89 × 10−09) and rs13294895 (OR = 1.09 [1.06–1.12]; P-value = 2.97 × 10−11). SNP rs10816625, but not rs13294895, was also
associated with risk of breast cancer in Asian individuals (OR = 1.12 [1.06–1.18]; P-value = 2.77 × 10−05). Functional genomic
annotation using data derived from breast cancer cell-line models indicates that these SNPs localise to putative enhancer
elements that bind known drivers of hormone-dependent breast cancer, including ER-α, FOXA1 and GATA-3. In vitro analyses
indicate that rs10816625 and rs13294895 have allele-specific effects on enhancer activity and suggest chromatin interactions
with the KLF4 gene locus. These results demonstrate the power of dense genotyping in large studies to identify independent
susceptibility variants. Analysis of associations using subjects with different ancestry, combined with bioinformatic and
genomic characterisation, can provide strong evidence for the likely causative alleles and their functional basis.

Introduction
Breast cancer is the most common female cancer worldwide, in
both developed and less developed regions, including Asia and
Africa. An estimated 1.38 million new breast cancer cases were
diagnosedworldwide in 2008, and this burden is likely to increase
in the coming decades as a result of population ageing and adop-
tion of western lifestyles (1).

Susceptibility to breast cancer involves contributions from
genetic, environmental, lifestyle and hormonal factors. Patho-
genic mutations in the DNA-repair genes BRCA1 and BRCA2 con-
fer high lifetime risks of the disease and are responsible for the
majority of cases that occur in families withmany affectedmem-
bers but account for only 20% of the excess familial relative risk
(FRR) of the disease (2). Rare germline variants in genes including
CHEK2, PALB2 andATM each confermoderately increased relative
risks (RR) of breast cancer but make only small contributions to
the excess FRR (3–5). Genome-wide association studies (GWAS)
have identified 79 single nucleotide polymorphisms (SNPs) that
influence breast cancer susceptibility and explain a further 15%
of the FRR (6–19). Statisticalmodelling suggests that several thou-
sands of additional breast cancer susceptibility SNPs remain un-
detected (9). Genetic variants can be incorporated into risk
prediction models that can stratify women by level of risk. The
power of such models will improve as more variants are

identified (20). One productive approach to identifying additional

susceptibility variants is through fine-mapping of regions known

to harbour susceptibility alleles.
The 9q31.2 breast cancer susceptibility locus, delineated by

rs865686, was identified by a GWAS that utilised genetically

enriched cases from the UK with either bilateral breast cancer

or with a family history of the disease (7). A replication study

using samples from the Breast Cancer Association Consortium

(BCAC) indicated that the association with rs865686 was re-

stricted to estrogen-receptor (ER) positive breast cancer (21).

SNP rs865686 localises to a gene desert and consequently the

mechanism of association is assumed to be through long-range

regulation of target gene expression. The nearest neighbouring

genes to rs865686 include Kruppel-like factor 4 (KLF4), RAD23

homologue B (RAD23B; both >600 kb proximal), actin-like 7B

(ACTL7B) and inhibitor of kappa light polypeptide gene enhancer

in B-cells, kinase complex-associated protein (IKBKAP; both

>700 kb distal).
We performed a fine-mapping study, using over 85 000 Euro-

pean and 12 000 Asian ancestry samples from BCAC, in order to

localise the causal variant underlying the association between

rs865686 and susceptibility to breast cancer. In addition we as-

sessed whether other independent breast cancer susceptibility

SNPs could be detected at the 9q31.2 locus.
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Results
We successfully genotyped a total of 424 SNPs spanning 110 740
582–111 100 826 bp (NCBI HG37) on chromosome 9. These SNPs
captured ∼94% and 86% of common 1000 Genomes Project
(1KGP) variants at r2≥ 0.8 in European and Asian populations, re-
spectively. Association analyses were performed using 85 760
subjects of European ancestry, 12 491 subjects of Asian ancestry
and 1978 subjects of African ancestry (Supplementary Material,
Table S1). We report only the results from the European and
Asian studies, as therewere too few samples formeaningful ana-
lyses of women of African ancestry. However, the full results
from the European, Asian and African studies are presented in
SupplementaryMaterial, Table S2A–C.We used statistical imput-
ation of unobserved genotypes to increase the density of our fine-
mapping analysis; a total of 2035 SNPs and insertion/deletion
(indel) polymorphisms were inferred using 1000 Genomes
Project (1KGP) reference data, from which 1529 variants were im-
puted with high certainty (Impute2 (22) information measure ≥0.5)
and included in subsequent association analyses. Because no
imputed variant wasmore significantly associated with breast can-
cer risk than thehighest ranked, directly genotyped SNPs, theywere
not considered in the following analyses unless explicitly stated.

The most significantly associated SNP was rs676256 (odds
ratio [OR] = 0.90 [0.88–0.92]; P = 1.58 × 10−25; Fig. 1A and Table 1;
Supplementary Material, Table S2A). SNP rs676256 was one of a
14.4 kb cluster of 38 genotyped or imputed correlated SNPs
(r2 > 0.8 in controls of European ancestry) that also included
SNP rs865686. Of the 38 SNPs correlated with rs676256 at r2≥ 0.8,
27 had likelihood ratios >1:100 relative to rs676256

(Supplementary Material, Table S3); hence it is likely that at
least one of the 28 SNPs in this independent set of correlated
highly associated variants (iCHAV) is causal (23).

To determine whether additional SNPs at 9q31.2 confer risks
of breast cancer independently of rs676256, we fitted a series of
stepwise logistic regression models (Fig. 1B–D), stopping when
no additional SNPs reached genome-wide significance (Fig. 1D).
We identified SNPs rs10816625 (stepwise OR = 1.12 [1.07–1.16]; P =
3.49 × 10−08; Fig. 1B) and rs13294895 (stepwise OR = 1.08 [1.06–
1.11]; P = 4.56 × 10−10; Fig. 1C). The P-values and effect estimates
for all three susceptibility SNPs, adjusted by study and ances-
try-informative principal components, but not adjusted for the
other SNPs, are shown in Table 1. All three SNPs remained strong-
ly associated with breast cancer risk when modelled jointly
(rs10816625: OR = 1.13 [1.09–1.18]; P = 5.04 × 10−10; rs13294895: OR =
1.08 [1.06–1.11]; P = 4.80 × 10−10; rs676256: OR = 0.91 [0.89–0.93];
P = 2.31 × 10−21). There was little evidence of between-study effect
heterogeneity for each SNP (rs10816625: Cochran’s Q P-value =
0.48, I2 = 0; rs13294895: Cochran’s Q P-value = 0.86, I2 = 0;
rs676256: Cochran’s Q P-value = 0.27, I2 = 0.11). rs676256 is essen-
tially uncorrelated with either rs10816625 or rs13294895
(rs676256|rs10816625: r2 = 2.5 × 10−04, D′ = 0.08; rs676256|rs13294895:
r2 = 0.013, D′ = 0.31). rs10816625 and rs13294895, which arewithin
103 bp of each other, lie in the same LD block (D′ = 1). The risk
alleles rarely occur together: analysis of computationally phased
genotype data estimated only 160 haplotypes carrying the risk
alleles of both rs10816625 and rs13294895 from a total of over
183 000, corresponding to an estimated population frequency
of 0.09% (compared with 1.2% expected under equilibrium).

Figure 1. Regional association plots for 9q31.2 fine-mapping SNPs in European and Asian ancestry individuals. (A–D) Individual steps from a forward stepwise regression

analysis using data from the Caucasian studies, in which the most strongly associated SNP from a given model is included as a covariate in the subsequent model.

Chromosome position is indicated on the x-axis, and –log10 P-value on the y-axis. The models represented are adjusted for study and seven ancestry-informative

principal components. Each directly genotyped SNP is represented as a single red diamond and the most significant SNP that attained genome-wide significance from

each step of the stepwise regression is indicated by ayellowdiamond. (E) Regional association plot for the 9q31.2 fine-mapping SNPs in subjectswithAsian ancestry tested

using a model adjusted for study and two ancestry-informative principal components.
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However, given the relative rarity of the risk alleles, there is little
correlation between the SNPs (r2 = 0.014). SNPs rs10816625 and
rs13294895 were uncorrelated with any other variant at r2≥ 0.8.

In Asians, rs10816625 was notable for being the only SNP
that showed evidence of association with breast cancer risk,
albeit not at genome-wide levels of significance (OR = 1.12
[1.06–1.18]; P = 2.77 × 10−05; Fig. 1E and Table 1; Supplementary
Material, Table S2B). SNP rs10816625 has a relatively low minor-
allele frequency (MAF; 6%) in European populations but is com-
mon in Asian populations (MAF averaged across controls from
nine Asian studies = 38%). There was no evidence of inter-study
heterogeneity for rs10816625 in the contributing Asian studies
(Cochran’s Q P-value = 0.51, I2 = 0). Although SNPs rs676256 (OR =

0.94 [0.82–1.06]; P = 0.3; Table 1), rs865686 (OR = 0.93 [0.84–1.02];
P = 0.13) and rs13294895 (OR = 1.04 [0.89–1.21]; P = 0.66) were not
significantly associated with breast cancer risk in the Asian stud-
ies, their OR estimates were consistent with those of European
women; power to detect associations of these SNPs was low be-
cause theminor allele frequenciesweremuch lower than for Eur-
opeans. No SNPs were significantly associated with breast cancer
risk in the African studies (Supplementary Material, Table S2C).

All three SNPs were associated with ER-positive (rs10816625:
OR = 1.14 [1.09–1.19], P = 2.39 × 10−08; rs13294895: OR = 1.11 [1.08–
1.14], P = 3.54 × 10−12; rs676256: OR = 0.87 [0.85–0.89], P = 1.66 ×
10−30; Table 2) but not ER-negative (rs10816625: OR = 1.04 [0.96–
1.13], P = 0.29, Phet = 0.05; rs13294895: OR = 1.03 [0.98–1.08],

Table 1. Association of rs10816625, rs13294895 and rs676256 with risk of breast cancer amongst women of European and Asian ancestry

Locus Population Control MAF Control genotype
counts

Case MAF Case genotype counts P-valuea ORb 95% CIb

rs10816625 AA AG GG AA AG GG
9q31.2 Caucasians 0.06 37579 4851 169 0.07 37 434 5560 164 7.89 × 10−09 1.12 1.08–1.17
110 837 073 Asians 0.38 2633 2976 1013 0.42 2023 2714 1057 2.77 × 10−05 1.12 1.06–1.18

rs13294895 GG AG AA GG AG AA
9q31.2 Caucasians 0.20 28 954 12 372 1272 0.19 28 625 13 029 1506 2.97 × 10−11 1.09 1.06–1.12
110 837 176 Asians 0.03 6244 372 8 0.03 5495 288 10 0.66 1.04 0.89–1.21

rs676256 AA AG GG AA AG GG
9q31.2 Caucasians 0.38 16166 20183 6250 0.36 18 011 19 670 5472 1.58 × 10−25 0.90 0.88–0.92
110 895 353 Asians 0.05 6036 567 21 0.04 5329 455 11 0.3 0.94 0.82–1.06

aP-values from single SNP test of association, computed from a likelihood-ratio test with one degree-of-freedom.
bOdds ratios and 95% confidence intervals for SNP association with breast cancer estimated using logistic regression, adjusting for study and significant principal

components and assuming multiplicativity on the odds scale for heterozygote and minor-allele homozygote ORs.

Table 2. Association of rs10816625, rs13294895 and rs676256 with risk of breast cancer in European and Asian women stratified by ER status,
PR status and HER2 status

Locus Population Controls Cases ORa 95% CI P-valueb ORa 95% CI P-valueb Phet
c

Caucasian ER+ tumours ER− tumours
rs10816625 41 324 25 851 | 6128 1.14 1.09–1.19 2.39 × 10−08 1.04 0.96–1.13 0.29 0.05
rs13294895 41 323 25 851 | 6130 1.11 1.08–1.14 3.54 × 10−12 1.03 0.98–1.08 0.25 0.003
rs676256 41 324 25 847 | 6128 0.87 0.85–0.89 1.66 × 10−30 0.98 0.94–1.02 0.31 2.08 × 10−08

PR+ tumours PR− tumours
rs10816625 41 618 19 207 | 8470 1.16 1.10–1.22 1.36 × 10−08 1.06 0.99–1.13 0.11 0.02
rs13294895 41 617 19 207 | 8472 1.11 1.08–1.15 1.74 × 10−10 1.05 1.00–1.10 0.03 0.01
rs676256 41 619 19 207 | 8472 0.87 0.84–0.89 2.15 × 10−27 0.95 0.91–0.98 0.002 2.73 × 10−06

HER2− tumours HER2+ tumours
rs10816625 31 756 12 872 | 2503 1.10 1.04–1.17 0.002 1.21 1.08–1.35 9.66 × 10−04 0.09
rs13294895 31 755 12 874 | 2503 1.10 1.06–1.14 3.29 × 10−06 1.07 1.00–1.16 0.06 0.53
rs676256 31 756 12 869 | 2502 0.87 0.85–0.90 2.75 × 10−16 0.92 0.87–0.98 0.008 0.14

Asian ER+ tumours ER− tumours
rs10816625 6622 3183 | 1547 1.13 1.06–1.21 1.30 × 10−04 1.14 1.05–1.24 0.002 0.84
rs13294895 6624 3183 | 1546 1.04 0.87–1.26 0.65 0.92 0.71–1.18 0.5 0.25
rs676256 6624 3184 | 1547 0.94 0.80–1.10 0.42 0.98 0.80–1.19 0.82 0.76

PR+ tumours PR− tumours
rs10816625 5733 2711 | 1621 1.12 1.04–1.20 0.0012 1.15 1.06–1.25 5.45 × 10−04 0.5
rs13294895 5753 2711 | 1621 1.04 0.85–1.27 0.72 0.98 0.77–1.25 0.88 0.55
rs676256 5735 2712 | 1621 1.01 0.86–1.19 0.89 0.85 0.69–1.05 0.14 0.15

HER2– tumours HER2+ tumours
rs10816625 3852 1058 | 785 1.17 1.05–1.30 0.0032 1.17 1.04–1.32 0.01 0.78
rs13294895 3853 1057 | 784 1.00 0.75–1.33 0.98 1.03 0.73–1.43 0.88 0.81
rs676256 3853 1058 | 785 1.00 0.80–1.26 0.98 0.87 0.66–1.16 0.34 0.27

aStratum-specific ORs estimated using polytomous logistic regression.
bStratum-specific P-values computed using Wald tests.
cP-value for heterogeneity in effect estimates between strata calculated using case-only logistic regression.
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P = 0.25, Phet = 0.003; rs676256: OR = 0.98 [0.94–1.02], P = 0.31,
Phet = 2.08 × 10−08; Table 2) breast cancer in subjects with Euro-
pean ancestry. A similar pattern was observed for progesterone
receptor (PR) expression, with the exception that SNP rs676256
also showed a nominally significant associationwith PR-negative
tumours (OR = 0.95 [0.91–0.98], P = 0.002; Table 2). Because tumour
ER and PR status are strongly correlated, we modelled ER and PR
co-expression using polytomous logistic regression. This re-
vealed a similar association between rs676256 and risk of ER-
positive/PR-positive breast cancer (OR = 0.87 [0.84–0.89]; P = 1.33 ×
10−24; Table 3), ER-positive/PR-negative breast cancer (OR = 0.90
[0.86–0.95]; P = 1.20 × 10−04) and ER-negative/PR-positive breast
cancer (OR = 0.89 [0.80–1.00]; P = 0.04). We further explored the as-
sociation of rs676256 with ER-negative/PR-positive breast cancer
using case-only analysis for PR, adjusted for ER (P = 0.06). SNP
rs10816625 was significantly associated with only ER-positive/
PR-positive breast cancer; rs13294895 was significantly asso-
ciated with ER-positive/PR-positive breast cancer and nominally
associated with ER-positive/PR-negative disease (Table 3).

There was little evidence for heterogeneity in the effects con-
ferred by SNPs rs10816625, rs13294895 and rs676256 according to
human epidermal growth factor receptor 2 (HER2) expression
(Table 2). We also observed no evidence of heterogeneity in ef-
fects conferred by rs10816625 according to either tumour ER or
PR status in subjects with Asian ancestry (Table 2).

Because all three SNPs reported in our fine-mapping analysis
of Europeans were primarily associated with ER-positive, but not
ER-negative tumours, we restricted further stratified analyses of

additional breast cancer risk factors to caseswith ER-positive dis-
ease. However, the results from analyses of all breast cancers
combined and from ER-negative breast cancers are presented in
Supplementary Material, Tables S4–S7. In Europeans, but not
Asians, the effect of rs10816625 was stronger in cases with
node-negative (OR = 1.19 [1.12–1.25], P = 4.55 × 10−09; Table 4)
than in those with node-positive disease (OR = 1.07 [0.99–1.14],
P = 0.07, Phet = 5.98 × 10−03; Table 4). There was no significant evi-
dence of interaction according to tumour morphology (Table 5).
We observed evidence of a linearly increasing trend in the OR
by grade for rs10816625 in Asians only (Ptrend = 4.91 × 10−04;
Table 6). We previously reported a trend in per-allele OR for
rs865686 with increasing age at diagnosis in ER-positive breast
cancer, with a stronger association at younger ages (21). Here
we report that the samewas true for rs676256 in women of Euro-
pean ancestry (Ptrend = 0.02; Table 7); we saw no compelling evi-
dence of a similar age interaction for rs10816625 or rs13294895
(Table 7). Because the 9q31.2 breast cancer locus was initially dis-
covered in a study enriched for bilateral and familial cases we es-
timated ORs for each SNP in sporadic, familial and bilateral cases
(Supplementary Material, Table S8). There were no statistically
significant differences in ORs between sporadic and either bilat-
eral or familial cases.

In an effort to identify putative causal variants underlying
each of the three associations, we performed a bioinformatic
analysis. We used data from the ENCODE project (24) and else-
where (25) to explore the co-localisation of the association sig-
nals with features indicative of functional genomic elements in

Table 3. Association of rs10816625, rs13294895 and rs676256 with risk of breast cancer in European women stratified by combined ER/PR status

Locus Controls Cases ER/PR ORa 95% CI P-valueb Phet
c

rs10816625 38 144 17 132 ER+/PR+ 1.17 1.11–1.24 4.76 × 10−09

3380 ER+/PR− 1.06 0.96–1.18 0.27
714 ER−/PR+ 1.12 0.90–1.38 0.30
4436 ER−/PR− 1.07 0.98–1.18 0.12 0.03

rs13294895 38 143 17 132 ER+/PR+ 1.13 1.09–1.16 6.38 × 10−08

3380 ER+/PR− 1.07 1.01–1.15 0.03
714 ER−/PR+ 1.00 0.87–1.15 0.97
4438 ER−/PR− 1.05 0.99–1.11 0.12 0.01

rs676256 38 144 17 128 ER+/PR+ 0.87 0.84–0.89 1.33 × 10−24

3380 ER+/PR− 0.90 0.86–0.95 1.20 × 10−04

714 ER−/PR+ 0.89 0.80–1.00 0.04
4436 ER−/PR− 0.98 0.94–1.03 0.47 4.01 × 10−06

aStratum-specific ORs estimated using separate logistic regression models comparing cases from each ER/PR combination with all controls.
bStratum-specific P-values computed using Wald tests.
cP-value from χ2-test of heterogeneity of odds ratios.

Table 4. Association of rs10816625, rs13294895 and rs676256 with risk of ER-positive breast cancer stratified by lymph node status

Locus Population Controls Cases ORa 95% CI P-valueb ORa 95% CI P-valueb Phet
c

Caucasian Node-negative tumours Node-positive tumours
rs10816625 40 313 13 093 | 8235 1.19 1.12–1.25 4.55 × 10−09 1.07 0.99–1.14 0.07 5.98 × 10−03

rs13294895 40 313 13 093 | 8235 1.10 1.06–1.15 1.36 × 10−07 1.13 1.08–1.18 7.90 × 10−08 0.43
rs676256 40 313 13 090 | 8234 0.86 0.84–0.89 5.42 × 10−22 0.90 0.87–0.93 1.17 × 10−08 0.04

Asian Node-negative tumours Node-positive tumours
rs10816625 4741 1084 | 740 1.13 1.02–1.25 0.02 1.11 0.98–1.24 0.03 0.77
rs13294895 4742 1083 | 740 1.16 0.88–1.53 0.29 1.07 0.78–1.49 0.66 0.72
rs676256 4742 1084 | 740 1.02 0.81–1.29 0.85 1.01 0.77–1.31 0.97 0.94

aStratum-specific ORs estimated using polytomous logistic regression.
bStratum-specific P-values computed using Wald tests.
cP-value for heterogeneity in effect estimates between strata calculated using case-only logistic regression.
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Table 5. Association of rs10816625, rs13294895 and rs676256 with ER-positive breast cancer stratified by morphology

Locus Population Controls Cases ORa 95% CI P-valueb ORa 95% CI P-valueb Phet
c

Caucasian Ductal tumours Lobular tumours
rs10816625 34 151 15 007 | 3199 1.12 1.05–1.18 1.25 × 10−04 1.17 1.06–1.30 1.91 × 10−03 0.35
rs13294895 34 149 15 007 | 3199 1.10 1.06–1.14 5.51 × 10−07 1.12 1.05–1.20 5.43 × 10−04 0.42
rs676256 34 150 15 004 | 3199 0.88 0.85–0.90 1.16 × 10−18 0.84 0.80–0.89 5.64 × 10−10 0.17

Asian Ductal tumours Lobular tumours
rs10816625 3852 1800 | 85 1.12 1.03–1.22 8.50 × 10−03 1.29 0.94–1.77 0.11 0.32
rs13294895 3853 1799 | 85 1.16 0.92–1.46 0.22 1.16 0.47–2.87 0.74 0.96
rs676256 3853 1800 | 85 0.91 0.74–1.12 0.38 1.58 0.84–2.96 0.16 0.13

aStratum-specific ORs estimated using polytomous logistic regression.
bStratum-specific P-values computed using Wald tests.
cP-value for heterogeneity in effect estimates between strata calculated using case-only logistic regression.

Table 6. Association of rs10816625, rs13294895 and rs676256 with ER-positive breast cancer stratified by tumour grade

Locus Population Controls Casesa Grade ORb 95% CI P-valuec Ptrend
d

rs10816625 Caucasian 39 762 5233 1 1.16 1.07–1.26 4.26 × 10−04

11 432 2 1.14 1.07–1.16 1.91 × 10−05

4 655 3 1.09 1.00–1.19 0.05 0.26
rs13294895 39 763 5233 1 1.08 1.02–1.14 0.005

11 432 2 1.11 1.07–1.16 4.35 × 10−08

4655 3 1.10 1.04–1.17 5.33 × 10−04 0.60
rs676256 39 763 5232 1 0.88 0.84–0.92 2.27 × 10−09

11 429 2 0.87 0.84–0.89 1.13 × 10−19

4655 3 0.88 0.84–0.92 6.40 × 10−08 0.96
rs10816625 Asian 4488 331 1 1.02 0.86–1.20 0.85

961 2 1.10 0.98–1.22 0.09
427 3 1.42 1.22–1.65 4.88 × 10−06 4.91 × 10−04

rs13294895 4489 331 1 0.85 0.51–1.43 0.54
961 2 1.17 0.86–1.57 0.32
427 3 1.25 0.84–1.87 0.27 0.46

rs676256 4489 331 1 1.07 0.75–1.53 0.72
961 2 1.04 0.81–1.33 0.75
427 3 0.68 0.46–1.02 0.06 0.06

aMaximum total number of cases for each stratum.
bStratum-specific ORs estimated using polytomous logistic regression.
cStratum-specific P-values computed using Wald tests.
dP-value for linear trend in effect estimates across strata calculated using case-only logistic regression.

Table 7. Association of rs10816625, rs13294895 and rs676256 with ER-positive breast cancer in Europeans, stratified by age at diagnosis

Locus Controls Casesa Age Group ORb 95% CI P-valuec Ptrend
d

rs10816625 30 239 988 <40 1.18 0.99–1.41 0.06
3858 40–49 1.20 1.09–1.32 1.39 × 10−4

6865 50–59 1.14 1.06–1.23 6.93 × 10−4

6173 60–69 1.13 1.04–1.22 0.003
2679 ≥70 1.10 0.99–1.24 0.08 0.25

rs13294895 30 239 988 <40 1.07 0.95–1.20 0.26
3858 40–49 1.15 1.08–1.22 7.84 × 10−06

6865 50–59 1.12 1.07–1.18 2.42 × 10−06

6173 60–69 1.11 1.05–1.16 6.70 × 10−05

2679 ≥70 1.04 0.97–1.12 0.25 0.13
rs676256 30 240 987 <40 0.89 0.81–0.98 0.02

3858 40–49 0.82 0.78–0.86 5.13 × 10−14

6864 50–59 0.86 0.83–0.90 1.03 × 10−13

6171 60–69 0.89 0.86–0.93 7.56 × 10−08

2679 ≥70 0.92 0.87–0.98 0.006 0.02

aMaximum total number of cases for each stratum.
bStratum-specific ORs estimated using polytomous logistic regression.
cStratum-specific P-values computed using Wald tests.
dP-value for linear trend in effect estimates across strata calculated using case-only logistic regression.
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breast cancer models, including evidence of transcription factor
binding, DNase hypersensitivity and relevant histone modifica-
tion marks. Both SNPs rs10816625 and rs13294895 localise to a
region of putative regulatory significance in MCF7 cells, demar-
cated by histone H3 lysine 27 acetylation (H3K27ac) and histone
H3 lysine 4 mono-methylation (H3K4me1), both of which are
characteristic features of active enhancers (Fig. 2A) (26,27).
There was less evidence for either histone modification mark in
human mammary epithelial cells (HMEC; not shown). Both
SNPs are located directly under the binding sites for a number
of breast cancer-relevant transcription factors, including fork-
head box M1 (FOXM1) and GATA binding protein 3 (GATA3;
Fig. 2A) (28,29).

To reduce the number of candidate functional polymorph-
isms for the rs676256 iCHAV, we applied a heuristic scoring sys-
tem to prioritise variants that localise to regions with cistromic
and epigenetic activity (30). We identified three variants in this
iCHAV that co-localise with potentially relevant genomic fea-
tures (Fig. 2A). Specifically, all three variants lie in regions of
open chromatin in MCF7 cells (Fig. 2A). SNPs rs662694 (110 887
996 bp; OR = 0.88 [0.87–0.90]; P = 5.64 × 10−25) and rs471467 (110
888 113 bp; OR = 0.88 [0.87–0.90]; P = 3.30 × 10−25) localise to a
CTCF binding site, which suggests insulator activity, while inser-
tion–deletion (indel) polymorphism rs5899787 (110 893 551–2 bp;
OR = 0.88 [0.87–0.90]; P = 1.67 × 10−24) lies in a region with features
of a poised enhancer, namely enrichment of histone H3 lysine 27
trimethylation (H3K27me3) and has evidence of FOXM1 and
GATA3 binding in MCF7 cells (Fig. 2A).

Estrogen receptor-α (ER-α) and forkhead box A1 (FOXA1) are
key drivers of ER-positive breast cancer. Because there are cur-
rently limited ENCODE data on either of these factors, we ex-
plored their binding at the 9q31.2 susceptibility locus in MCF7
cells using data from Hurtado et al. (31). We found that the
three lead SNPs localise to binding sites for both transcription
factors (Fig. 2B and C). SNPs rs10816625 and rs13294895 map dir-
ectly under ER-α and FOXA1 binding peaks which co-localise to
the putative active enhancer described above. rs5899787, from
the rs676256 iCHAV, also maps directly under an ER-α and
FOXA1 binding peak; none of the other SNPs in the rs676256
iCHAV map to this, or any other ER-α and FOXA1 peaks.

A recent integrative analysis of data fromThe Cancer Genome
Atlas suggested that the original 9q31.2 risk locus influences
transcript levels of KLF4 (32).We investigated, using chromosome
conformation capture (3C) in HindIII digested MCF7 (Fig. 3A) and
SUM44 (Fig. 3B) 3C libraries, whether the locus containing SNPs
rs10816625 and rs13294895 also interacts with KLF4 through
long-range chromatin interaction. We detected elevated inter-
action frequencies between HindIII fragments containing SNPs
rs10816625 and rs13294895 and those containing KLF4; interac-
tions with HindIII fragments either side of KLF4 were lower in
comparison. Moreover no interaction was detected between the
fragment containing SNPs rs10816625 and rs13294895 with
RAD23B.

To determine whether either locus had enhancer activity we
performed a series of dual luciferase assays using aminimal pro-
moter vector, pGL4minP. To explore the rs10816625/rs13294895
locuswe inserted a 1 kb fragment containing the common alleles
of both variants, plus flanking DNA, into pGL4minP (pGL4minP-
AB). We observed an increased level of activity of the minimal
promoter in the pGL4minP-AB construct relative to pGL4minP
in both MCF7 (8.2-fold increase; P = 6.12 × 10−05; Fig. 3C) and
T47D cells (3.1-fold increase; P = 6.66 × 10−04; Fig. 3D). To deter-
mine whether the risk alleles of rs10816625 and rs13294895 dis-
rupted this enhancer activity we generated three additional

constructs, carrying a single risk allele of either rs10816625
(pGL4minP-aB) or rs13294895 (pGL4minP-Ab), or carrying risk
alleles of both SNPs (pGL4minP-ab). We observed significant evi-
dence for a difference in themeans of the dual luciferase ratios of
these constructs in MCF7 and T47D cells (P < 7 × 10−04; Fig. 3C and
D). In T47D cells we found a statistically significant difference be-
tween pGL4minP-AB and either pGL4minP-aB (P = 5.45 × 10−03),
pGL4minP-Ab (P = 0.04) or pGL4minP-ab (P = 4.97 × 10−04; Fig. 3D).
In MCF7 cells there was a statistically significant difference be-
tween pGL4minP-AB and pGL4minP-aB (P = 6.62 × 10−05), but not
pGL4minP-Ab (Fig. 3C). There was no significant difference be-
tween the construct containing both risk alleles and constructs
containing one risk allele in T47D cells (Fig. 3D). We performed
a similar series of analyses to explore the putative poised enhan-
cer centred on SNP rs5899787. Relative to pGL4minP, we observed
a reduction in reporter gene expression but saw no evidence to
support an allele-specific effect (data not shown).

Discussion
In a combined analysis of data from 50 case–control studies com-
prising more than 100 000 women, we have refined the localisa-
tion of the breast cancer association signal on chromosome
9q31.2 to a set of 28 highly correlated variants in a 14.5 kb region
in which SNP rs676256 was the most strongly associated variant.
Furthermorewehavedemonstrated the presence of twonovel in-
dependent susceptibility alleles at 9q31.2, SNPs rs10816625 and
rs13294895, both of which are strong candidates to be causal var-
iants. Breast cancer is a heterogeneous disease comprising mul-
tiple subtypes that can be classified according to histological,
immunophenotypic and molecular characteristics. Although
themajority of known breast cancer susceptibility loci are prefer-
entially associatedwith ER-positive tumours (33), a number of re-
cent subtype-specific studies have detected genetic associations
unique to ER-negative tumours, suggesting distinct underlying
aetiologies for each subtype (17,34,35). The index 9q31.2 breast
cancer susceptibility association, demarcated by SNP rs865686
(7), was largely restricted to ER-positive breast cancer (21) and
this was confirmed for rs676256 in the European samples ana-
lysed in this study. SNPs rs10816625 and rs13294895were also as-
sociated with ER-positive, but not ER-negative, breast cancer in
Europeans, albeit with more modest statistical evidence of het-
erogeneity than for rs672656.

Themajority of susceptibility loci for breast and other cancers
have been detected using studies of predominantly European an-
cestry. However, confirmation of associations in populations
with different ethnicity from those used for discovery can add
weight to their validity (36). Approximately 10% of the samples
genotyped in our fine-mapping study were from subjects of
Asian ancestry. In Asians, rs10816625 had a higher MAF than in
Europeans and was the only SNP that was significantly as-
sociated with breast cancer risk; the OR was similar to that in
Europeans. Neither rs676256 nor rs13294895 were significantly
associated with risk in Asians, but the MAFs were much smaller
than in Europeans and the ORs did not differ by ethnicity. SNP
rs10816625 resides on a strong hotspot of recombination in
Europeans and exhibits low pairwise correlation with all but
two other SNPs, each of which has a P-value for association
with breast cancer several orders of magnitude larger than
that of rs10816625. These observations provide evidence that
rs10816625 was causally associated with breast cancer.

The third breast cancer susceptibility SNP that we detected,
rs13294895, localises to within ∼100 bp of rs10816625. Analysis
of computationally phased haplotypes indicates that their risk
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Figure 2. Plots of genomic annotationswith putative functional significance at the 9q31.2 fine-mapping region. (A) Publically available histonemodification, DNase hypersensitivity and transcription factor binding data fromMCF7 cells

were mapped on to the breast cancer associated regions identified by fine-mapping. For SNPs rs10826625 and rs13294895, the iCHAVs were defined as SNPs having r2≥ 0.8 with either SNP; for rs676256 it was defined as all SNPs with

r2≥ 0.8 and likelihood ratios >1:100 relative to rs676256. There were no other SNPs in the iCHAVs for rs10816625 and rs13294895. The rs676256 iCHAV comprised 28 SNPs. SNPs whose identifiers are shown in red type were of putative

functional significance (seeMaterials andMethods).Where the lead SNPwasnot deemed to be of putative functional significance, it is indicated in green, as is the index 9q31.2 SNP, rs865686. (B) Regional bindingprofiles for ER-α inMCF7

cells shown plotted across the fine-mapping region using data from (31). The locations of the lead SNPs are indicated with yellow diamonds. (C) Regional binding profiles for FOXA1 inMCF7 cells shown plotted across the fine-mapping

region using data from (31). The locations of the lead SNPs are indicated with yellow diamonds.
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alleles rarely occur together, consistent with having arisen inde-
pendently on the same ancestral haplotype with little subse-
quent recombination.

We used bioinformatic annotation of the regions demarcated
by SNPs rs10816625, rs13294895 and rs676256 to identify a set of

variants that had putative regulatory potential and, as such, were
candidates to be the causal alleles underlying the observed asso-
ciations. SNPs rs10816625 and rs13294895 localise to a region
with a histonemodification signature that suggests it is an active
enhancer in MCF7 cells. We also saw evidence that supports

Figure 3. Chromatin conformation capture and reporter gene analysis of SNPs rs10816625 and rs13294895. (A) Chromatin interaction data from HindIII 3C libraries

generated using MCF7 cells that indicates interactions between a fragment containing rs10816625 and rs13294895 (dashed line) and fragments surrounding KLF4.

Results from three replicate libraries are plotted; each quantitative PCR reaction was performed in triplicate. Error bars represent standard mean errors. (B) Chromatin

interaction data from HindIII 3C libraries generated using SUM44 cells. (C) Dual luciferase assays for reporter constructs containing the common alleles of both

rs10816625 and rs13294895 (pGL4minP-AB), risk allele of rs10816625 (pGL4minP-aB), risk allele of rs13294895 (pGL4minP-Ab) and risk alleles of both SNPs (pGL4minP-

ab) transiently transfected into MCF7 cells. Ratios were normalised to a minimal promoter construct (pGL4minP). Each transfection was repeated five times and

constructs were generated in both forward and reverse orientations. (D) Dual luciferase assays for reporter constructs containing the common alleles of both

rs10816625 and rs13294895 (pGL4minP-AB), risk allele of rs10816625 (pGL4minP-aB), risk allele of rs13294895 (pGL4minP-Ab) and risk alleles of both SNPs (pGL4minP-

ab) transiently transfected into T47D cells.
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binding of ER-α, FOXA1 and GATA3 at this locus, directly over the
sites of rs10816625 and rs13294895. ER-α is an established driver
of luminal breast cancer and FOXA1 is a pioneer factor that
physically interacts with compacted chromatin, facilitating
binding of ER-α, and is necessary for ER-α mediated transcrip-
tion (31,37). GATA3 is thought to play a key role in making en-
hancer elements accessible to ER-α and its expression is
highly correlated with both ER-α and FOXA1 in breast tumours
(38,39). Of note, Cowper-Sal·lari et al have recently demon-
strated that breast cancer susceptibility loci are enriched for
ER-α and FOXA1 binding events (40). Our in vitro data support
the hypothesis that this locus possesses enhancer activ-
ity and indicate that the risk alleles of rs10816625 and
rs13294895 can diminish its activity, indicating that these are
independent risk susceptibility variants acting through the
same mechanism.

Li et al. have recently suggested the original 9q31.2 breast can-
cer susceptibility locus acts via regulation of the transcription
factor KLF4 (32). In their article these authors identified KLF4 as
the target of the 9q31.2 locus on the basis of a trans-eQTL analysis
in which they first identified the set of eQTL genes associated
with rs471467 (a perfect proxy for rs865686) and then looked for
enrichment of transcription factor binding sites within ENCODE
defined enhancer elements of these genes. We have demon-
strated an excess of long-range chromatin interactions between
the rs10816625/rs13294895 region and the KLF4 gene locus. Our
results and those of Li et al. suggest therefore that KLF4 is the tar-
get of multiple 9q31.2 breast cancer susceptibility SNPs. In con-
trast to recent eQTL analysis by Li and colleagues implicating
RAD23B as the target of the prostate cancer susceptibility SNP
rs817826, we found no evidence that these breast cancer SNPs in-
teracted with RAD23B (41). KLF4 has both oncogenic and tumour
suppressive roles depending on the tissue in which it is ex-
pressed (42). It is thought to be expressed at low levels in normal
breast epithelium, but is overexpressed in a large proportion of
both ductal carcinoma in situ and invasive breast cancer (43).
Our reporter assays targeting the rs10816625/rs13294895 SNPs
suggest that lower levels of expression of KLF4 are associated
with increased breast cancer risk.

In contrast to the rs10816625/rs13294895 locus, refinement
of the association signal at the rs676256 locus was compli-
cated by the large number of variants in high LD with the
lead SNP. Of the 28 highly correlated variants in this iCHAV,
analysis of ENCODE data identified three that fall into two dis-
tinct functional regions. SNPs rs662694 and rs471467 localise
to a predicted insulator region, defined by CTCF binding and
H3K27me3 marks (44). SNP rs5899787 was located in a region
that shared similar functionally significant features to those
of the rs10816625/rs13294895 locus. It localises directly to a se-
cond site of strong ER-α and FoxA1 co-localisation and had
strong evidence of GATA-3 binding in the ENCODE data. Our
data suggested that a construct containing the common allele
of rs5899787 suppressed the activity of the minimal promoter in
our reporter gene system, but we saw no evidence for an allele-
specific effect. Further work will be required to determine the
identity and mode of action of the causative variant (or variants)
at this locus.

Including the variants identified in our study, 81 common
germline polymorphisms conferring susceptibility to breast
cancer have now been identified. Our study, and those of
others, demonstrate the power of fine-mapping in large
studies both for the detection of novel independent suscepti-
bility SNPs and determining a minimal set of likely causal
variants (15,16).

Materials and Methods
Sample selection

Samples (n = 103 991) were selected from 52 studies participating
in BCAC and genotyped as part of the COGS project (9). Most con-
tributing studies were either population or hospital-based case–
control studies, while somewere nested in cohorts or selected for
family history, age or tumour characteristics. Full details of con-
tributing studies can be found in Supplementary Material,
Table S1. Four studies, Demokritos (DEMOKRITOS), Ohio State
University (OSU), Städtisches Klinikum Karlsruhe Deutsches
Krebsforschungszentrum Study (SKKDKFZS) and the Roswell
Park Cancer Institute Study (RPCI) were genotyped as part of
the Triple Negative Breast Cancer Case–control Consortium, but
are analysed here in their component studies. Analyses were re-
stricted to cases with invasive breast cancer. All analyses re-
ported were stratified according to ancestry of the study
participants, categorised as having predominantly European (n =
43 160 cases; 42 600 controls), Asian (n = 5795 cases; 6624 controls)
or African ancestry (n = 1046 cases; 932 controls), determined by a
principal components analysis of 37 000 uncorrelated SNPs an-
cestry-informative markers, described elsewhere (9). All BCAC
studies had local ethical approval.

Genotyping and quality control

A total of 447 fine-mapping SNPs were selected to interrogate the
9q31.2 locus. The fine-mapping region was defined as the region
that included including all SNPs correlated with the index SNP,
rs865686, at r2 > 0.1. For genotyping we first selected all SNPs
with an Illumina Design Score >0.8 and r2 with rs865686 >0.1.
We then selected an additional set of SNPs designed to tag all
remaining SNPs in the interval at r2 > 0.9. Genotyping was per-
formed using a custom-designed International Collaborative
Oncology Gene-environment Study (iCOGS) genotyping array
(Illumina, San Diego, CA). The iCOGS array comprised assays
for 211 155 SNPs, primarily selected for replication analysis of
loci putatively associated with breast, ovarian or prostate cancer
and for fine-mapping of the known susceptibility loci for these
cancers. Full details of the iCOGS array design, sample handling
and post-genotyping QC processes are described in-depth else-
where (9). Briefly, samples were excluded from the analytic data-
set for any of the following reasons: gender discordance
according to array data, call rate <95%, excess heterozygosity (P <
1 × 10−06), individuals not concordant with previous genotyping,
discordant duplicate pairs, within-study duplicateswith discord-
ant phenotype data, or inter-study duplicates, first degree
relatives, phenotypic exclusions and concordant replicates.
Multi-dimensional scaling was used to infer ethnicity; indivi-
duals with greater than 15% mixed ancestry were excluded
from analyses. Clustering of significantly associated, directly-
genotyped SNPs was verified by manual inspection of genotype
cluster plots (Supplementary Material, Fig. S1). Of the 447 tar-
get-SNPs selected for fine-mapping, 424 passed post-genotyping
quality control measures; we excluded six SNPs that were mono-
morphic in Europeans and a further six that showed strongly sig-
nificant deviation of genotype frequencies fromHardy–Weinberg
proportions in controls (P < 1 × 10−04).

Bioinformatics

We used publically available DNase hypersensitivity, transcrip-
tion factor binding and histone modification ChIP-seq data
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from the ENCODE project (24) and elsewhere (27,31) to overlay
functional annotations on the fine-mapping region and in-
vestigate enrichment of functional elements at associated
loci. For the rs676256 locus we first identified a subset of poly-
morphisms that had r2 ≥ 0.8 with the lead SNP and then filtered
the putative functional significance of variants by applying a
heuristic score using RegulomeDB (http://regulome.stanford.
edu/) to prioritise candidate functional variants prior to further
investigation.

Quantitative 3C

MCF7 and SUM44 3C libraries were generated using 2 × 107 cells
fixed with 2% paraformaldehyde for 5 min. 3C was carried out
using the digestion and ligation steps of a Hi-C protocol (45),
replacing the biotin dNTP fill-in with the addition of 56.7 µl of
water. A control 3C library was generated as previously de-
scribed (46) using minimally overlapping BAC clones (Chil-
dren’s Hospital Oakland Research Institute, Oakland CA; Life
Technologies, Carlsbad, CA, USA) which covered the HindIII
fragments between rs10816625 and the target region, com-
bined in equimolar amounts. To optimise the Taqman PCR
reactions and normalise the data, we generated a standard
curve using the control templates. Taqman PCR was carried
out using Taqman Universal PCR Mastermix no UNG (Life
Technologies, Carlsbad CA) with 250 ng of 3C library. Three
separate 3C libraries were prepared for each cell-line, then
from each library three quantitative PCR reactions were per-
formed for each restriction fragment. Interactions between
rs10816625/rs13294895 and target loci were expressed as rela-
tive interaction frequencies compared with the control BAC
library standard curve. BAC libraries and primer sequences
are available on request.

Dual luciferase assays

DNA fragments containing either rs10816625 and rs13294895 or
rs5899787 were cloned into the multiple cloning site of pGL4.23
[luc2/minP] (Promega, Madison, WI). Site-directed mutagenesis
with the Quickchange Lightning Site Directed Mutagenesis
Kit (Agilent Technologies, Berkshire, UK) was used to create con-
structs containing all combinations of rs10816625/rs13294895
common and risk alleles (rs10286625 common/rs13294895
common, pGL4minP-AB; rs10286625 risk/rs13294895 common,
pGL4minP-aB; rs10286625 common/rs13294895 risk, pGL4minP-
Ab; rs10286625 risk/rs13294895 risk, pGL4minP-ab). In addition,
we created reverse orientation constructs for each insert to verify
orientation independence. The allelic status of each construct
was confirmed by Sanger sequencing. PCR primers for cloning
and site-directed mutagenesis are available on request. We
used gBlocks Gene Fragments (Integrated DNA Technologies,
Leuven, Belgium) to create constructs (pGL4minP-A and
pGL4minP-a) for the common and risk alleles of the rs5899787
SNP.

MCF7 and T47D cells (ATCC, Middlesex, UK) were seeded at a
density of 1.6 × 1004 cells per well of a 96-well plate and trans-
fected with 50 ng of pGL4.23[luc2/minP] or cloned constructs
and 50 ng of pGL4.74[hRluc/TK] (Promega) using XtremeGENE
HP transfection reagent (Roche, Basel, Switzerland). Luciferase
levels were measured using a Victor luminometer (PerkinEl-
mer, Waltham, MI) after 24 h using the Dual-Glo Luciferase
Assay System (Promega). All transfections were repeated five
times.

Statistics

Analysis of the association between each SNP and risk of breast
cancer was performed using unconditional logistic regression
assuming a log-additive genetic model, adjusted for study and
ancestry-informative principal components (n = 7 for European
studies; n = 2 for Asian and African studies). P-values were calcu-
lated using a one-degree of freedom likelihood-ratio test.We also
estimated the effects of each heterozygote and minor-allele
homozygote genotype relative to the common homozygote in a
two-degrees-of-freedom model (Supplementary Material, Table S2).
Forward stepwise logistic regressionwas used to explorewhether
additional loci in the fine-mapping region were independently
associated with breast cancer risk. I2 statistics were used to
assess heterogeneity of the RR estimates between studies at sig-
nificantly associated loci. We conducted analyses of SNP associa-
tions by tumour receptor status, morphology, lymph node
involvement, grade and age for the European and Asian ancestry
studies using polytomous logistic regression. Tumour informa-
tion in BCAC was collected as previously described (47). There
were too few samples with African ancestry to conduct stratified
analyses. We also considered a polytomous logistic regression
model comprising all four possible combinations of ER and PR
status. Case-only analyses of tumour receptor status, morph-
ology and lymph node involvement were used to assess hetero-
geneity between disease subtypes. Case-only allelic logistic
regression using number of copies of each minor allele as
response variable was used to test for linear trends in OR by
grade and age at diagnosis.

We used a t-test to assess the difference inmean dual lucifer-
ase ratios for reporter gene constructs. One-way analysis of vari-
ance was used to assess equality of means of log-transformed
dual luciferase ratios. Homogeneity of variances was assessed
using Bartlett’s test and QQ-plots of standardised residuals
were visually inspected for evidence of departure from those ex-
pected under a normal distribution.

Post-hoc comparison of group means was carried out using
Tukey’s HSD test. All statistical analyses were conducted using
R (www.R-project.org/) and the Genotype Libraries and Utilities
package (GLU; code.google.com/p/glu-genetics).

Supplementary Material
Supplementary Material is available at HMG online.
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