This is a repository copy of Sexual segregation in a wide-ranging marine predator is a consequence of habitat selection.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/86064/

Version: Accepted Version

Article:
Cleasby, IR, Wakefield, ED, Bodey, TW et al. (6 more authors) (2015) Sexual segregation in a wide-ranging marine predator is a consequence of habitat selection. Marine Ecology Progress Series, 518. 1 - 12. ISSN 0171-8630

https://doi.org/10.3354/meps11112

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Sexual segregation in a wide-ranging marine predator is a consequence of habitat selection

Ian R. Cleasby, Ewan D. Wakefield, Tom W. Bodey, Rachel D. Davies, Samantha Patrick, Jason Newton, Stephen Votier, Stuart Bearhop & Keith C. Hamer

1 School of Biology, University of Leeds, Leeds LS2 9JT, UK
2 Centre of Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK
3 Current address: Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, UK.
4 School of Natural and Social Sciences, University of Gloucestershire, Swindon Road, Cheltenham, GL50 4HZ
5 Department of Zoology, South Parks Road, University of Oxford, OX1 3PS
6 NERC Life Sciences Mass Spectrometry Facility, SUERC, East Kilbride G75 0QF, UK
7 Environment and Sustainability Institute, University of Exeter, Cornwall Campus, Penryn TR10 9EZ, UK

*Corresponding Author: i.r.cleasby@gmail.com

Running Head: Sexual segregation in northern gannets
Abstract

Sexual segregation, which is common in many species, is usually attributed to intra-specific competition or habitat choice. However, while segregation in space has been widely reported, few studies have simultaneously quantified sex-specific foraging behaviour and habitat use. Here, we combine movement, diving, stable isotope and oceanographic data to test whether sexual segregation in northern gannets Morus bassanus results from sex-specific habitat use. Breeding birds, foraging in a seasonally stratified shelf sea, were tracked over three consecutive breeding seasons (2010-2012). Females made longer trips, foraged further offshore and had lower δ¹³C values than males. Male and female foraging areas overlapped only slightly. Males foraged more in mixed coastal waters, where net primary production (NPP) was relatively high (>3 mg C m⁻² day⁻¹) and sea-surface temperature (SST) was relatively low (< 10°C). Males also tended to use areas with higher SSTs (> 15°C) more than females, possibly as a consequence of foraging in productive mixed waters over offshore banks. Females foraged most frequently in stratified offshore waters, of intermediate SST (12 - 15°C), but exhibited no consistent response to NPP. Sex-specific differences in diving behaviour corresponded with differences in habitat use: males made more long and deep U-shaped dives, which were characteristic of inshore foraging, whereas shorter and shallower V-shaped dives occurred more often in offshore waters. Heavier birds attained greater depths during V-shaped dives but even when controlling for body mass, females made deeper V-shaped dives than males. Together these results indicate that sexual segregation in gannets is driven largely by habitat segregation between mixed and stratified waters, which in turn results in sex-specific foraging behaviour and dive depths.

Keywords: competition, foraging behaviour, sexual segregation, oceanography, wildlife telemetry
Introduction

Segregation of males and females occurs in a wide range of animal species and over a wide variety of spatiotemporal scales (Ruckstuhl & Neuhaus 2005, Wearmouth & Sims 2008, Alves et al. 2013, Levin et al. 2013). It is particularly common in marine central-place foragers during the breeding period, when foraging ranges are restricted by the need to return repeatedly to the breeding site to care for offspring (Page et al. 2005, Weimerskirch et al. 2009). Segregation is thought to reflect niche specialisation or competitive exclusion by the dominant sex (Phillips et al. 2004) but could, alternatively be a consequence of differing parental roles (Thaxter et al. 2009, Elliot et al. 2010), or differences in the nutritional requirements of males and females as proposed by Lewis et al. (2002).

In many species, between-sex differences in isotopic signatures suggest that males and females exploit different prey species or habitats (Bearhop et al. 2006, Phillips et al. 2011). However, while sex-specific habitat use has been widely documented in terrestrial species (Ruckstuhl & Neuhaus 2005), between-sex differences in habitat use in relation to dynamic oceanographic features have rarely been quantified (but see Pinet et al. 2012). Moreover, in the marine environment, sexual segregation may occur in the vertical as well as horizontal dimension, especially in diving species (Kato et al. 2000, Lewis et al. 2002). Such vertical niche segregation may result from between-sex differences in diving capabilities mediated by morphology or physiology or as a consequence of habitat choice (Le Boeuf et al. 2000). Thus, a detailed understanding of sex-specific differences in foraging behaviour requires a combination of horizontal tracking and dive data with environmental data (Takahashi et al. 2008, Thaxter et al. 2009).

Many air-breathing diving species perform dives with two distinct profiles: V-shaped and U-shaped. V-shaped dives tend to be shallower and of shorter duration than U-shaped dives which typically involve underwater propulsion (Garthe et al. 2000, Ropert-Coudert et
Both the dive type and depth attained may be influenced by intrinsic factors such as an individual’s mass as well as extrinsic factors, including the type of prey and its depth distribution, which in turn may be influenced by the presence of other predators and the structure of the water column (Elliott et al. 2008, Capuska et al. 2011). In addition, recent work demonstrates that dive type is determined before birds enter the water (Capuska et al. 2013), suggesting that gannets use visual cues pre-dive in order to optimize their foraging performance. Therefore, sex-specific differences in diving behaviour should arise as a consequence of habitat segregation as individuals adjust their foraging technique for different prey or habitats (Garthe et al. 2000).

Northern gannets (Morus bassanus, henceforth gannets) are medium-range foragers, typically travelling tens to hundreds of kilometres from their colonies to obtain food for themselves and their offspring (Hamer et al. 2000, Wakefield et al. 2013). Adults exploit a wide range of prey but feed predominantly by plunge-diving for shoaling fish within the upper 30 m of neritic waters (Garthe et al. 2000). In addition, gannets also scavenge for discards from fishing vessels (Hamer et al. 2007, Votier et al. 2010, 2013). Gannets tracked from a large colony at Grassholm (~40,000 breeding pairs) in the Celtic Sea showed marked sexual divergence in spatial distribution and diet (Stauss et al. 2012). Males made greater use of discards from fishing vessels and foraged closer inshore than females, although it was not clear whether females fed in different areas from males as a consequence of habitat selection or if they were displaced from fishing vessels by competition with males. In addition, time-depth recorder (TDR) data from birds breeding at Bass Rock (~60,000 pairs) in the North Sea showed that females dived to greater depths than males, suggesting that they may have been selecting different prey than males or that heavier females were able to dive deeper (Lewis et al. 2002). Gannets from both colonies forage in relatively shallow regimes (i.e. <200 m), shelf regions in which the oceanography is dominated by tidal processes (Simpson et al. 2009a).
In the summer months, deeper waters become thermally stratified, while coastal waters and those overlaying shallow banks remain mixed due to tidal stirring. These two regimes are separated by tidal mixing fronts (Simpson et al. 1981, Barnes & Hughes 1988). Birds from Bass Rock forage in association with one such front, located ~50 km offshore (Skov et al. 2008, Hamer et al. 2009), which we term the East Scotland tidal mixing front. The sex-specific behaviour of marine predators with respect to tidal mixing regimes has rarely been investigated. However, the foraging behaviour of many marine predators, including gannets, differs between mixed and stratified waters (Takahasi et al. 2008, Hamer et al. 2009, Camphuysen et al. 2012). Consequently, sexual niche segregation across tidal regimes may shape sex-specific differences in diving behaviour and optimal foraging strategies.

Here, we aim to quantify sexual differences in the foraging behaviour and habitat use of gannets foraging in the North Sea. We use a combination of horizontal and vertical tracking, stable isotope and environmental data, collected over three consecutive breeding seasons at Bass Rock, to address the hypotheses that during foraging: (1) sexual segregation is driven by sex-specific habitat selection; (2) habitat segregation occurs across tidal mixing regimes, and; (3) sex-specific foraging behaviour arises as a consequence of habitat segregation as birds adapt their foraging behaviour to the local foraging environment.

Methods

Study Site and Sampling

Fieldwork took place on Bass Rock, UK (56° 6’N, 2° 36’W) between mid-June and mid-August in 2010 to 2012. We caught adult gannets attending young chicks at the nest with a 6-m telescopic pole fitted with a wire crook. Upon capture, we fitted birds with a metal British Trust for Ornithology ring and an individually numbered plastic colour ring. We then
recorded their body mass to the nearest 25g using a spring balance and took 1 ml of blood from the tarsal vein. Shortly after sampling, blood samples were separated into red blood cells (RBC) and serum by centrifuging and stored frozen prior to stable isotope analysis and genetic sexing.

Instrumentation

A GPS logger (i-gotu 200 or 600; Mobile Action Technology, Taiwan) weighing 30g was attached to the upper side of the three central tail feathers of each bird (n = 55 birds in total; Table S1) using Tesa© tape. GPS loggers were programmed to record location data at 2 minute intervals. In addition, a subset of birds caught in 2011 and 2012 was fitted with a TDR (Table S1), which was taped to the underside of the central tail feathers. TDR models were either G5 (CEFAS Technology, UK) or MSR145 (MSR Electronics GmbH, Switzerland), weighing 2.5g and 18g respectively). G5 loggers recorded pressure at 10 Hz when the bird was submerged (> 1.5m depth), whilst MSR145 loggers recorded pressure continuously at 1 Hz. Total handling time was ~15 minutes and after release, birds returned almost immediately to their nest and resumed normal behaviour. Birds were tracked for 4-7 days, after which time they were recaptured and the loggers retrieved. The maximum weight of loggers deployed on birds (48g) was <2% of body mass (3kg) and previous studies (Hamer et al. 2007, 2009) recorded that such loggers had no discernible effects on trip durations or body masses of birds. Similarly, we found that trips durations of instrumented birds in 2010 (mean = 23.9 hrs, n = 211 trips from 52 birds, SD = 12.6) were very similar to those of non-instrumented birds observed via a remote radio link using a Mobotix© surveillance camera installed in the same area of the colony (mean = 23.5 hrs, n = 636 trips from 27 birds, SD = 14.4).
Trip metrics and spatial usage

We modelled trip duration (hrs), total distance travelled during each trip (km) and time spent at the colony between trips using Bayesian linear mixed effects models (BLMM) with the R package MCMCglmm (Hadfield 2010, R Core Team 2012). All variables were log-transformed prior to analysis to ensure normality. Sex and year, and their two-way interactions, were included as explanatory covariates and a random intercept was specified for each bird. Minimum adequate models were selected according to their Deviance Information Criterion (DIC) scores (Lunn et al. 2013).

For each year and sex, we estimated 95% and 50% utilization distributions (UD) using kernel analysis conducted with the R package adehabitatHR (Calenge 2006). The extent of within-year overlap between male and female home-ranges was estimated using Bhattacharyya’s affinity (BA; Bhattacharyya 1943) which ranges from 0 (no overlap) to 1 (complete overlap). Using BA as our measure of spatial overlap, we used a randomization procedure to test the null hypothesis that there was no difference in the spatial distribution of males and females each year (see Appendix S1).

Stable Isotope Analysis

To examine sex-specific dietary niches during the breeding season, we analysed stable carbon (δ^{13}C) and nitrogen isotope ratios (δ^{15}N) in red blood cells. Avian erythrocytes have a lifespan of 28 to 45 days (Rodnan et al. 1957) and hence represent assimilated prey over the previous 4-6 weeks. In general, δ^{15}N increases by 3 to 5 ‰ with each trophic level whereas δ^{13}C typically reflects differences between water masses. Isotope analysis was conducted at the Natural Environment Research Council (NERC) Life Science Mass Spectrometry Facility, East Kilbride, UK. We modelled δ^{15}N and δ^{13}C as response variables in a Bayesian multi-variate analysis including year and sex as well as their two-way interaction as
predictors; bird identity was included as a random intercept (further details in Supplementary Material).

Habitat Selection

Environmental covariates

The distribution of forage fish in the North Sea cannot currently be measured simultaneously over all scales at which we tracked gannets in this study (seconds to weeks and metres to 100s of km). However, foraging seabirds show marked associations with particular habitats that concentrate prey in relatively large or predictable aggregations (Wakefield et al. 2009, Wakefield et al. 2014). Previous studies have shown that northern gannets associate with shelf sea fronts and areas of high primary production (Skov et al. 2008, Votier et al. 2010).

We therefore described gannet habitat using sea surface temperature (SST, °C, Figs. 1a, S1) and net primary production (NPP, mg C m\(^{-2}\) day\(^{-1}\), Figs. 1b, S1). Monthly NPP data were estimated on a 1 km\(^2\) grid using data from the Aqua-MODIS sensor. Monthly mean SST data were supplied on a 4 km\(^2\) grid from the AVHRR sensor. All environmental data were supplied by the Natural Environment Research Council Earth Observation Data Acquisition and Analysis Service, Plymouth, UK.

Habitat Selection Functions

We used Habitat Selection Functions (HSF) to test whether males and females differed in their habitat usage. HSFs compare habitat usage to availability using a logistic-regression based approach with a case-control design (Aarts et al. 2008). The case-control design generates a binomial response (û\(_i\)) which takes the value 1 for the ith data point if it belongs to the tracking dataset or 0 if belongs to the control dataset. Tracking locations (û\(_i\) =1) were generated by selecting animal locations that were associated with putative foraging behaviour defined on the basis of movement indices such as speed, acceleration and track tortuosity (see
Wakefield et al. 2013 for further details). The control dataset comprised five pseudo-absence locations ($\hat{u}_i=0$) for each observed foraging location. Pseudo-absences were assigned to the same month as the foraging location with which they were paired and were generated randomly within the boundaries of the population’s 95% UD (i.e. the UD for both sexes combined, calculated separately for each year) using a uniform spatial Poisson process.

Foraging HSFs were modelled using a binomial generalised additive mixed model (GAMM) in the mgcv R package (Wood 2006). To facilitate biological interpretation and to keep computer running time within reasonable limits (~ 2 h to fit each model) we fitted separate models for each study year. Environmental covariates were fitted either as parametric variables, a single smoother for both sexes or as separate smoothers for each sex. The inclusion of smoothers allows for the possibility of non-linear responses to environmental covariates and fitting separate smoothers for each sex allowed the response of males and females to differ. A random intercept was specified for each bird. In order to account for residual spatial auto-correlation, we also included a thin-plate regression spline based upon the spatial coordinates of each data point (further details in Supplementary Material).

Diving behaviour

Using the TDR data, we categorised dives as either V-shaped (bottom time ≤ 2.7 s) or U-shaped (bottom time > 2.7 s) (Garthe et al. 2000; see Supplementary Material for details). Dive locations were estimated by combining TDR and GPS data. We used a binomial GAMM to model the probability of dives being U-or V-shaped and a Gaussian GAMM to model maximum depth attained during either V-shaped or U-shaped dives. The maximum depth of U-shaped dives was log-transformed to increase normality (no transformation was required for V-shaped dive depth). In each model, we considered sex, body mass and the interaction between the two as explanatory variables. In addition, each model included a
smoother for time of day to explain diurnal variation in behaviour and a spatial smoother to
to account for spatial auto-correlation. Random intercepts were specified for year and for trip
identity nested within bird identity. A continuous-time correlation structure was included to
account for temporal auto-correlation between dives. Throughout our analysis, minimum
adequate models for all GAMMs were selected by backwards selection, using K-folds cross-
validation (where K = 5 equal sized sub-samples of the data; More details in the
Supplementary Material).

Results

Female gannets were ~200g heavier than males on average (mean ± SD; female: 3021 ± 315
 g; male: 2810 ± 190 g; student t-test = 3.71, df= 47, p ≤ 0.001).

Spatial Distribution of Males and Females

Males made significantly shorter trips than females, both in duration (βSEX = -0.14 log (hrs),
95% Bayesian Credible Interval (CRI) = -0.24 – -0.041, p = 0.0081, n = 493 trips from 55
birds; Table 1 & S2) and total distance travelled per trip (βSEX = -0.19 log (km), 95% CRI -
0.34 – -0.035 p = 0.046; Table 1). Thus, the duration of male trips was 13% (95% CRI = 4 –
21%) shorter than that of females and the distance males travelled was 17% (95% CRI = 3 –
28%) less than travelled by females. In general, females foraged more frequently in offshore
waters to the east of the colony, whereas males foraged most frequently in coastal waters to
the north-east and south-east of the colony (Fig. 1, Fig. S1). Consequently, the overlap
between male and female 50% and 95% utilization distributions was significantly lower than
the null expectation each year except for the 50% utilization distribution in 2011, which was
marginally significant (p = 0.052) and the 95% utilization distribution in 2012 (p = 0.083;
Table 2).
Habitat Selection Functions

In each year, the best fitting model contained a sex-specific smoother for SST and NPP (Table S3 & S4). Both random intercepts for bird identity and spatial smoothers (Fig. S4) were retained in the final models. Females foraged mainly over waters with a temperature between 10°C and 15°C. In contrast, males foraged relatively little over such waters, tending to forage in significantly cooler (8 – 12°C) or warmer waters (> 15°C, Fig. 2a). In addition, males made greater use than females of areas with high NPP (> 3 mg C m$^{-2}$ day$^{-1}$; Fig. 2b).

Stable isotope ratios

Male RBCs had significantly higher δ^{13}C values than those of females in each study year and significantly higher δ^{15}N values than females in 2010 and 2011, but not during 2012 (Fig. 3; Table 3).

Diving behaviour

V-shaped dives were more frequent than U-shaped dives across both sexes (Total number of V-dives = 4784; Total number of U-dives = 2151) but males were more likely than females to make U-shaped dives (males = 38% of 3904 dives classed as U-shaped; females = 22% of 3031 dives classed as U-shaped; $\beta_{SEX} = 0.92$, 95% Confidence Interval (CI) = 0.35 – 1.48, p = 0.0012, n = 6310 dives from 23 birds; Table S5). Body mass did not affect the probability of a dive being U-shaped or V-shaped ($\beta_{MASS} = -0.024$, 95% CI = -0.29 – 0.25, p = 0.90).

Plots of dive locations and the spatial smoother from the dive type model indicate that in both sexes, U-shaped dives were more likely to occur close to the colony and inshore of the East Scotland tidal mixing front (Fig. 4). Dives at dawn or dusk were more likely to be V-shaped than U-shaped (Fig. S5).

The maximum depth achieved during V-shaped dives was positively associated with body mass ($\beta_{MASS} = 0.52$, 95% CI = 0.31 – 0.91, p = 0.019). In addition, after controlling for
body mass, the maximum depth attained during V-shaped dives was greater in females than males (Table 1; $\beta_{SEX} = -0.81$, 95% CI = -1.55 – 0.11, p = 0.021, n = 4272, 23 birds; Table S7). In both sexes, the deepest V-shaped dives tended to occur in offshore waters (Fig. 5a) and V-shaped dives were shallowest at dawn and dusk (Fig. S6a). There was little difference in the maximum depth reached by males and females during U-shaped dives ($\beta_{SEX} = 0.11$, 95% CI = -0.086 – 0.31, p = 0.28, n = 2036 dives/ 23 birds; Table 1 & Table S9), nor was there a significant association between maximum depth and body mass ($\beta_{MASS} = 0.073$, 95% CI = -0.026 – 0.17, p = 0.16). The maximum depth of U-shaped dives generally increased closer to the colony (Fig. 5b) and U-shaped dives were also shallower at dawn and dusk (Fig. S6b).

Discussion

This study provides clear evidence of sexual segregation in northern gannets in both horizontal and vertical planes. We found that males and females differed in their usage of mixed and stratified waters, providing evidence for sex-specific habitat segregation across tidal mixing regimes. Moreover, our data highlight the association between sex-specific foraging behaviour and spatial and habitat segregation.

Differences in Habitat Usage

Males foraged predominantly in mixed waters to the North-East of Bass Rock inshore of the tidal mixing front, whereas females foraged predominantly in offshore stratified waters. These results are consistent with previous work showing that chick-provisioning males from Bass Rock departed on more North-easterly bearings than females (Lewis et al. 2004) and that chick-provisioning females from Grassholm foraged further offshore than males in the Celtic Sea (Stauss et al. 2012). In addition, RBC δ^{13}C values were lower in females than in males at Bass Rock, which also indicates that females foraged further offshore than males,
because inshore habitats characteristically have higher δ^{13}C values (Hobson et al. 1994).

Lower blood δ^{13}C values in females has also been observed at other gannet colonies (Stauss et al. 2012), suggesting that the pattern of sex-specific habitat segregation observed at Bass Rock reflects a general feature in gannets. Males made greater use than females of areas with high NPP as would be expected given that NPP is generally higher in mixed, coastal waters where males foraged (Fig. S2). NPP is often used as a proxy for food availability further up the food chain (Barnes & Hughes 1988, Wakefield et al. 2014) suggesting males foraged in a more productive environment than females. However, potential mismatches between productivity towards the bottom of the food web and at intermediate trophic levels (pelagic fish) means that this interpretation should be treated with caution (Gremillet et al. 2008).

Male gannets from Bass Rock had higher δ^{15}N values than females in 2010 and 2011, but not in 2012. Higher δ^{15}N in males from Grassholm may occur if males consume a higher proportion of whitefish fishery discards than females (Stauss et al. 2012). However, at Bass Rock the between-sex differences in δ^{15}N each year were small and could have arisen from the observed habitat segregation between males and females (as a consequence of variation in isotopic baselines in the areas where individuals foraged; Woodcock et al. 2012) or from lower body condition among males (as a consequence of variation in physiological processes affecting fractionation; Lee Cruz et al. 2012) or both.

Sex specific responses to SST were generally consistent across years, with males foraging more in cold mixed waters and females foraging in seasonally stratified offshore waters. As well as using colder waters more often than females, males also made greater use of areas with high SSTs ($> 15^\circ$C). This was a consequence of males travelling south-east to forage at the Dogger Bank, where SST was relatively high. The Dogger Bank is a productive shallow offshore bank, which is also targeted by other wide-ranging higher predators (de Boer 2010). Due to benthic-pelagic coupling, such features may lead to elevated prey
abundance in the epipelagic waters accessible to gannets (Wakefield et al. 2012). In 2011, differences between male and female responses to SST were smaller (Figs. 1 and 2), probably because the East Scotland tidal mixing front was located closer to shore and the extent of cold mixed waters (SST < 10°C) was relatively limited (Fig. 1a). Between 2010 and 2012 there was also variation in climatic conditions in the North Atlantic as indicated by the North Atlantic Oscillation (NAO) index which varied from -4.64 in 2010 to 3.17 in 2012 (https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based). Effects of climate on lower levels of the food web may, in turn, have influenced both the locations where gannets foraged and the prey species they targeted. Thus, our results highlight the importance of inter-annual variation in oceanic conditions and climatic conditions in shaping the spatial and trophic ecology of marine predators (Garthe et al. 2011).

Sex-specific Diving Behaviour

Males and females may adopt different diving tactics as a consequence of intrinsic constraints, competition, habitat segregation or prey preferences (Le Boeuf et al. 2000, Garthe et al. 2001, reviewed in Machovsky Capuska et al. 2011). Here, we found that male gannets made a greater proportion of U-shaped dives than females. Moreover, U-shaped dives were more common in coastal habitats, whilst V-shaped dives were more frequent offshore. Therefore, the different dive types may represent tactics for foraging in different environments, with males making more U-dives as a consequence of their inshore distribution and the prey they encounter.

Why U-shaped dives were more frequent inshore of the mixing front is less clear. The higher frequency of U-dives in the vicinity of Bass Rock, and the greater depth of U-dives close to the colony, may arise due to the high density of gannets in these areas. In particular, when large aggregations of gannets form during feeding events, prey may descend to deeper
depths to escape predation forcing gannets to dive deeper as a result (Elliott et al. 2008, Capuska et al. 2011). However, this would not explain why U-shaped dives are also more frequent in coastal areas further from the colony, where the density of conspecifics is relatively low (Camphuysen et al. 2012). Instead, diving behaviour may reflect the environment and prey encountered (Garthe et al. 2000, Garthe et al. 2011) as observed in other marine predators which dived deeper in mixed waters than in stratified waters (Takahashi et al. 2008). In particular, the location of the deepest U-shaped dives corresponds with the location of sandeel (Ammodytes spp.) habitat within the Firth of Forth (Wanless et al. 1998), suggesting that deeper U-shaped dives could result from birds feeding on sandeels. Alternatively, the shallower waters in coastal areas may prevent prey escaping to deeper depths, enhancing prey capture and making longer U-shaped dives more profitable than in deeper waters.

Females attained greater depths than males during V-shaped dives, which supports similar findings in gannets and other Sulidae (Lewis et al. 2002, Zavalaga et al. 2007, Weimerskirch et al. 2009). Gannets initially attain depth by plunge-diving from height, therefore the greater mass of females may give them greater dive momentum and allow to dive deeper (Kato et al. 2000). However, even when holding body mass constant in our models, females were still predicted to reach deeper depths during V-shaped dives than males. Such a difference may reflect the vertical distribution of prey that males and females target when foraging or assessing prey densities (Wilson 2003, Machovsky Capuska et al. 2011, Machovsky Capuska et al. 2013). For example, because females tend to forage more in offshore stratified waters than males, deeper V-shaped dives may be required to reach the thermocline, which influences the distribution of biomass in the water column (Mann & Lazier 2006) and may play a role in shaping dive profiles (Takahashi et al. 2008, Ropert-Coudert et al. 2009b).
In contrast to V-shaped dives, body mass had no effect on the depth of U-shaped dives, probably because extra depth can be achieved during the latter by underwater swimming after the initial momentum phase (Ropert-Coudert et al. 2009a).

Factors underlying segregation

Sex-specific differences in foraging behaviour are usually ascribed to the influence of body size on foraging efficiency and intra-specific competition (Shaffer et al. 2001, Wearmouth & Sims 2008, Phillips et al. 2011). Competition may play a greater role in segregating birds from the same colony than it does in between-colony segregation (Wakefield et al. 2013) because the rate at which indirect competition varies with colony distance will be equal for all individuals at the colony. Because males made shorter trips than females it is possible that females were excluded from areas close to the colony via indirect competition and were pushed into offshore, stratified waters as a result. However, this would not explain why females did not appear to be pushed into inshore sites further from the colony in a similar fashion. Moreover, when the tidal mixing front was less well-defined and occurred closer to the coast-line in 2011 the 50% utilization distribution of females shifted inshore suggesting females are not excluded from this area. Similarly, even when males ventured offshore they still foraged in more mixed, productive waters such as those over the Dogger Bank.

Alternatively, the greater mass of females may make them more efficient at foraging in offshore environments because they can reach deeper prey. Greater mass appears to be advantageous when performing V-dives and as the deepest V-dives occurred in stratified waters this may give females an advantage in this environment. Nevertheless, the slight sexual size dimorphism (~5-10%) seen in gannets suggest differences in body mass alone will not create large asymmetries in either competitive ability or foraging efficiency. Therefore, other aspects of morphology not measured here, such as wing loading and agility (Weimerskirch et al. 2006), may also be important. Finally, the fact that in addition to Bass
Rock, females breeding at Grassholm also foraged further offshore than males (Stauss et al. 2012), despite differences between regions in the arrangement of mixed and stratified waters suggests that sexual segregation is driven primarily by habitat selection.

Sex-specific niche divergence and habitat segregation can also arise from a difference between sexes in parental roles (Thaxter et al. 2009) but the roles of male and female gannets do not appear to differ during chick-rearing (Nelson 2002, Redman et al. 2002). However, males and females could forage in different areas in order to ensure their chicks receive the optimum blend of prey species (Elliot et al. 2010). Sex-specific differences in nutritional requirements related to egg production, incubation costs or feather moult could also result in sexual segregation (Carey 1996, Lewis et al. 2002), particularly if key prey items are found in specific habitats. Gannets lay only a single small egg which seems unlikely to result in temporary sex differences in dietary need. However, although it is not known whether there are sex-specific differences in moult in gannets such differences do occur in other seabirds (Weimerskirch 1991) and could potentially create temporary sex differences in dietary needs and/or foraging abilities (Lewis et al. 2002).

Overall, our results suggest that sexual segregation in gannets is mediated by habitat segregation across tidal mixing regimes. Males foraged more in mixed coastal waters inshore of the tidal mixing front whereas females foraged more offshore. Hence, while tidal mixing regimes have been identified as important habitat features for marine predators (Skov et al. 2008), our results highlight that males and females may respond differently to such features. In addition, sex-specific diving behaviour may result from males and females adapting their behaviour to suit the differing habitats in which they forage, particularly in relation to whether they are foraging in mixed or stratified waters.
Acknowledgements

We thank Sir Hew Hamilton-Dalrymple for access to the Bass Rock and Maggie Sheddan and the Scottish Seabird Centre for logistic support and advice. Fieldwork was carried out with approval from the British Trust for Ornithology (permits for attachment of rings and data-loggers, the UK Home Office (personal and project licenses for blood-sampling) and Scottish Natural Heritage. Funding was provided by the Natural Environment Research Council (Standard Grant NE/H007466/1 to K.C.H., S.B., and S.C.V.). We thank the NERC Earth Observation Data Acquisition and Analysis Service (NEODAAS) for supplying data for this study.

References

Stauss C, Bearhop S, Bodey TW, Garthe S, Gunn C, Grecian WJ, Inger R., Knight ME,

Thaxter CB, Daunt F, Hamer KC, Watanuki Y, Harris MP, Grémillet D, Peters G, Wanless S
(2009) Sex-specific food provisioning in a monomorphic seabird the common guillemot Uria aalge: nest defence, foraging efficiency or parental effort? J Avian Biol 40: 75-84

Tables and Figures

Table 1. Summary of foraging trip and dive metrics.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean (SD)</th>
<th>Range</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trip Duration (hrs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>21.40 (12.02)</td>
<td>0.91 – 69.76</td>
<td>493 trips</td>
</tr>
<tr>
<td>Females</td>
<td>24.14 (12.77)</td>
<td>3.71 – 95.11</td>
<td></td>
</tr>
<tr>
<td>Trip Length (km)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>454.63 (277.79)</td>
<td>27.32 – 1265.72</td>
<td>493 trips</td>
</tr>
<tr>
<td>Females</td>
<td>512.56 (262.74)</td>
<td>69.64 – 1461.62</td>
<td></td>
</tr>
<tr>
<td>Time at Colony Between Trips (hrs)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>10.31 (8.53)</td>
<td>1.07 – 24.76</td>
<td>379 trips</td>
</tr>
<tr>
<td>Females</td>
<td>10.11 (8.59)</td>
<td>1.07 – 48.51</td>
<td></td>
</tr>
<tr>
<td>Maximum V-dive depth (m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>4.40 (1.92)</td>
<td>1.52 – 11.03</td>
<td>4274 dives</td>
</tr>
<tr>
<td>Females</td>
<td>6.69 (2.01)</td>
<td>1.52 – 9.25</td>
<td></td>
</tr>
<tr>
<td>Maximum U-dive depth (m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>7.23 (4.06)</td>
<td>1.64 – 27.75</td>
<td>2036 dives</td>
</tr>
<tr>
<td>Females</td>
<td>7.59 (3.78)</td>
<td>1.70 – 25.96</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Estimated overlap (Bhattacharyya's Affinity, BA) between male and female utilisation distributions (UD). p represents the proportion of randomised overlaps that were smaller than the observed overlap.

<table>
<thead>
<tr>
<th>UD</th>
<th>Year</th>
<th>BA</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>50%</td>
<td>2010</td>
<td>0.22</td>
<td>0.046</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0.25</td>
<td>0.052</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>0.22</td>
<td>0.022</td>
</tr>
<tr>
<td>95%</td>
<td>2010</td>
<td>0.75</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>0.65</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>2012</td>
<td>0.76</td>
<td>0.083</td>
</tr>
</tbody>
</table>
Table 3. Bayesian multi-variate mixed effects model of δ¹⁵N and δ¹³C in gannets from Bass Rock (n = 138 observations/66 birds.)

<table>
<thead>
<tr>
<th>Variable</th>
<th>δ¹⁵N</th>
<th>δ¹³C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>Lower 95% CI</td>
</tr>
<tr>
<td>Intercept</td>
<td>13.55</td>
<td>13.40</td>
</tr>
<tr>
<td>Sex</td>
<td>0.27</td>
<td>0.09</td>
</tr>
<tr>
<td>Year 2011</td>
<td>0.48</td>
<td>0.29</td>
</tr>
<tr>
<td>Year 2012</td>
<td>0.90</td>
<td>0.72</td>
</tr>
<tr>
<td>Sex × Year 2011</td>
<td>-0.10</td>
<td>-0.36</td>
</tr>
<tr>
<td>Sex × Year 2012</td>
<td>-0.31</td>
<td>-0.59</td>
</tr>
</tbody>
</table>
Figures

Fig. 1. Plots of the average a) SST and b) NPP recorded during the breeding season in the foraging range of gannets from Bass Rock (denoted as a black square) for each study year.

a)

b)
Fig. 2. Foraging ranges of male (blue) and female (red) gannets during the breeding season.
a) Raw location data; b) kernel density based utilization distributions at 95% (dotted lines)
and 50% (solid lines). Bass Rock is shown as a square and the approximate position of the
tidal mixing front each year is shown as a solid black line in (b).
Fig. 3. Habitat selection functions for SST, NPP and front density for a) SST & b) NPP. Plots show the predicted curve from the model (solid line) and 95% confidence intervals (dashed line) for males (blue) and females (red) when the sexes differed and for both sexes combined (black) when they did not differ.
Fig. 4. Mean ± SE δ^{13}C and δ^{15}N values in red blood cells of breeding northern gannets. Values from the same year are circled.
Fig. 5. The locations of U-shaped (red) and V-shaped (black) dives by (a) males and (b) females. A plot of the spatial smoother from the GAMM dive-type analysis showing the predicted probability that a dive will be classed as U-shaped (c). The square denotes the position of Bass Rock.
Fig. 6. Spatial smoothers from the models of dive depth for (a) V-shaped dives and (b) U-shaped dives. The location of Bass Rock is shown as a black square.