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12 ABSTRACT: Protein haze is an esthetic problem in white wines that can be prevented by removing grape proteins that have
13 survived the winemaking process. The haze-forming proteins are grape pathogenesis-related proteins that are highly stable during
14 winemaking, but some of them precipitate over time and with elevated temperatures. Protein removal is currently achieved by
15 bentonite addition, an inefficient process that can lead to higher costs and quality losses in winemaking. The development of
16 more efficient processes for protein removal and haze prevention requires understanding the mechanisms that are the main
17 drivers of protein instability and the impacts of various wine matrix components on haze formation. This review covers recent
18 developments in wine protein instability and removal and proposes a revised mechanism of protein haze formation.

19 KEYWORDS: bentonite alternatives, chitinases, pathogenesis-related proteins, protease, protein aggregation, thaumatin-like protein,
20 wine haze, wine heat instability, wine protein

21 ■ INTRODUCTION

22 In 2012 there were 7.528 million hectares of cultivated grape
23 vines among 92 countries, making grapes the largest fruit crop
24 by land area in the world.1,2 Furthermore, much value is added
25 in the form of winemaking to over half the world’s grapes, with
26 the production of 252 million hectoliters of wine in 2012.2 The
27 contribution of the wine sector to the world economy in 2013
28 reached a value of U.S.$277.5 billion,3 with a large proportion
29 of the wine exported. Thus, a substantial volume of wine is
30 subject to potentially damaging conditions during trans-
31 portation and storage, such as inappropriate temperature or
32 humidity, that can cause deleterious modifications of the
33 organoleptic features of the wine.4

f1 34 Wine clarity, especially that of white wines (Figure 1), is
35 important to most consumers and is also one of the
36 characteristics that is most easily affected by inappropriate
37 shipping and storage conditions. For this reason, securing wine
38 stability prior to bottling is an essential step of the winemaking
39 process and presents a significant challenge for winemakers. A
40 stable white wine is one that is clear and free from precipitates
41 at the time of bottling, through transport and storage, to the
42 time of consumption. Hazy wine and the presence of
43 precipitates are most commonly caused by three factors:
44 microbial instability, tartrate instability, and protein heat
45 instability.5 Microbial stability is achieved prior to bottling by
46 sulfur dioxide addition and filtration;6 tartrate stability is
47 achieved by either cold stabilization, ion exchange resins, or
48 electrodialysis.7

49Protein stability in commercial winemaking is almost always
50achieved by the addition of bentonite, a clay cation exchanger
51that binds proteins and removes them from wine through
52precipitation. Protein-bound bentonite settles loosely to the
53bottom of wine tanks as lees, which account for around 3−10%
54of the original wine volume.8 Wine is recovered from bentonite
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Figure 1. Clear white wine and turbid wine caused by protein
aggregation.
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55 lees through processing using rotary drum vacuum filtration,
56 specialized lees filtration equipment, or centrifugation
57 processes that are considered laborious and that can potentially
58 degrade wine quality.8−10 Quality degradation and loss of wine
59 through bentonite usage has been estimated to cost the global
60 wine industry around U.S.$1 billion per year.11 Other issues
61 and costs related to bentonite use include tank downtime for
62 bentonite treatment, occupational health risks associated with
63 inhalation of bentonite dust and slip hazards induced by
64 bentonite slurry spills, the disposal of hazardous bentonite
65 waste, and bentonite interference with increasingly common
66 membrane-based winemaking technologies.12 Consequently,
67 winemakers aim to use the minimum amount of bentonite
68 required for protein stability and would welcome the
69 introduction of alternatives with fewer drawbacks than the
70 current practice.
71 Since the last extensive review on the topic a decade ago,8

72 research efforts have been equally divided into the elucidation
73 of protein haze-forming mechanisms, in particular the effects of
74 different wine components, as well as improving bentonite
75 efficiency and finding alternative stabilization strategies.
76 Significant attention has also been paid to developing methods
77 for protein purification, quantification, and identification, as

f2 78 well as predicting wine haze potential (Figure 2).

79 This review summarizes recent advances in the knowledge of
80 how protein haze forms in wine, as well as the latest alternatives
81 to bentonite wine protein stabilization. The findings of recent
82 research and the newly proposed mechanisms for haze will be
83 discussed in part I. New alternatives to bentonite will be
84 discussed in part II.

85 ■ PART I. MECHANISMS OF PROTEIN HAZE
86 FORMATION IN WHITE WINES

87 Current Model of Haze Formation. The mechanisms
88 associated with haze formation in wines are not well
89 understood and yet str commonly cited as two-stage processrd.
90 In the first stage, wine proteins unfold in response to stimuli
91 such as elevated storage temperatures. Once unfolded, the
92 proteins aggregate and flocculate to form a visible haze.13

93 Recent investigations of the proteins associated with haze

94formation, as well as the roles of other wine components, have
95enabled the proposed model to be revised into three separate
96stages described below. The steps include protein unfolding,
97protein self-aggregation, and aggregate cross-linking.
98Haze-Forming Proteins. The isolation and character-
99ization of proteins from white wines have traditionally been
100difficult tasks due to the presence of grape and yeast proteins as
101well as their modified versions and degradation products caused
102by winemaking, which produces a complex protein mixture.14,15

103However, recent advances in techniques for wine protein
104purification,16,17 as well as applications of newly developed
105proteomic techniques,16,18−25 and the release of the grape
106genome26 have significantly improved research capabilities in
107the identification and quantification of grape and wine proteins.
108The most abundant classes of haze-forming proteins that
109occur in grape (Vitis vinifera) juice and white wines are
110chitinases and thaumatin-like proteins (TLPs).14,27−29 These
111proteins are small (<35 kDa) and compact, have globular
112structures,30 are positively charged at wine pH, and are tolerant
113of low pH in juice and wine.8,31 Other proteins, such as β-
114glucanases, have also been shown to contribute to haze
115formation,32,33 although they are much less abundant than
116chitinases and TLPs in wine and are not extensively studied. A
117 f3typical electrophoretic profile of grape juice is shown in Figure
118 f33, highlighting that pathogenesis-related (PR) proteins (β-1,3-

119glucanases, chitinases, TLPs, and lipid transfer proteins) are the
120major protein classes represented. However, haze-forming
121proteins vary in concentration and composition in ripe grapes
122and grape juice with cultivar,34 vintage,35 disease pressure,36

123and even harvest conditions.37 The haze-forming proteins have
124been identified as those that are historically considered to be
125PR proteins, although they are constitutively expressed during
126berry ripening and can reach high concentrations regardless of
127pathogen exposure.27,38,39 Both chitinases and TLPs have a
128high number of disulfide bonds that contribute to the highly
129stable globular structures of these proteins and make them
130inherently resistant to the enzymatic activity of pathogens.30,40

Figure 2. Distribution of peer-reviewed publications on wine protein
haze, 2005−2013 (data from Scopus). Methods: papers on the
development of methods for purification, quantification, and character-
ization of proteins, as well as on the prediction of haze potential.
Alternatives: papers investigating possible alternatives to bentonite for
wine protein stabilization. Mechanism: papers on the elucidation of
the mechanism of haze formation in white wines.

Figure 3. Typical electrophoretic profiles of two unfined grape juices
(CHA, Chardonnay; SAB, Sauvignon blanc), with protein band
identities assigned by proteomic analysis.85
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131 Non-haze-forming proteins are also present in juice and
132 white wine, including yeast mannoproteins,41,42 grape inver-
133 tase,43,44 and grape cell wall glycoproteins and proteoglycans
134 rich in arabinose and galactose (or arabinogalactan-pro-
135 teins).45,46 The presence of these non-haze-forming proteins
136 can also affect white wine quality by stabilizing wine against
137 heat-related protein instability,47−49 influencing foaming
138 properties in sparkling wines,43,50 and possibly interacting
139 with aroma compounds.51,52

140 The haze-forming tendencies of proteins isolated from white
141 wines have been shown to depend on their aggregation
142 behavior, and developments in the physical techniques used to
143 characterize this behavior have improved the understanding of
144 protein instability.53−55

145 In wines, different classes of haze-forming proteins have
146 different thermal stabilities, as demonstrated by combinatorial
147 peptide ligand libraries (CPLL) analyses56 and differential
148 scanning calorimetry (DSC).57 Chitinases are generally less
149 stable than TLPs and can denature within minutes at
150 temperatures >40 °C, compared to weeks for TLPs under

t1 151 the same conditions57 (Table 1).

152 The temperature at which proteins unfold can also indicate
153 stability, and recent experiments using differential scanning
154 calorimetry (DSC) analyses have demonstrated differences in
155 the melt temperature of chitinases and TLPs. The physical
156 characteristics and aggregation tendencies of these proteins are

t2 157 given in Table 2. Chitinases unfold at a lower temperature than

158 TLPs, at 55 and 62 °C, respectively,57 further indicating that
f4 159 they are less stable. As shown in Figure 4, once unfolded,

160 chitinases did not regain their original structure (renature) after
161 cooling, and this irreversible unfolding (denaturation) was
162 shown to lead to protein aggregation and subsequent
163 precipitation of chitinases.57

164Results from DSC and dynamic light scattering (DLS)
165experiments have indicated that TLPs generally do not to
166contribute to the formation of visible aggregates,28,54 although
167recent studies have indicated the presence of TLPs in wine
168hazes.14,32 This apparent conflict of results most likely relates to
169the particular isoform of TLP that was used in the experiments.
170Recent studies have shown that some TLP isoforms will
171reversibly unfold/refold after heating and cooling, whereas
172other isoforms will irreversibly unfold (denature) and
173aggregate. Only the TLP isoforms that denature will participate
174in haze formation.28,30,53,57,58

175Crystallography has been used to elucidate the 3D structures
176of three grape TLP isoforms displaying different hazing
177 f5potentials and unfolding temperatures (Figure 5).30 That
178study demonstrated a high degree of structural similarity among
179different TLP isoforms. However, a TLP isoform (4JRU) with
180lower unfolding temperature than the other two (56 vs 62 °C)
181showed the potential to aggregate upon unfolding in the

Table 1. Predicted Half-Lives of Chitinases and TLPs in
Artificial Wine (Based on Falconer et al.57)

temperature
(°C)

predicted half-lives for
chitinases

predicted half-lives for
TLPs

50 3 min 20 days

45 17 min 11 weeks

40 1.3 h 13 years

35 14 h 180 years

30 4.7 days >1000 years

25 1.3 months >1000 years

20 1 year >1000 years

15 9 years >1000 years

10 100 years >1000 years

Table 2. Summary of General Properties of Chitinases and
TLPs

property chitinases stable TLPs
unstable
TLPs

unfolding
temperature

55 °C57 61−62 °C57 56 °C57

aggregate
characteristics

visible
aggregates

microaggregates visible
aggregates

(≥1 μm)54 (<150 nm)53,54 (≥1
μm)30,57

aggregation
tendency

self-
aggregate28,54

cross-linked with other
wine components53,54

self-
aggregate30

Figure 4. (A) Repeated DSC scans of thaumatin-like protein C from
Semillon juice showing a melt temperature of 61 °C and reversibility
of thermal unfolding. (B) Repeated DSC scans of chitinase F1 from
Sauvignon blanc juice showing a melt temperature of 55 °C, no
reversibility of thermal unfolding, and aggregation after unfolding.
Reprinted from Falconer et al.57

Figure 5. Superposition of the backbone representation of thaumatin-
like proteins 4JRU (heat unstable) and 4L5H (heat stable).30 Arrows
indicate differing loops between the two protein isoforms.

Journal of Agricultural and Food Chemistry Review

DOI: 10.1021/acs.jafc.5b00047
J. Agric. Food Chem. XXXX, XXX, XXX−XXX

C

http://dx.doi.org/10.1021/acs.jafc.5b00047


182 presence of sulfate to form visible haze. The reason for this
183 different hazing potential was attributed to small structural
184 differences related to the conformation of a single loop (located
185 in domain 1) and the amino acid composition of its flanking
186 regions, which could explain some of the variation of hazing
187 potential among wines of similar total protein concentrations.
188 When proteins unfold and aggregate, the protein type can
189 influence the characteristics of the resulting aggregates. TLPs
190 tend to produce metastable microaggregates (<150 nm at
191 normal wine ionic strength) that are invisible to the naked eye,
192 whereas chitinases can rapidly flocculate and produce clearly
193 visible large aggregates (≥1 μm).13,54 Model studies have
194 indicated that increasing the concentration of protein in
195 solution will increase the amount of haze produced,59,60 and
196 yet no such correlation has been shown to exist in wine.28,31

197 This is most likely due to other components in wine that can
198 facilitate haze or prevent protein aggregation. For example,
199 most TLP isoforms need to interact with other wine
200 components such as salts or polyphenolics to contribute to
201 visible haze.53,54 Therefore, the size of TLP aggregates is wine-
202 dependent.13 The chitinases tested to date form aggregates by
203 themselves after unfolding and cooling, assuming that there is
204 sufficient solution ionic strength to suppress electrostatic
205 repulsion.54,55 This will be discussed in greater detail in the
206 next section.
207 Other Wine Components That Contribute to Haze
208 Formation. In addition to differing aggregation behaviors of
209 different wine proteins, other components of wine can also
210 contribute to haze formation. These components include
211 polyphenols, sulfate, formerly indicated as the factor X required
212 for protein haze formation,61 and polysaccharides in particular,
213 as well as characteristics of the wine matrix such as wine pH
214 and organic acids.28,52−55,58,62 In the two-stage model of haze
215 formation, proteins first unfold and then aggregate to form a
216 haze, and each of these mechanisms has different drivers. The
217 mechanism of protein unfolding is largely influenced by
218 temperature, with higher temperatures leading to more rapid
219 protein unfolding.13,28,53,54,57,58 However, this does not fully
220 explain the gradual haze formation that can occur during wine
221 storage, indicating that drivers in addition to temperature play a
222 role.
223 The mechanism of protein aggregation differs for different
224 protein classes,28 is influenced by a number of factors, and is
225 likely to be affected by other components present in the wine
226 matrix.54,58 When proteins unfold, they expose hydrophobic
227 binding sites that are generally buried in the core of the
228 proteins, and more hydrophobic proteins tend to cause hazes
229 more easily (Table 2). This suggests that the aggregation stage
230 of haze formation is likely to be driven by hydrophobic
231 interactions,63 as recently confirmed by structural studies on
232 TLPs.30

233 Haze-forming proteins also have a net positive charge at wine
234 pH, and this can prevent protein aggregation and haze
235 formation in model systems due to electrostatic repulsion. In
236 white wines the presence of charged ions in solution increases
237 the ionic strength, thus decreasing electrostatic repulsion
238 among protein molecules, so that proteins aggregate upon
239 unfolding and subsequent exposure of hydrophobic protein
240 binding sites.64 The presence of other charged molecules,
241 particularly sulfates,61 can also influence protein aggregation, as
242 has been demonstrated with chitinases and, to a lesser extent,
243 TLPs using DLS.54 In that study model wine containing only
244 chitinases did not form a haze upon heating, whereas increasing

245sulfate concentration in the matrix led to a dramatic increase in
246chitinase aggregation. The effect of sulfate on protein
247aggregation was beyond that which could be attributed to its
248contribution to ionic strength alone. It was therefore suggested
249that sulfate not only allows aggregation to occur by suppressing
250electrostatic repulsion but also allows, if not promotes,
251hydrophobic interaction-driven aggregation through kosmo-
252tropic effects; sulfate anions interact with the hydration water
253that weakens hydrogen bonding between water and proteins,
254thus favoring salting-out and aggregation.54

255In combination with ionic strength and temperature
256considerations, wine pH can prevent some wines from hazing
257while promoting haze in others.55,65 Changes to wine pH have
258been shown to induce minor protein conformational changes
259that can change the temperature at which wine begins to show
260turbidity.66 In that work, Erbaluce wines with lower pH (3.0)
261did not form a visible haze upon heating to 80 °C, whereas at
262higher pH (pH 3.30) the wine became hazy when heated to 60
263°C.66 Organic acids have also been attributed a stabilizing effect
264in wine protein stability.65 The authors stated that at wine pH
265organic acids interact electrostatically with the wine proteins
266and speculated that this interaction would prevent wine
267compounds of phenolic nature to interact with the wine
268proteins and thus facilitate haze.65

269The impact of wine pH on protein stability varies with
270protein type. Variations in wine pH from 2.5 to 4.0 at room
271temperature were sufficient to disrupt the native state of
272chitinases, resulting in the exposure of hydrophobic binding
273sites that eventually facilitated protein aggregation.58 Con-
274versely, TLPs and invertases were stable under the same
275conditions, further demonstrating the comparative instability
276and haze-forming potential of chitinases compared with stable
277TLP isoforms.
278Polyphenols can also contribute to the aggregation and
279precipitation of wine proteins, and this can be due to the
280formation of hydrogen bonds or most likely to hydrophobic
281interactions.65,67−69 A wide range of polyphenols have been
282identified from naturally precipitated proteins in Sauvignon
283blanc wines that were stored below 30 °C.70 These include
284condensed tannins from grapes that are known to readily bind
285to proteins. Spiking experiments have indicated that poly-
286phenols actively aggregate and precipitate wine proteins at
287room temperature,63 most likely due to cross-linking protein
288aggregates forming larger aggregates that are visible to the
289naked eye. Cross-linking of proteins with nonprotein molecules
290includes both covalent and noncovalent interactions. However,
291because white wines are generally produced under nonoxidative
292conditions, there are probably few cases of phenolic
293compounds oxidizing to highly reactive quinones and
294covalently cross-linking proteins.
295Therefore, the growth in size of protein self-aggregates seems
296also attributable to the cross-linking action of other matrix
297components. This will be discussed further in the next section.
298Elevated temperatures can increase polyphenol−protein
299interactions and aggregation because increased temperatures
300will increase the number of protein hydrophobic sites that are
301exposed, as well as the intensity of the hydrophobic
302interactions.67 The exposure of hydrophobic sites also differs
303in magnitude and consequence depending on protein type.63

304Polysaccharides can also influence haze formation, although
305reports vary between stabilizing proteins against aggrega-
306tion41,47,49 to inducing haze formation.59 This variation may
307be due to differences in the measured polysaccharide/protein
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308 ratio or in the type of protein, such as TLP isoform, used in the
309 analysis.53 Gazzola et al. showed that wine polysaccharides
310 played a crucial role in haze formation of TLPs, whereas this
311 was not the case for chitinases. In general, it seemed that the
312 type of protein was always more important than its interaction
313 with polysaccharides.53

314 Another aspect investigated was the theory that denatured
315 proteins (e.g., chitinases) could interact with otherwise soluble
316 proteins (e.g., TLPs) in a coprecipitation mechanism (protein−
317 protein interaction). Although this theory has not been
318 comprehensively disproven in real wines, it has been shown
319 to be insignificant in model wine and one Sauvignon blanc.28

320 Revised Mechanism of Protein Haze Formation. Haze
321 formation is caused by the unfolding and aggregation of grape-
322 derived wine proteins and can lead to precipitation. The current
323 model of wine protein aggregation indicates that protein
324 unfolding and aggregation are separate events, as demonstrated
325 through DLS experiments.13 Elucidating the mechanisms of
326 haze formation has involved different analytical approaches
327 characterizing naturally forming hazes from wine28,70 as well as
328 heat-induced haze from real wines.14,71,72 Heat trials have
329 indicated that proteins can unfold as wine is heated, although
330 the wine becomes hazy only after cooling.13 The fractionation
331 of heat-unstable wines into their component parts, such as
332 proteins, polysaccharides, and phenolics, and the heat
333 aggregation behavior studied via reconstitution experiments in
334 model or real wines have also improved the knowledge of the
335 haze-forming mechanism.28,53,54,61,63 Other significant advance-
336 ments in understanding the mechanisms of wine haze include
337 (i) the finding that sulfate plays an important role in
338 hazing;54,61 (ii) the explanation of the role of nonproteinaceous
339 wine components, particularly ionic strength,54,55 pH,58,66

340 organic acids,65 and phenolic compounds;53,63,70 (iii) the
341 development of an efficient protein purification method;17

342 (iv) the release of the grape genome26 and greater accessibility
343 of proteomic techniques for protein characterization; (v) the
344 discovery that TLPs and chitinases have different unfolding
345 temperatures and unfolding/aggregation behavior;57 and (vi)
346 the solution of the crystal structure of thaumatin-like proteins.30

347 On the basis of these advancements, a new model of haze
f6 348 formation has been proposed (Figure 6).

349Immediately following winemaking and clarification, wine
350proteins are stable and folded in their native state, and the wine
351is clear. The first stage of haze formation involves the unfolding
352of these proteins in response to elevated storage temperatures,
353revealing the hydrophobic binding sites that are generally
354buried in the core of the proteins.63 For TLPs this mechanism
355has recently been elucidated.30 It appears that unstable TLPs
356have an exposed loop stabilized by a disulfide bridge that, if
357destabilized via heat, can expose the neighboring protein region
358 f7(Figure 7).

359In heat-unstable TLPs (e.g., 4JRU) the neighboring region
360that becomes exposed upon reduction of the disulfide bridge
361located in the exposed loop is hydrophobic; thus, protein
362aggregation can occur under conditions that favor disulfide
363bond reduction, such as heating in the presence of sulfites.30

364Conversely, stable TLP does not precipitate due to the
365hydrophilic nature of exposed regions that prevent protein
366aggregation and allow refolding upon cooling.30,57 In the
367second stage of haze formation unstable proteins begin to self-
368aggregate via hydrophobic interactions. At this stage wine
369components able to modify the ionic strength of the solution as
370salts and sulfate can favor the binding of the unfolded proteins,
371further promoting protein aggregation.63 This is particularly the

Figure 6. Revised unfolding and aggregation mechanisms of heat-unstable proteins in wine.

Figure 7. Backbone representation of the heat-unstable thaumatin-like
protein 4JRU.30 Disulfide bonds are yellow. The arrow indicates an
exposed disulfide bond that could be susceptible to reduction by heat
and sulfites.
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372 case with TLPs. In the third and final stage of aggregation the
373 protein aggregates gradually become cross-linked due to the
374 actions of sulfates and polyphenols. Proteins form increasingly
375 larger aggregates until they reach a size that makes them visible
376 to the naked eye (≥1 μm) and eventually precipitate.13,54,55

377 The presence of sulfate and salts can also neutralize protein net
378 charges and reduce the natural electrostatic repulsion between
379 similarly charged proteins, whereas polyphenols are more likely
380 to cross-link protein aggregates via hydrophobic interactions.
381 From this mechanism, the role of sulfate as a key wine matrix
382 component for the formation of haze becomes apparent. Sulfate
383 can potentially participate in each of the three stages of haze
384 formation by modifying the melt temperature of proteins in
385 stage 1, by screening the exposed protein charges in stage 2,
386 thus favoring aggregation of unfolded proteins,28,54 and by
387 mediating the aggregation of small protein aggregates probably
388 through a cross-linking action at stage 3 to modulate the final
389 haze formed.54

390 Following the new insights into haze-forming mechanisms
391 and protein stability, the next stage of research will focus on
392 developing a new test for assessing the haze potential of white
393 wines. The conditions used in the current test, known as the
394 “heat test”,73 may overestimate the risk that a particular wine
395 will haze by denaturing both haze-forming and non-haze-
396 forming proteins. This can overpredict the amount of bentonite
397 needed to stabilize the wine, leading to less cost-effective
398 winemaking practices. Understanding the mechanisms of haze
399 formation and the structures of the proteins involved can also
400 lead to the development of new strategies for haze prevention
401 in white wines.

402 ■ PART II: BENTONITE ALTERNATIVES

403 Strategies for Wine Haze Prevention. Considering the
404 mechanisms of wine protein haze formation, there are several
405 possible strategies for preventing wine haze that would either
406 reduce or eliminate the need for bentonite. These include (i)
407 decreasing the ionic strength of the wine; (ii) decreasing the
408 polyphenol concentrations in wine; (iii) stabilizing wine
409 proteins against thermal unfolding; (iv) disrupting hydrophobic
410 protein−protein interactions; (v) degrading wine proteins
411 enzymatically after heat treatment; and (vi) using alternative
412 adsorbents or ultrafiltration to remove proteins.
413 Strategies 1 and 2 are most likely impractical from a wine
414 sensory quality perspective. Although it is possible to either
415 decrease the ionic strength of wine or remove polyphenols
416 using existing industrial-scale electrodialysis, ion exchange, and
417 fining technologies, these techniques would dramatically change
418 wine sensory attributes. Strategies 3 and 4 are potentially
419 related in practice, as the promotion or addition of specific
420 glycoproteins/proteoglycans/polysaccharides, including specific
421 yeast mannoproteins, could both stabilize wine proteins and
422 interfere with hydrophobic protein−protein interactions.55

423 Protein stabilization with polysaccharides such as pectin and
424 carrageenan is well established in other beverages such as
425 milk74 and beer, and the ability of a yeast mannoprotein to
426 stabilize wine proteins was attributed specifically to the glycan
427 portion of the proteoglycan.49 However, in both cases, it is
428 unclear at what point protection against haze formation by
429 polysaccharides occurs: do the polysaccharides protect against
430 denaturation or, once proteins are denatured, protect against
431 aggregation? An unexplored alternative to polysaccharides that
432 would implement strategy 4 would be the addition of
433 surfactants to wines to prevent protein−protein interactions.

434Surfactants such as polysorbates are commonly used in
435processed foods and beverages to stabilize emulsions. However,
436their use in wine is not currently permitted, they might not be
437acceptable to consumers, and they could negatively affect foam
438properties in sparkling wines.
439The most promising strategies for developing bentonite
440alternatives are strategy 5, the potential to degrade wine
441proteins with enzymes, and strategy 6, the potential for
442developing novel fining agents. The use of enzymes and novel
443fining agents as bentonite alternatives will be discussed in more
444detail in the following sections.
445Protein Degradation Using Enzymes. Degrading haze-
446forming proteins in wine with enzymes is a particularly
447appealing alternative to bentonite because it minimizes wine
448volume loss and aroma stripping. Ideally, effective enzymes
449would be added to grape juice or ferment without the need for
450later removal, such as with pectinases and glucanases.75 The
451degradation products of grape proteins may also be utilized by
452yeast as nitrogen sources, potentially reducing the frequent
453need for nitrogen additions (as diammonium phosphate) and
454improving wine aroma quality.76,77 There are two types of
455enzymatic activity relevant to wine protein degradation: the
456hydrolysis of peptide bonds by proteases and the reduction of
457disulfide bonds by protein disulfide reductases. Proteases
458catalyze peptide bond hydrolysis through nucleophilic attack
459induced either by an amino acid side chain of the protease, such
460as for cysteine and serine proteases, or by an activated water
461molecule, such as for metalloproteases and aspartic proteases.78

462Proteolytic enzymes are routinely used in the beverage industry,
463for example, papain, a cysteine protease from papaya that is
464used in beermaking,79 and are therefore a viable option for use
465in winemaking. Protein disulfide reductases could, theoretically,
466destabilize and precipitate haze-forming proteins during
467winemaking via the enzymatic reduction of disulfide bonds,
468because the chemical reduction of disulfide bonds has been
469shown to facilitate the unfolding of these proteins.63 However,
470there have been no published examples of protein disulfide
471reductases being active under wine conditions. For this reason,
472the search for wine-relevant enzymes to degrade haze-forming
473proteins has focused on proteases and, at least since the 1950s,
474researchers have tried to find proteases that destroy haze-
475forming wine proteins under winemaking conditions.80 The
476difficulty in using proteases for specifically degrading haze-
477forming proteins in wine is associated with the stability of the
478proteins in wine-like conditions. Chitinases and TLPs are
479characteristically highly resistant to proteases in their native
480state due to their rigid peptide backbone structure72,81,82 and so
481can tolerate the endogenous proteases that degrade many grape
482proteins during crushing and pressing.29 Grape TLPs, as with
483PR proteins from other plant species, have been found to be
484resistant to many different types of proteases and may even
485inhibit the activity of some proteases.83,84

486Marangon et al.85 developed a promising new protease
487treatment that involves heating grape juice in the presence of a
488heat-tolerant protease prior to fermentation to produce wine
489that is free from haze-forming proteins. When juice is heated,
490the proteins unfold and thus become susceptible to enzymatic
491activity. The possible drawbacks of exposing grape juice or wine
492to elevated temperatures are the requirements of high energy
493inputs and the negative sensory implications,86−89 even though
494it has been shown that when applied with care the potential
495negative sensory changes can be contained, as well as the
496energy requirements by optimizing the temperature and

Journal of Agricultural and Food Chemistry Review

DOI: 10.1021/acs.jafc.5b00047
J. Agric. Food Chem. XXXX, XXX, XXX−XXX

F

http://dx.doi.org/10.1021/acs.jafc.5b00047


497 treatment time.85 Previous research has focused on the ideal
498 temperature and time of heating required to unfold haze-
499 forming proteins without destroying flavor and aroma
500 compounds.90

501 The method of Marangon et al.85 involved rapidly heating
502 grape juice to 75 °C for 1 min using flash pasteurization. This
503 technique also required the addition of a protease that is active
504 at the low pH of grape juice and white wines (pH 2.9−3.5) and
505 at 75 °C. Aspergilloglutamic peptidase (AGP), known
506 commercially as Proctase and formerly known as Aspergillo-
507 pepsin II, was found to be active at 50−75 °C.85 Adding AGP
508 to clarified grape juice prior to flash pasteurization and
509 fermentation resulted in wines that were heat stable and almost
510 completely free from haze-forming proteins. Chemical and
511 sensory results indicated that there were no significant changes
512 to the main physicochemical parameters or wine preference.85

513 This combination treatment of protease addition with flash
514 pasteurization has been shown to be effective at industrial
515 scale,91 and the use of AGP in wine has recently been approved
516 for Australian winemaking.92 The cost of this treatment
517 compared favorably to bentonite treatment,85 making it a
518 potentially cost-effective and commercially viable bentonite
519 alternative.
520 Other proteases are also currently being investigated that are
521 active at winemaking temperatures and are specific against
522 grape haze-forming proteins. Recent investigations have
523 focused on grape pathogens for specificity against PR grape
524 proteins. Plant PR proteins continuously evolve ways to inhibit
525 pathogen growth, and pathogens continuously evolve ways to
526 counteract the inhibitory effects of PR proteins.93 Elite grape
527 cultivars have been clonally propagated for centuries; therefore,
528 it is likely that pathogens have evolved proteases to destroy PR
529 proteins encoded by ancient grape genes. The juice of grapes
530 infected with Botrytis cinerea was found to have significantly
531 lower concentrations of PR proteins than juice from healthy
532 grapes,36,94,95 whereas the opposite was true in grapes infected
533 with other pathogens such as powdery mildew.36 One particular
534 protease from B. cinerea, BcAP8, has proven to be effective
535 against grape chitinases during juice fermentation without the
536 need for heating.96 When BcAP8 was added to juice prior to
537 fermentation, the resulting wines produced significantly less
538 heat-induced protein haze than wines made without BcAP8.
539 Other potential sources of proteases that are active at wine
540 pH include endogenous winemaking sources such as grapes,
541 yeasts, and bacteria, because protein hydrolysis is known to
542 occur during winemaking.15,97,98 Endogenous grape (V.
543 vinifera) proteases including both cysteine and serine
544 proteases99 have been found in berries and leaves,88,100,101

545 although they are generally not well characterized.102−106 Grape
546 proteases are active at optima from pH 2 to 2.5 and from 60 to
547 70 °C,99,107 and the protease activity is generally short-lived
548 after pressing,88,100 with few exceptions.99

549 Acid-tolerant yeasts and spoilage microbes have been found
550 to secrete proteases at wine pH, although the secreted protease
551 activity was not sufficient to stabilize wine.108−114 An
552 extracellular pepsin-like aspartic acid protease of 72 kDa was
553 characterized from a Saccharomyces cerevisiae isolate,115 one of
554 the few isolates that secrete protease activity.111,115 The
555 secreted yeast protease activity discovered by Younes et
556 al.115,116 was active at wine pH during grape juice fermentation,
557 although it did not affect grape PR proteins until after
558 fermentation when the wine was incubated at 38 °C for
559 prolonged periods. Nonetheless, the discovery of a secreted

560protease from a S. cerevisiae isolate demonstrates that
561proteolytic activity can occur prior to autolysis of the cell and
562the release of a vacuolar acid protease, which is a previously
563established mechanism of protease activity arising from yeast in
564wine.117 The isolate that secretes protease activity is not
565currently used commercially in winemaking,115 although it
566could be used as a tool to develop new industrial wine yeast
567strains that secrete protease.
568Novel Fining Agents. Many novel fining agents and other
569protein removal techniques with the potential to replace
570bentonite have been explored in recent years. These include
571seaweed polysaccharides, chitin, zirconium dioxide, and packed-
572bed cation exchangers, as well as ultrafiltration techniques.
573Novel fining agents must meet several criteria to effectively
574compete with bentonite. They must be cost-effective and
575nontoxic and must not degrade wine quality.
576Negatively charged polysaccharides extracted from seaweeds
577are a potential class of bentonite alternatives.118 Carrageenan is
578a food grade polysaccharide that is extracted from red seaweed
579and is currently used for protein stabilization in the beer
580industry.118 It has been shown to be effective in stabilizing
581white wines at low addition rates (125−250 mg/L), using only
582one-third or less of the bentonite concentration required.119

583Carrageenan has been found to produce no deleterious sensory
584impacts compared to bentonite-treated wines.120 Although
585those results are promising, residual amounts of carrageenan in
586treated wines can potentially induce haze formation,118,119 and
587this is likely to restrict commercial viability. Another potential
588protein-adsorbing polysaccharide is chitin. Chitin is a
589component of crustacean exoskeletons and, alongside its
590derivatives, such as chitosan, is widely used in industrial
591processes, including as a thickening agent for processed foods
592and in pharmaceuticals.121 The structure of chitin also makes it
593selective for binding to chitinases, and in-line systems
594containing chitin can be effective in removing these particular
595PR proteins from wine,122 even if its activity in stabilizing wine
596has been recently challenged.123 Chitin could potentially have
597serious sensory impacts, however, by removing favorable wine
598components such as positive aroma compounds.124

599The ultimate objective of novel fining agents and protein-
600adsorbing materials for the wine industry is to achieve wine
601stabilization using in-line applications with minimum wine loss
602and no extra processing steps. Zirconium dioxide (ZrO2) is a
603readily available protein-adsorbing material that can be
604regenerated and thus reused.125,126 ZrO2 has shown the
605potential to remove haze-forming proteins when tested in
606continuous and batch-wise application both during and post
607fermentation.12,127,128 However, despite ZrO2 showing promise
608and the ability to be regenerated with a simple washing
609procedure,129 issues with the flow rates and high dosages
610required limit its commercial viability.
611Ultrafiltration can also be effective in removing haze-causing
612proteins, although the process is not selective and can remove
613other, desirable, wine components including polysaccharides.130

614This application is not necessarily viable at winery-scale due the
615expense of equipment. Packed-bed cation-exchangers could
616improve process efficiency, and their effectiveness in removing
617wine proteins has been demonstrated,131 but they have not as
618yet been adopted for protein removal.
619The mechanisms of wine haze formation have been revised
620from the two-stage model to a three-stage model and now
621include protein unfolding, protein aggregation, and the cross-
622linking of aggregates to form a visible haze. Chitinases and
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623 TLPs are the most important proteins involved in wine haze
624 formation, and other wine components such as sulfates and
625 polyphenols, as well as wine pH, can influence protein
626 aggregation in the second and third stages. This improved
627 understanding of the mechanisms of haze formation will allow
628 the development of better predictive tools for haze potential
629 and more targeted techniques to prevent hazes forming in
630 bottled white wines. Recent advances in the prevention of haze
631 formation have led to the development of a new bentonite
632 alternative that utilizes a heat-tolerant protease in combination
633 with flash pasteurization. Further investigations into more
634 efficient stabilization strategies, possibly by utilizing proteases
635 that are active at winemaking temperature, will ultimately
636 benefit winemakers worldwide.
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