This is an author produced version of Wine protein haze: mechanisms of formation and advances in prevention..

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/85999/

Article:

https://doi.org/10.1021/acs.jafc.5b00047
Wine Protein Haze: Mechanisms of Formation and Advances in Prevention

Steven C. Van Sluyter,*†§, Jacqui M. McRae,† Robert J. Falconer,§ Paul A. Smith,† Antony Bacic,§ Elizabeth J. Waters,*†⊥ and Matteo Marangon*†,Π

The Australian Wine Research Institute, P.O Box 197, Glen Osmond, South Australia 5064, Australia
§School of BioSciences and the Bio21 Molecular Sciences and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
†Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
ΠAustralian Grape and Wine Authority, P.O. Box 2733, Adelaide, South Australia 5000, Australia
⊥Plumpton College, Ditchling Road, Nr Lewes, East Sussex BN7 3AE, England

ABSTRACT: Protein haze is an esthetic problem in white wines that can be prevented by removing grape proteins that have survived the winemaking process. The haze-forming proteins are grape pathogenesis-related proteins that are highly stable during winemaking, but some of them precipitate over time and with elevated temperatures. Protein removal is currently achieved by bentonite addition, an inefficient process that can lead to higher costs and quality losses in winemaking. The development of more efficient processes for protein removal and haze prevention requires understanding the mechanisms that are the main drivers of protein instability and the impacts of various wine matrix components on haze formation. This review covers recent developments in wine protein instability and removal and proposes a revised mechanism of protein haze formation.

KEYWORDS: bentonite alternatives, chitinases, pathogenesis-related proteins, protease, protein aggregation, thaumatin-like protein, wine haze, wine heat instability, wine protein

INTRODUCTION

In 2012 there were 7.528 million hectares of cultivated grape vines among 92 countries, making grapes the largest fruit crop by land area in the world.†,‡ Furthermore, much value is added in the form of winemaking to over half the world’s grapes, with the production of 252 million hectoliters of wine in 2012.† The contribution of the wine sector to the world economy in 2013 reached a value of U.S.$277.5 billion,§ with a large proportion of the wine exported. Thus, a substantial volume of wine is subject to potentially damaging conditions during transportation and storage, such as inappropriate temperature or humidity, that can cause deleterious modifications of the organoleptic features of the wine.§

Wine clarity, especially that of white wines (Figure 1), is important to most consumers and is also one of the characteristics that is most easily affected by inappropriate shipping and storage conditions. For this reason, securing wine stability prior to bottling is an essential step of the winemaking process and presents a significant challenge for winemakers. A stable white wine is one that is clear and free from precipitates at the time of bottling, through transport and storage, to the time of consumption. Hazy wine and the presence of precipitates are most commonly caused by three factors: microbial instability, tartrate instability, and protein heat instability.¶ Microbial stability is achieved prior to bottling by sulfur dioxide addition and filtration;¶ tartrate stability is achieved by either cold stabilization, ion exchange resins, or electrodialysis.¶

Figure 1. Clear white wine and turbid wine caused by protein aggregation.

Protein stability in commercial winemaking is almost always achieved by the addition of bentonite, a clay cation exchanger that binds proteins and removes them from wine through precipitation. Protein-bound bentonite settles loosely to the bottom of wine tanks as lees, which account for around 3−10% of the original wine volume.¶ Wine is recovered from bentonite...
Recent investigations of the proteins associated with haze formation, as well as the roles of other wine components, have enabled the proposed model to be revised into three separate stages described below. The steps include protein unfolding, protein self-aggregation, and aggregate cross-linking.

Haze-Forming Proteins. The isolation and characterization of proteins from white wines have traditionally been difficult tasks due to the presence of grape and yeast proteins as well as their modified versions and degradation products caused by winemaking, which produces a complex protein mixture. However, recent advances in techniques for wine protein purification, as well as applications of newly developed proteomic techniques, and the release of the grape genome have significantly improved research capabilities in the identification and quantification of grape and wine proteins.

The most abundant classes of haze-forming proteins that occur in grape (*Vitis vinifera*) juice and white wines are chitinases and thaumatin-like proteins (TLPs). These proteins are small (<35 kDa) and compact, have globular structures, are positively charged at wine pH, and are tolerant of low pH in juice and wine. Other proteins, such as β-glucanases, have also been shown to contribute to haze formation, although they are much less abundant than chitinases and TLPs in wine and are not extensively studied.

A typical electrophoretic profile of grape juice is shown in Figure 3, highlighting that pathogenesis-related (PR) proteins (β-1,3-glucanases, chitinases, TLPs, and lipid transfer proteins) are the major protein classes represented. However, haze-forming proteins vary in concentration and composition in ripe grapes and grape juice with cultivar, vintage, disease pressure, and even harvest conditions. The haze-forming proteins have been identified as those that are historically considered to be PR proteins, although they are constitutively expressed during berry ripening and can reach high concentrations regardless of pathogen exposure. Both chitinases and TLPs have a high number of disulfide bonds that contribute to the highly stable globular structures of these proteins and make them inherently resistant to the enzymatic activity of pathogens.

PART I. MECHANISMS OF PROTEIN HAZE FORMATION IN WHITE WINES

Current Model of Haze Formation. The mechanisms associated with haze formation in wines are not well understood and yet str commonly cited as two-stage processes. In the first stage, wine proteins unfold in response to stimuli such as elevated storage temperatures. Once unfolded, the proteins aggregate and flocculate to form a visible haze.

Recent investigations of the proteins associated with haze formation, as well as predicting wine haze potential (Figure 2).

Figure 2. Distribution of peer-reviewed publications on wine protein haze, 2005–2013 (data from Scopus). Methods: papers on the development of methods for purification, quantification, and characterization of proteins, as well as on the prediction of haze potential. Alternatives: papers investigating possible alternatives to bentonite for wine protein stabilization. Mechanism: papers on the elucidation of the mechanism of haze formation in white wines.

Figure 3. Typical electrophoretic profiles of two unfinned grape juices (CHA, Chardonnay; SAB, Sauvignon blanc), with protein band identities assigned by proteomic analysis.
Non-haze-forming proteins are also present in juice and white wine, including yeast mannoproteins,41,42 grape invertase,43,44 and grape cell wall glycoproteins and proteoglycans rich in arabinose and galactose (or arabinogalactan-proteins).45,46 The presence of these non-haze-forming proteins can also affect white wine quality by stabilizing wine against heat-related protein instability,47–49 influencing foaming properties in sparkling wines,43,50 and possibly interacting with aroma compounds.51,52

The haze-forming tendencies of proteins isolated from white wines have been shown to depend on their aggregation behavior, and developments in the physical techniques used to characterize this behavior have improved the understanding of protein instability.53–55 In wines, different classes of haze-forming proteins have different thermal stabilities, as demonstrated by combinatorial peptide ligand libraries (CPLL) analyses56 and differential scanning calorimetry (DSC).57 Chitinases are generally less stable than TLPs and can denature within minutes at temperatures >40 °C, compared to weeks for TLPs under the same conditions57 (Table 1).

Table 1. Predicted Half-Lives of Chitinases and TLPs in Artificial Wine (Based on Falconer et al.57)

<table>
<thead>
<tr>
<th>temperature (°C)</th>
<th>predicted half-lives for chitinases</th>
<th>predicted half-lives for TLPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>3 min</td>
<td>20 days</td>
</tr>
<tr>
<td>45</td>
<td>17 min</td>
<td>11 weeks</td>
</tr>
<tr>
<td>40</td>
<td>1.3 h</td>
<td>13 years</td>
</tr>
<tr>
<td>35</td>
<td>14 h</td>
<td>180 years</td>
</tr>
<tr>
<td>30</td>
<td>4.7 days</td>
<td>>1000 years</td>
</tr>
<tr>
<td>25</td>
<td>1.3 months</td>
<td>>1000 years</td>
</tr>
<tr>
<td>20</td>
<td>1 year</td>
<td>>1000 years</td>
</tr>
<tr>
<td>15</td>
<td>9 years</td>
<td>>1000 years</td>
</tr>
<tr>
<td>10</td>
<td>100 years</td>
<td>>1000 years</td>
</tr>
</tbody>
</table>

The temperature at which proteins unfold can also indicate stability, and recent experiments using differential scanning calorimetry (DSC) analyses have demonstrated differences in the melt temperature of chitinases and TLPs. The physical characteristics and aggregation tendencies of these proteins are given in Table 2. Chitinases unfold at a lower temperature than TLPs, at 55 and 62 °C, respectively,57 further indicating that they are less stable. As shown in Figure 4, once unfolded, chitinases did not regain their original structure (renature) after cooling, and this irreversible unfolding (denaturation) was shown to lead to protein aggregation and subsequent precipitation of chitinases.57

Results from DSC and dynamic light scattering (DLS) experiments have indicated that TLPs generally do not contribute to the formation of visible aggregates,28,54 although recent studies have indicated the presence of TLPs in wine haze.14,32 This apparent conflict of results most likely relates to the particular isoform of TLP that was used in the experiments. Recent studies have shown that some TLP isoforms will reversibly unfold/refold after heating and cooling, whereas other isoforms will irreversibly unfold (denature) and aggregate. Only the TLP isoforms that denature will participate in haze formation.53–57

Crystallography has been used to elucidate the 3D structures of three grape TLP isoforms displaying different hazing potentials and unfolding temperatures (Figure 5).166 That study demonstrated a high degree of structural similarity among different TLP isoforms. However, a TLP isoform (4JRU) with lower unfolding temperature than the other two (56 vs 62 °C) showed the potential to aggregate upon unfolding in the

Figure 4. (A) Repeated DSC scans of thaumatin-like protein C from Semillon juice showing a melt temperature of 61 °C and reversibility of thermal unfolding. (B) Repeated DSC scans of chitinase F1 from Sauvignon blanc juice showing a melt temperature of 55 °C, no reversibility of thermal unfolding, and aggregation after unfolding. Reprinted from Falconer et al.57

Table 2. Summary of General Properties of Chitinases and TLPs

<table>
<thead>
<tr>
<th>property</th>
<th>chitinases</th>
<th>stable TLPs</th>
<th>unstable TLPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>unfolding temperature</td>
<td>55 °C57</td>
<td>61–62 °C57</td>
<td>56 °C57</td>
</tr>
<tr>
<td>aggregate characteristics</td>
<td>visible aggregates (≥1 μm)58</td>
<td>microaggregates (<150 nm)53,54</td>
<td>visible aggregates (≥1 μm)30,57</td>
</tr>
<tr>
<td>aggregation tendency</td>
<td>self-aggregate28,54</td>
<td>cross-linked with other wine components54</td>
<td>self-aggregate50</td>
</tr>
</tbody>
</table>
presence of sulfate to form visible haze. The reason for this different hazing potential was attributed to small structural differences related to the conformation of a single loop (located in domain 1) and the amino acid composition of its flanking regions, which could explain some of the variation of hazing potential among wines of similar total protein concentrations.

When proteins unfold and aggregate, the protein type can influence the characteristics of the resulting aggregates. TLPs tend to produce metastable microaggregates (<150 nm at normal wine ionic strength) that are invisible to the naked eye, whereas chitinases can rapidly flocculate and produce clearly visible large aggregates (≥1 μm).15,54 Model studies have indicated that increasing the concentration of protein in solution will increase the amount of haze produced,28,51 and yet no such correlation has been shown to exist in wine.17

This is most likely due to other components in wine that can facilitate haze or prevent protein aggregation. For example, most TLP isoforms need to interact with other wine components such as salts or polyphenolics to contribute to visible haze.53,54 Therefore, the size of TLP aggregates is wine-dependent.17 The chitinases tested to date form aggregates by themselves after unfolding and cooling, assuming that there is sufficient solution ionic strength to suppress electrostatic repulsion.54,55 This will be discussed in greater detail in the next section.

Other Wine Components That Contribute to Haze Formation. In addition to differing aggregation behaviors of different wine proteins, other components of wine can also contribute to haze formation. These components include polyphenols, sulfate, formerly indicated as the factor X required for protein haze formation,61 and polysaccharides in particular, as well as characteristics of the wine matrix such as wine pH and organic acids.28,52–55,58,60 In the two-stage model of haze formation, proteins first unfold and then aggregate to form a haze, and each of these mechanisms has different drivers. The mechanism of protein unfolding is largely influenced by temperature, with higher temperatures leading to more rapid protein unfolding.13,28,53,54,57,58 However, this does not fully explain the gradual haze formation that can occur during wine storage, indicating that drivers in addition to temperature play a role.

The mechanism of protein aggregation differs for different protein classes,28 is influenced by a number of factors, and is likely to be affected by other components present in the wine matrix.54,58 When proteins unfold, they expose hydrophobic binding sites that are generally buried in the core of the proteins, and more hydrophobic proteins tend to cause hazes more easily (Table 2). This suggests that the aggregation stage of haze formation is likely to be driven by hydrophobic interactions,63 as recently confirmed by structural studies on TLPs.30

Haze-forming proteins also have a net positive charge at wine pH, and this can prevent protein aggregation and haze formation in model systems due to electrostatic repulsion. In white wines the presence of charged ions in solution increases the ionic strength, thus decreasing electrostatic repulsion among protein molecules, so that proteins aggregate upon unfolding and subsequent exposure of hydrophobic protein binding sites.64 The presence of other charged molecules, in particular sulfates,17 can also influence protein aggregation, as has been demonstrated with chitinases and, to a lesser extent, TLPs using DLS.54 In that study model wine containing only chitinases did not form a haze upon heating, whereas increasing sulfate concentration in the matrix led to a dramatic increase in chitinase aggregation. The effect of sulfate on protein aggregation was beyond that which could be attributed to its contribution to ionic strength alone. It was therefore suggested that sulfate not only allows aggregation to occur by suppressing electrostatic repulsion but also allows, if not promotes, hydrophobic interaction-driven aggregation through kosmotropic effects; sulfate anions interact with the hydration water that weakens hydrogen bonding between water and proteins, thus favoring salting-out and aggregation.17

In combination with ionic strength and temperature considerations, wine pH can prevent some wines from hazing while promoting haze in others.55,65 Changes to wine pH have been shown to induce minor protein conformational changes that can change the temperature at which wine begins to show turbidity.56 In that work, Erbaluce wines with lower pH (3.0) did not form a visible haze upon heating to 80 °C, whereas at higher pH (pH 3.0) the wine became hazy when heated to 60 °C.66 Organic acids have also been attributed a stabilizing effect in wine protein stability.67 The authors stated that at wine pH 6.4 organic acids interact electrostatically with the wine proteins and speculated that this interaction would prevent wine compounds of phenolic nature to interact with the wine proteins and thus facilitate haze.64

The impact of wine pH on protein stability varies with protein type. Variations in wine pH from 2.5 to 4.0 at room temperature were sufficient to disrupt the native state of chitinases, resulting in the exposure of hydrophobic binding sites that eventually facilitated protein aggregation.58 Conversely, TLPs and invertases were stable under the same conditions, further demonstrating the comparative instability of haze-forming potential of chitinases compared with stable TLP isoforms.

Polyphenols can also contribute to the aggregation and precipitation of wine proteins, and this can be due to the formation of hydrogen bonds or most likely to hydrophobic interactions.65,67–69 A wide range of polyphenols have been identified from naturally precipitated proteins in Sauvignon blanc wines that were stored below 30 °C.70 These include condensed tannins from grapes that are known to readily bind to proteins. Spiking experiments have indicated that polyphenols actively aggregate and precipitate wine proteins at room temperature,63 most likely due to cross-linking protein aggregates forming larger aggregates that are visible to the naked eye. Cross-linking of proteins with nonprotein molecules includes both covalent and noncovalent interactions. However, because white wines are generally produced under nonoxidative conditions, there are probably few cases of phenolic compounds oxidizing to highly reactive quinones and covalently cross-linking proteins.

Therefore, the growth in size of protein self-aggregates seems also attributable to the cross-linking action of other matrix components. This will be discussed further in the next section. Elevated temperatures can increase polyphenol–protein interactions and aggregation because increased temperatures will increase the number of protein hydrophobic sites that are exposed, as well as the intensity of the hydrophobic interactions.67 The exposure of hydrophobic sites also differs in magnitude and consequence depending on protein type.71 Polysaccharides can also influence haze formation, although reports vary between stabilizing proteins against aggregation30 to inducing haze formation.59 This variation may be due to differences in the measured polysaccharide/protein ratio.
Revised Mechanism of Protein Haze Formation. Haze formation is caused by the unfolding and aggregation of grape- derived wine proteins and can lead to precipitation. The current model of wine protein aggregation indicates that protein unfolding and aggregation are separate events, as demonstrated through DLS experiments. Elucidating the mechanisms of haze formation has involved different analytical approaches characterizing naturally forming hazes from wine as well as heat-induced haze from real wines. Heat trials have indicated that proteins can unfold as wine is heated, although the wine becomes hazy only after cooling. The fractionation of heat-unstable wines into their component parts, such as proteins, polysaccharides, and phenolics, and the heat aggregation behavior studied via reconstitution experiments in model or real wines have also improved the knowledge of the haze-forming mechanism. Other significant advancements in understanding the mechanisms of wine haze include (i) the finding that sulfate plays an important role in hazing; (ii) the explanation of the role of nonproteinaceous wine components, particularly ionic strength, pH, and organic acids; and phenolic compounds; (iii) the development of an efficient protein purification method; (iv) the release of the grape genome and greater accessibility of proteomic techniques for protein characterization; (v) the discovery that TLPs and chitinases have different unfolding temperatures and unfolding/aggregation behavior; and (vi) the solution of the crystal structure of thaumatin-like proteins.

On the basis of these advancements, a new model of haze formation has been proposed (Figure 6).

Immediately following winemaking and clarification, wine proteins are stable and folded in their native state, and the wine is clear. The first stage of haze formation involves the unfolding of these proteins in response to elevated storage temperatures, revealing the hydrophobic binding sites that are generally buried in the core of the proteins. For TLPs this mechanism has recently been elucidated. It appears that unstable TLPs have an exposed loop stabilized by a disulphide bridge that, if destabilized via heat, can expose the neighboring protein region (Figure 7).

![Figure 6. Revised unfolding and aggregation mechanisms of heat-unstable proteins in wine.](image)

![Figure 7. Backbone representation of the heat-unstable thaumatin-like protein 4JRU. Disulphide bonds are yellow. The arrow indicates an exposed disulphide bond that could be susceptible to reduction by heat and sulffites.](image)
Surfactants such as polysorbates are commonly used in processed foods and beverages to stabilize emulsions. However, in their use in wine is not currently permitted, they might not be acceptable to consumers, and they could negatively affect foam properties in sparkling wines.

The most promising strategies for developing bentonite alternatives are strategy 5, the potential to degrade wine proteins with enzymes, and strategy 6, the potential for developing novel fining agents. The use of enzymes and novel fining agents as bentonite alternatives will be discussed in more detail in the following sections.

Protein Degradation Using Enzymes. Degrading haze-forming proteins in wine with enzymes is a particularly appealing alternative to bentonite because it minimizes wine volume loss and aroma stripping. Ideally, effective enzymes would be added to grape juice or ferment without the need for later removal, such as with pectinases and glucanases. \(^5\) The degradation products of grape proteins may also be utilized by yeast as nitrogen sources, potentially reducing the frequent need for nitrogen additions (as diammonium phosphate) and improving wine aroma quality. \(^76,77\) There are two types of enzymatic activity relevant to wine protein degradation: the hydrolysis of peptide bonds by proteases and the reduction of disulfide bonds by protein disulphide reductases. Proteases catalyze peptide bond hydrolysis through nucleophilic attack induced either by an amino acid side chain of the protease, such as for cysteine and serine proteases, or by an activated water molecule, such as for metalloproteases and aspartic proteases. \(^78,79\) Proteolytic enzymes are routinely used in the beverage industry, for example, papain, a cysteine protease from papaya that is used in beermaking, \(^79\) and are therefore a viable option for use in winemaking. Protein disulphide reductases could, theoretically, destabilize and precipitate haze-forming proteins during winemaking via the enzymatic reduction of disulfide bonds. \(^27,46\) This can facilitate the unfolding of these proteins, which is characteristic of many grape proteins because the chemical reduction of disulfide bonds has been shown to facilitate the unfolding of these proteins. \(^53\) However, there have been no published examples of protein disulphide reductases being active under wine conditions. For this reason, \(^47\) the search for wine-relevant enzymes to degrade haze-forming proteins has focused on proteases and, at least since the 1950s, \(^47\) researchers have tried to find proteases that destroy haze-forming wine proteins under winemaking conditions. \(^80\) The difficulty in using proteases for specifically degrading haze-forming proteins in wine is associated with the stability of the proteins in wine-like conditions. Chitinases and TLPs are characteristic of high-resistant to proteases in their native state due to their rigid peptide backbone structure. \(^72,81,82\) and so can tolerate the endogenous proteases that degrade grape proteins during crushing and pressing. \(^79\) TLPs, as with PR proteins from other plant species, have been found to be resistant to many different types of proteases and may even inhibit the activity of some proteases. \(^83,84\)

Maranon et al. \(^85\) developed a promising new protease treatment that involves heating grape juice in the presence of a heat-tolerant protease prior to fermentation to produce wine that is free from haze-forming proteins. When juice is heated, the proteins unfold and thus become susceptible to enzymatic activity. The possible drawbacks of exposing grape juice or wine to elevated temperatures are the requirements of high energy inputs and the negative sensory implications, \(^86−89\) even though it has been shown that when applied with care the potential negative sensory changes can be contained, as well as the energy requirements by optimizing the temperature and

PART II: BENTONITE ALTERNATIVES

Strategies for Wine Haze Prevention. Considering the mechanisms of wine protein haze formation, there are several possible strategies for preventing wine haze that would either reduce or eliminate the need for bentonite. These include (i) decreasing the intensity of the wine; (ii) decreasing the polyphenol concentrations in wine; (iii) stabilizing wine proteins against thermal unfolding; (iv) disrupting hydrophobic protein–protein interactions; (v) degrading wine proteins enzymatically after heat treatment; and (vi) using alternative adsorbents or ultrafiltration to remove proteins.

Strategies 1 and 2 are most likely impractical from a wine sensory quality perspective. Although it is possible to either decrease the intensity of the wine or remove polyphenols using existing industrial-scale electrodialysis, ion exchange, and fining technologies, these techniques would dramatically change wine sensory attributes. Strategies 3 and 4 are potentially related in practice, as the promotion or addition of specific glycoproteins/proteoglycans/poly saccharides, including specific yeast mannanoproteins, could both stabilize wine proteins and interfere with hydrophobic protein–protein interactions. \(^55\)

Protein stabilization with polysaccharides such as pectin and carrageenan is well established in other beverages such as milk \(^24\) and beer, and the ability of a yeast mannanprotein to stabilize wine proteins was attributed specifically to the glycan portion of the proteoglycan. \(^49\) However, in both cases, it is unclear at what point protection against haze formation by polysaccharides occurs: do the polysaccharides protect against denaturation or, once proteins are denatured, protect against aggregation? An unexplored alternative to polysaccharides that would implement strategy 4 would be the addition of surfactants to wines to prevent protein–protein interactions.
treatment time.⁸⁵ Previous research has focused on the ideal temperature and time of heating required to unfold haze-forming proteins without destroying flavor and aroma compounds.⁹⁰

The method of Marangon et al.⁸⁵ involved rapidly heating grape juice to 75 °C for 1 min using flash pasteurization. This technique also required the addition of a protease that is active at the low pH of grape juice and white wines (pH 2.9–3.5) and at 75 °C. Aspergillus glutaminase peptidase (AGP), known commercially as Procase and formerly known as Aspergillus pepsin II, was found to be active at 50–75 °C.⁸⁵ Adding AGP to clarified grape juice prior to flash pasteurization and fermentation resulted in wines that were heat stable and almost completely free from haze-forming proteins. Chemical and sensory results indicated that there were no significant changes to the main physicochemical parameters or wine preference.³⁵ This combination treatment of protease addition with flash pasteurization has been shown to be effective at industrial scale,⁹⁹ and the use of AGP in wine has recently been approved for Australian winemaking.⁹² The cost of this treatment is compared favorably to bentonite treatment,⁸⁵ making it a potentially cost-effective and commercially viable bentonite alternative.

Other proteases are also currently being investigated that are active at winemaking temperatures and are specific against grape haze-forming proteins. Recent investigations have focused on grape pathogens for specificity against PR grape proteins. Plant PR proteins continuously evolve ways to inhibit pathogen growth, and pathogens continuously evolve ways to counteract the inhibitory effects of PR proteins.⁹³ Elite grape cultivars have been clonally propagated for centuries; therefore, it is likely that pathogens have evolved proteases to destroy PR proteins encoded by ancient grape genes. The juice of grapes infected with Botrytis cinerea was found to have significantly lower concentrations of PR proteins than juice from healthy grapes,³⁶,⁹⁴,⁹⁵ whereas the opposite was true in grapes infected with other pathogens such as powdery mildew.³⁶ One particular protease from B. cinerea, BcAP8, has proven to be effective against grape chitinases during juice fermentation without the need for heating.⁹⁶ When BcAP8 was added to juice prior to fermentation, the resulting wines produced significantly less heat-induced protein haze than wines made without BcAP8.

Other potential sources of proteases that are active at wine pH include endogenous winemaking sources such as grapes, yeasts, and bacteria, because protein hydrolysis is known to occur during winemaking.¹⁵,¹⁷,⁹⁸ Endogenous grape (V. vinifera) proteases including both cysteine and serine proteases have been found in berries and leaves,⁸⁸,¹⁰⁰,¹⁰¹ although they are generally not well characterized.¹⁰²–¹⁰⁶ Grape proteases are active at optima from pH 2 to 2.5 and from 60 to 70 °C,⁹⁹,¹⁰⁷,¹⁰⁸ and the protease activity is generally short-lived after pressing,¹⁰⁸,¹⁰⁹ with few exceptions.⁹⁸ Acid-tolerant yeasts and spoilage microbes have been found to secrete proteases at wine pH, although the secreted protease activity was not sufficient to stabilize wine.¹⁰⁸–¹¹⁴ An extracellular pepsin-like aspartic acid protease of 72 kDa was characterized from a Saccharomyces cerevisiae isolate,¹¹⁵ one of the few isolates that secrete protease activity.¹¹¹,¹¹⁶ The secreted yeast protease activity discovered by Younes et al.¹¹⁵,¹¹⁶ was active at wine pH during grape juice fermentation, although it did not affect grape PR proteins until after fermentation when the wine was incubated at 38 °C for prolonged periods. Nonetheless, the discovery of a secreted protease from a S. cerevisiae isolate demonstrates that proteolytic activity can occur prior to autolysis of the cell and the release of a vacuolar acid protease, which is a previously established mechanism of protease activity arising from yeast in wine.¹¹⁷ The isolate that secretes protease activity is not currently used commercially in winemaking,¹¹⁸ although it could be used as a tool to develop new industrial wine yeast strains that secrete protease.

Novel Fining Agents. Many novel fining agents and other protein removal techniques with the potential to replace bentonite have been explored in recent years. These include seaweed polysaccharides, chitin, zirconium dioxide, and packed-bed cation exchangers, as well as ultrafiltration techniques. Novel fining agents must meet several criteria to effectively compete with bentonite. They must be cost-effective and nontoxic and must not degrade wine quality.

Negatively charged polysaccharides extracted from seaweeds are a potential class of bentonite alternatives.¹¹⁹ Carrageenan is a food grade polysaccharide that is extracted from red seaweed and is currently used for protein stabilization in the beer industry.¹¹⁸ It has been shown to be effective in stabilizing white wines at low addition rates (125–250 mg/L), using only one-third or less of the bentonite concentration required.¹¹⁸ Carrageenan has been found to produce no deleterious sensory impacts compared to bentonite-treated wines.¹²⁰ Although those results are promising, residual amounts of carrageenan in treated wines can potentially induce haze formation,¹¹⁸,¹¹⁹ and this is likely to restrict commercial viability. Another potential protein-adsorbing polysaccharide is chitin. Chitin is a component of crustacean exoskeletons and, along with its derivatives, such as chitosan, is widely used in industrial processes, including as a thickening agent for processed foods and in pharmaceuticals.¹²¹ The structure of chitin also makes it selective for binding to chitinases, and in-line systems containing chitin can be effective in removing these particular PR proteins from wine,¹²² even if its activity in stabilizing wine has been recently challenged.¹²³ Chitin could potentially have serious sensory impacts, however, by removing favorable wine components such as positive aroma compounds.¹²⁴

The ultimate objective of novel fining agents and protein-adsorbing materials for the wine industry is to achieve wine stabilization using in-line applications with minimum wine loss and no extra processing steps. Zirconium dioxide (ZrO₂) is a readily available protein-adsorbing material that can be regenerable and thus reused.¹²⁵,¹²⁶ ZrO₂ has shown the potential to remove haze-forming proteins when tested in continuous and batch-wise application both during and post fermentation.¹²,¹²¹,¹²⁷ However, despite ZrO₂ showing promise and the ability to be regenerated with a simple washing procedure,¹²⁹ issues with the flow rates and high dosages required limit its commercial viability.

Ultrafiltration can also be effective in removing haze-causing proteins, although the process is not selective and can remove other, desirable, wine components including polysaccharides.¹³⁰ This application is not necessarily viable at winery-scale due to the expense of equipment. Packed-bed cation-exchangers could improve process efficiency, and their effectiveness in removing wine proteins has been demonstrated,¹³¹ but they have not as yet been adopted for protein removal.

The mechanisms of wine haze formation have been revised from the two-stage model to a three-stage model and now include protein unfolding, protein aggregation, and the cross-linking of aggregates to form a visible haze. Chitinases and
TLPs are the most important proteins involved in wine haze formation, and other wine components such as sulfates and polyphenols, as well as wine pH, can influence protein aggregation in the second and third stages. This improved understanding of the mechanisms of haze formation will allow the development of better predictive tools for haze potential and more targeted techniques to prevent haze forming in bottled white wines. Recent advances in the prevention of haze formation have led to the development of a new bentonite alternative that utilizes a heat-tolerant protease in combination with Flash pasteurization. Further investigations into more efficient stabilization strategies, possibly by utilizing proteases that are active at winemaking temperature, will ultimately benefit winemakers worldwide.

AUTHOR INFORMATION

Corresponding Authors

(S.C.V.S.) E-mail: steve.vansluyter@mq.edu.au. Phone: +61 (0) 2 9850 6316. Fax: +61 (0) 2 9850 8245.

(M.M.) E-mail: matteo.maroni@plumpton.ac.uk. Phone: +44 (0) 1273 890454. Fax: +44 (0) 1273 890071.

Funding

The work was funded by Australia’s grapegrowers and winemakers through their investment body, the Australian Grape and Wine Authority, with matching funds from the Australian government.

Notes

The authors declare no competing financial interest.

REFERENCES

(1) FAOSTAT http://faostat.fao.org/.

(13) Pocock, K. F.; Hayasaka, Y.; McCarthy, M. G.; Waters, E. J. Thauvinin-like proteins and chitinases, the haze-forming proteins of wine, accumulate during ripening of grape (Vitis vinifera) berries and drought stress does not affect the final levels per berry at maturity. J. Agric. Food. Chem. 2000, 48, 1637–1643.

