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Abstract.

This article introduces, and reviews recent work using, a simple optimisation

technique for analysing the nonlinear stability of a state in a dynamical system. The

technique can be used to identify the most efficient way to disturb a system such

that it transits from one stable state to another. The key idea is introduced within

the framework of a finite-dimensional set of ordinary differential equations (ODEs)

and then illustrated for a very simple system of 2 ODEs which possesses bistability.

Then the transition to turbulence problem in fluid mechanics is used to show how the

technique can be formulated for a spatially-extended system described by a partial

differential equation (the well-known Navier-Stokes equation). Within that context,

the optimisation technique bridges the gap between (linear) optimal perturbation

theory and the (nonlinear) dynamical systems approach to fluid flows. The fact that

the technique has now been recently shown to work in this very high dimensional

setting augers well for its utility in other physical systems.

PACS numbers:
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1. Introduction

Many physical systems possess a multiplicity of stable states so that more than one

solution or system configuration can be found at long times. In such situations, a

key issue is usually maintaining the system in a desired state against ambient noise or

switching the system from one (undesirable) state to another (preferred) state in an

efficient, robust way: e.g. in liquid crystal displays [61], power grids [71], arrays of

coupled lasers [37], turbulent fluid flows [46] and even in the human brain [3]. Either

objective involves detailed knowledge of a state’s basin of attraction, defined as the set

of all initial conditions of the system whose long time behaviour is to converge to that

state. Initial conditions located just outside the basin boundary determine how the

system can be efficiently disturbed to trigger a new stable state. Knowledge of how

the basin boundary of a state moves (in phase space) when the system is manipulated

(e.g. by modifying the boundary conditions) opens up the possibility of enhancing the

nonlinear stability of that state. However, locating a basin boundary is a fully nonlinear

(nonlocal) problem so that the traditional tools of linearising the system around the

state or even weakly nonlinear analysis provide no traction. Existing fully nonlinear

approaches - solving the governing equations while searching for the finite-amplitude

disturbances to just knock the system out of one state into another, or mapping out the

stable and unstable manifolds of nearby solutions in phase space to identify the basin

boundary - are impractical for all but the smallest systems.

Recently, a new, very general, fully nonlinear optimisation technique has emerged

as a viable way to make progress. The underlying idea is relatively simple and, perhaps

because of this, seems to have been formulated independently in (at least) three different

parts of the scientific literature over the last decade (transitional shear flows [18, 73, 86]

- see §3, oceanography [76] - see §4.1 and thermoacoustics [62] - see §4.2). The key

advance, however, has come in the last few years when the feasibility of the approach

has been demonstrated for the 3-dimensional Navier-Stokes equations discretised by a

large number (O(105-106)) of degrees of freedom [18, 19, 21, 33, 73, 86, 87, 89]. This

suggests that other partial differential equation systems could be usefully analysed with

this approach.

This article (which is an updated and extended version of [59]) is an attempt to

provide a simple introduction to the idea and to review the progress made so far. As

should become clear, the approach is still developing but there is already enough evidence

garnered to indicate that it adds something quite new to a theoretician’s toolbox. In

fluid mechanics, the last two decades have seen a huge amount of work looking at flow

transition either from the linear transient growth perspective (also called ‘non-modal

analysis’ or ‘optimal perturbation theory’ [46, 94, 98, 97]) or more recently in terms

of exact solutions and their manifolds (a dynamical systems approach [58, 35, 57]).

The optimisation technique discussed here bridges the well-known ‘amplitude’ gap

between these two viewpoints by extending the (infinitesimal amplitude) transient

growth optimal of the former approach into finite amplitudes and ultimately up to where
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the basin boundary is crossed (the closest stable manifold of a nearby exact solution).

The plan of this article is as follows. In section 2, the central idea of the optimisation

approach is introduced in the context of a finite-dimensional dynamical system. A

simple system of 2 ordinary differential equations (ODEs) is then used to: a) illustrate

the results of a calculation, and b) highlight some important ingredients which make

the technique work. In section 3, the discussion is moved onto fluid mechanics and

the Navier-Stokes equation - a time-dependent and 3-space dimension nonlinear partial

differential equation (PDE). The first attempted use of the optimisation technique was in

the classical problem of flow through a pipe [86] and so this is used here as the context

to explain the inner workings of the approach. Appendices A and B provide simple

supporting illustrations of a linear transient growth calculation for a system of 2 ODEs

and how including nonlinearity can allow different growth mechanisms to work together

to produce far greater overall growth. Section 4 reviews some of the literature which

preceded the successful application to the Navier-Stokes equations as well as discussing

further work now building on it. Finally section 5 provides a summary and surveys

what the future may hold.

2. Basic Idea

To explain the optimisation technique, consider a finite-dimensional dynamical system

dX

dt
= f(X;µ) (1)

where X = X(t) ∈ R
N and µ is a parameter of the system. Let X0 be a local steady

attractor of interest and x := X − X0 be the perturbation away from this attractor.

Then write the evolution equation for x as

dx

dt
= F(x;X0, µ) (2)

and define a norm ‖x(t)‖ to measure the distance of X(t) from X0. The approach is to

find the maximum distance after some time t = T , ‖x(T )‖, over all perturbations which
start the same finite distance

‖x(0)‖ = d (3)

away at time t = 0 and evolve under (2). For the Euclidean norm, ‖x‖2 :=
√

∑N
n=1 x

2
i ,

this can be formulated particularly easily as maximising the Lagrangian

L = L(x,ν, λ;X0, d, T ) := ‖x(T )‖22+
∫ T

0

ν.
(dx

dt
−F

)

dt+λ(‖x(0)‖22−d2)(4)

with ν(t) and λ acting as Lagrange multipliers to impose the dynamical constraint (2)

and initial distance constraint respectively and ‘.’ is the usual scalar product. Maximal

values of L are identified by vanishing first variations with respect to each of x(t), ν(t)

and λ (X0, d and T are fixed ). The first variation of L with respect to x(t) is

δL := lim
ǫ→0

L(x+ ǫδx,ν, λ;X0, d, T )− L(x,ν, λ;X0, d, T )

ǫ
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= [ 2x(T ) + ν(T ) ] · δx(T )−
∫ T

0

[

dν

dt
+ ν · ∂F

∂x

]

· δx dt

+ [ 2λx(0)− ν(0) ] · δx(0) (5)

which only vanishes for all allowed variations δx(t) if

dν

dt
+ ν · ∂F

∂x
= 0 over t ∈ (0, T ) (6)

and

2λx(0)− ν(0) = 2x(T ) + ν(T ) = 0. (7)

Stationarity of L with respect to the Lagrange multipliers ν and λ by construction

imposes the evolution equation (2) and the initial distance constraint (3) respectively.

Maximising L is then a problem of simultaneously satisfying (2), (3), (6) and (7). This

is in general a nonlinear system that needs to be solved iteratively. The solution

technique starts with an initial guess x(0) which is integrated forward in time using

(2) to produce x(T ). This initializes (via (7) ) the backward integration of the ‘dual’ or

‘adjoint’ dynamical equation

dν

dt
= −ν.

δF

δx
(8)

(with δF/δx a matrix) from t = T back to t = 0 to generate ν(0). At this point, only

two conditions remain to be satisfied. The Frechét derivative δL/δx(0) := 2λx(0)−ν(0)

will not in general vanish so the strategy is to move x(0) (subject to the initial distance

constraint) until it does. By choosing to ‘ascend’ (moving x(0) in the direction of

δL/δx(0) ) a maximum in L is sought. The value of λ is simultaneously specified by

ensuring that ‖x(0)‖2 = d continues to hold during this adjustment in x(0). This

procedure is repeated until ‖δL/δx(0)‖2 is sufficiently small to indicate a maximum.

Theoretically, when T → ∞, the global maximum

max
x(0)

L =











0 d < dc,

‖Xs −X0‖22 d = dc,

‖X1 −X0‖22 d > dc

(9)

where X1 is another stable state of the system, Xs is a saddle embedded in the basin

boundary with its only unstable manifold perpendicular to the boundary and in general

‖Xs −X0‖2 6= ‖X1 −X0‖2. This is just the statement that depending on whether the

initial perturbation is strictly in the basin of attraction of X0, on the basin boundary or

outside the basin (and in the basin of attraction of X1), the endstate is X0, Xs or X1

respectively for large times. The jump in the endstate distance is then discontinuous

once d reaches dc (a priori unknown) which signals that the basin boundary has been

reached. The optimal disturbance x(0) at d = dc has been christened the ‘minimal seed’

[86, 87] since it is arbitrarily close to a disturbance which will trigger the transition

from X0 to X1 for d = d+c . Put another way, the minimal seed, renormalised by a factor

1 + ǫ where ǫ is vanishingly small but non-zero, represents the easiest/most efficient

way to leave the basin of attraction of X0. Practically, this behaviour can be mimicked
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<Θ

Figure 1. Phase portrait for the system defined by (10). The stable and unstable

manifolds of Xs are drawn in thick green. A circle of radius ‖x(0)‖2 = d about X0

is shown as a dashed line. As the radius increases, the circle first touches the basin

boundary at Xm = (0, 1) - the minimal seed since it is arbitrarily close to a state which

will trigger the new asymptotic state X1 when the system is in state X0.

by choosing T large enough that trajectories starting sufficiently close to the basin

boundary but either side of it can be observed to diverge. The minimal seed is then

approximated by the first initial condition as d is increased which is observed to have

escaped the basin of attraction of X0.

2.1. A simple example

We show how this technique works for the simple two-dimensional system

dX

dt
=

[

−X1 + 10X2

X2(10e
−X2

1
/100 −X2)(X2 − 1)

]

(10)

where X = (X1, X2) which has two local attractors at X0 = (0, 0) and X1 =

(14.017, 1.4017). The basin boundary is simply X2 = 1 which is the stable manifold

of the saddle point at Xs = (10, 1): see Figure 1. All initial conditions with X2 < 1 are

attracted to X0, those with X2 > 1 to X1, and those with X2 = 1 to Xs. Focussing

on the ‘unexcited’ state X0, x := X − X0 and using the Euclidean norm again for

simplicity, it is clear that drawing a circle in the (x1, x2) plane centred on the origin and

of increasing radius d, the basin boundary for X0 will be first touched at d = dc = 1
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Figure 2. Top row: Gain G := ‖x(t)‖22/d2 verses θ for T = 2 and d = 10−4 (top left)

or 0.9 (top right). Bottom row: ‖x(T )‖22 verses θ for T = 2 and d = 0.9999 (bottom

left) or 1.0001 (solid line, bottom right) and 1.2 (dashed line, bottom right). Notice

the sudden jump in ‖x(T )‖22 when d increases from 0.9999 to 1.0001 signalling that

the basin boundary of X0 has been crossed ( ‖x(T )‖22 is simply 100(1− e−T )2 + 1 for

d = dc ).

where (x1, x2) = (0, 1): this is the minimal seed for this system. As d increases beyond

dc, the basin boundary is increasingly punctured so that ever more initial conditions are

outside of the basin of attraction of X0.

This observation can be deduced by iteratively solving the optimisation problem

described above through integrating (10) forwards (since here x = X as X0 = 0) to find

x(t) and the dual dynamical equation

dν

dt
=

[

ν1 +
1
5
x1ν2(x

2
2−x2)e

−x2
1
/100

−10ν1+ ν2(3x
2
2−2x2)−10ν2(2x2−1)e−x2

1
/100

]

(11)

for ν(t) backwards (note that this backwards-in-time integration requires knowledge

of x(t) across [0, T ]). Figure 2 shows how ‖x(T )‖22 varies over all permitted initial

conditions parameterised by the angle θ ∈ [0, 2) where

x(0) = ( d cos πθ, d sin πθ ) (12)
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Figure 3. As T (labelled on each curve) increases, the signature of the transition

at dc becomes increasingly clear. Note only for T → ∞ is the final plateau

‖x(T )‖22 = ‖X1 −X0‖22 ≈ 198.5 as x(t) ‘overshoots’: see Figure 1.

for selected values of d and T = 2 (note the gain G := ‖x(T )‖22/d2 is plotted for the top

row of subplots since d has such different values). The small value d = 10−4 is used to

reproduce the linear result obtainable via standard matrix manipulations (see Appendix

A) which possesses the x(0) → −x(0) (θ → θ ± 1) symmetry. As d is increased, this

symmetry is quickly destroyed as nonlinearity becomes important to indicate a unique

optimal value of θ approaching 0.5 as d → dc. Once d reaches dc, ‖x(T )‖22 jumps in

value as the system explores the basin boundary and then (for d > dc) the basin of

attraction of X1. Three key points highlighted by this simple example are as follows.

(i) The importance of T in determining dc to a required accuracy. Figure 3 shows that

dc is increasingly well identified as the value of T increases. Equivalently, if T is

too small, the jump in ‖x(T )‖2 at d = dc is smeared out and so difficult to locate.

(ii) The minimal seed is not related to the linear optimal. For ‘large’ T (≥ 2), the

minimal seed has θ∗ = 0.5 (90o) whereas the linear optimal (d → 0) has θ∗ ≈ 0.2667

(48.0o). This is not surprising since phase space immediately around X0 is generally

unrelated to the structure of the basin boundary a finite distance away. (The one

caveat to this is if the nonlinear terms had been chosen to be energy-preserving -

e.g. the model system studied in [27]. In this case, the dynamics are so tightly

constrained in 2 dimensions that the minimal seed has to be the same as the linear

optimal: see Appendix B for further discussion.)

(iii) The Euclidean norm works well as there is little growth for trajectories with x2 < 1,
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whereas trajectories in x2 > 1 overshootX1. If this were not the case, the functional

to optimise - the objective functional - could be redesigned to signal the arrival in a

new basin. Here for example, the value of x2(T ) would be more appropriate with the

Euclidean norm still used to constrain the competitor set of initial perturbations,

i.e. the measure used as the objective functional and the norm constraining the

initial condition do not need to be the same.

3. The Transition to Turbulence problem in Fluid Mechanics

We now move the discussion to fluid mechanics and a system described by a PDE. The

breakdown of laminar shear flows has been a central problem in fluid mechanics since the

inception of the subject and fascinated many generations of scientists (e.g. Rayleigh [91],

Kelvin [105], Reynolds [95, 96], Orr [83], Sommerfeld [102], Noether [81], Taylor [103],

Heisenberg [49], Landau [65], Hopf [51] and see the textbooks [17, 30, 29, 98]). Beyond

a certain value of the driving rate (measured by a non-dimensional grouping called the

Reynolds number Re and generated by either imposed boundary motion, flow rate or

pressure gradient), unidirectional shear flows (e.g. flow through a straight pipe) typically

exhibit bi stability where a linearly-stable simple laminar state coexists with a spatially-

and temporally-complicated turbulent state. The so-called ‘transition’ problem consists

in understanding the physical processes by which ambient noise (present in any real

flow) can trigger the observed transition of the flow from the laminar to the turbulent

state. The fact that the laminar state is linearly stable means that the transition process

is inherently nonlinear and even now still largely unexplained. The transition problem is

not only a fascinating mathematical exercise in PDE theory, but the answers are crucial

for informing attempts to inhibit (e.g. in the aircraft industry) or enhance (e.g. crucial

for mixing processes) the phenonemon in practical applications.

In the last two decades or so, two complementary approaches to the

transition problem have proved popular. The first - variously labelled ‘transient

growth’, ‘nonmodal stability theory’ or ‘optimal perturbation theory’ - is a linear

theory explaining how infinitesimal disturbances can experience large but transient

magnification of their energy despite the laminar state being asymptotically stable (all

the eigenvalues of the linearised evolution operator indicate exponential decay with

time yet the operator is non-normal‡). This idea has a long history starting with

Kelvin [105] and Orr [83] but has really only been systematically explored from the

late 1980s onwards: see [12, 39, 48, 15, 108, 92], the reviews [46, 94, 97] and the books

[98, 109]. The theory works well for interpreting finite time behaviour such as the

flow response to noise immediately downstream of a pipe expansion [16] but actually

says nothing about asymptotically long time behaviour. Initially, it was suggested that

the presence of large transient growth could ‘elevate’ infinitesimal disturbances into

the nonlinear regime where they could then become sustained (e.g.[4, 5]). While this

‡ An operator/matrix L is non-normal if it does not commute with its adjoint/transpose L† i.e.

LL† 6= L†L.
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picture, which emphasizes linear effects over nonlinearity, must be generally correct, no

quantitative predictions of transition amplitudes can emerge without a fully nonlinear

theory [111, 27].

The second approach to the transition problem, on the other hand, is fully nonlinear.

This views the flow as a huge dynamical system and the flow state as an evolving

trajectory in a phase space populated by various invariant sets (exact solutions) and

their stable and unstable manifolds [34, 58, 35, 45, 26, 57]. From this perspective,

‘transition’ occurs when noise or a disturbance simply nudges the flow out of the basin

of attraction of the laminar state. Making this observation more predictive has, however,

been extremely hard due to the difficulty of mapping out the basin boundary. Some

progress has been made shadowing the basin boundary (or the more general concept of

an ‘edge’, which includes transient turbulence) forward in time using an ‘edge tracking’

technique [53, 101, 99]. This invariably leads to attracting regions of the basin boundary

more distant (energetically) from the laminar state [87] and therefore less obviously

relevant to the transition problem. What is really needed is a technique to track the

basin boundary backwards in time to reach regions where it is close to the laminar state

and so transition is most easily triggered.

The gap between these two approaches is therefore one of perspective: the optimal

perturbation theory explains how infinitesimal disturbances can grow temporarily within

the basin boundary whereas the dynamical systems approach focusses on what exists

beyond the basin boundary. The new optimisation technique discussed in this article

naturally bridges this gap by being able to examine how the linear optimal perturbation

changes as the amplitude of the starting perturbation is increased until the basin

boundary is reached. The original thinking behind the works [86, 87], however, was

a little different being focussed on tracing the basin boundary or edge ‘backwards’

in time. Shadowing the basin boundary forwards using the edge tracking technique

leads to relative attractors or ‘edge states’ on the basin boundary. This suggested an

optimisation procedure to identify the closest point of approach of the basin boundary to

the laminar state (the minimal seed). Assuming that this edge state is unique, then for

all starting states on the basin boundary, the initial state which subsequently experiences

the largest energy growth over asymptotically large times (so that all trajectories reach

the edge state) will be the minimal seed [87]. While this optimisation problem itself

is intractable because the basin boundary is unknown, it does suggest the tractable

problem of finding the largest energy growth over all starting states of a given initial

energy E0. At precisely E0 = Ec, where the basin boundary or edge touches the energy

hypersurface at one velocity state, this optimization problem considers the growth of

this state (the minimal seed) against the energy growth of all the other initial conditions

below the edge. Given that these latter initial conditions lead to flows that grow initially

but ultimately relax back to the basic state, the minimal seed will remain the optimal

initial condition for the revised optimisation problem for large enough T [87]. The

simple choice of the kinetic energy of the disturbance as both the objective functional

and the constraining norm meant that the vanishing energy limit E0 → 0 lead back to
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the familiar linear optimal perturbation calculation. It is now clear other choices could

have been made for the objective functional providing it takes on heightened values for

the turbulent state (e.g energy dissipation [73, 33]).

Before giving an example of the optimisation technique at work in fluid mechanics,

we note that there has been many previous efforts to build upon (linear) optimal

perturbation theory to design better ways to trigger transition. For example, by showing

that the linear optimals can become unstable at sufficient amplitude (e.g. [114, 93]), or

by designing a finite amplitude initial disturbance from a very small set of physically-

motivated ‘basis’ states (e.g. [110, 32]), or by searching for optimal deformations of the

base flow so as to create linear instability [13, 10, 44, 11].

3.1. The optimisation technique in pipe flow

We now show the optimisation technique in action for the problem of incompressible fluid

flow through a cylindrical pipe. This is a classical problem in fluid mechanics studied

famously by Reynolds [95, 96] during which he first wrote down the non-dimensional

grouping Re now bearing his name. The flow can either be driven by imposing a

constant pressure drop across the pipe or by imposing a constant mass flux through the

pipe (e.g.[80]). We choose the former driving here as the formulation is slightly simpler

(the latter is treated in [86, 87]): the two cases are equivalent for L → ∞ and localised

disturbances. The set up is an incompressible fluid of constant density ρ and kinematic

viscosity ν flowing in a circular pipe of radius s0 under the action of a constant pressure

drop across the pipe such that the applied pressure gradient is

∇p∗ = −4ρνW

s20
ẑ∗ (13)

and the Hagen-Poiseuille solution to the Navier-Stokes equations is

u∗
lam := W

(

1− s∗2

s20

)

ẑ∗ (14)

in the usual cylindrical coordinates (s∗, φ, z∗) aligned with the pipe axis. Non-

dimensionalizing the system using the Hagen-Poiseuille centreline speed W (e.g. ulam :=

u∗
lam/W ) and the pipe radius s0 (so s := s∗/s0) gives the Navier-Stokes equations

∂utot

∂t
+ utot ·∇utot +∇ptot −

1

Re
∇2utot =

4

Re
ẑ (15)

(where Re := s0W/ν is the Reynolds number) to be solved subject to the boundary

conditions

utot(1, φ, z, t) = 0 & utot(s, φ, z, t) = utot(s, φ, z + L, t). (16)

The first is no-slip on the pipe wall at s = 1 and the second is periodicity over the

(physical) length of L radii along the pipe. We consider the energy growth (our ‘distance’

measure) of a finite-amplitude disturbance

u := utot − ulam (17)
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to the laminar profile ulam = (1− s2)ẑ by defining the Lagrangian

L = L(u, p, λ,ν, π;T,E0) :=

〈

1

2
|u(x, T )|2

〉

+ λ

{〈

1

2
|u(x, 0)|2

〉

− E0

}

+

∫ T

0

〈

ν(x, t) ·
{

∂u

∂t
+ (ulam ·∇)u+ (u ·∇)ulam + (u ·∇)u

+∇p− 1

Re
∇2u

}〉

dt+

∫ T

0

〈π(x, t)∇ · u〉 dt. (18)

where

〈. . .〉 =
∫ L

0

∫ 2π

0

∫ 1

0

. . . sds dφ dz (19)

and λ, ν and π are Lagrangian multipliers imposing the constraints that the initial

energy is fixed, that the Navier-Stokes equation holds over t ∈ [0, T ] and the flow is

incompressible ( their corresponding Euler-Lagrange equations are respectively:
〈

1

2
|u(x, 0)|2

〉

= E0 (20)

∂u

∂t
+ (ulam ·∇)u+ (u ·∇)ulam + (u ·∇)u+∇p− 1

Re
∇2u = 0, (21)

∇ · u = 0 ). (22)

The key additions to the well-known linear calculation acknowledging the fact that the

disturbance is of finite amplitude are shown in red. The linearised problem is recovered

in the limit of E0 → 0 whereupon the nonlinear term u ·∇u becomes vanishingly small

relative to the other (linear) terms. On dropping this nonlinear term, the amplitude of

the disturbance is then arbitrary for the purposes of the optimisation calculation and

it is convenient to reset E0 from vanishingly small to 1. The maximum of L is then

precisely the maximum gain in energy over the period [0, T ].

The Euler-Lagrange equation for the pressure p is

0 =

∫ T

0

〈

δL
δp

δp

〉

dt =

∫ T

0

〈(ν ·∇)δp〉 dt

=

∫ T

0

〈∇ · (νδp)〉 dt−
∫ T

0

〈δp(∇ · ν)〉 dt. (23)

which vanishes if ν satisfies natural boundary conditions (here, the same as those for

u) and

∇ · ν = 0 (24)

(note δp is periodic across the pipe to ensure the pressure drop across the pipe is

constant). The variation in L due to u (with δu satisfying (16) ) is

δL =

∫ T

0

〈

δL
δu

· δu
〉

= 〈u(x, T ) · δu(x, T )〉+ λ 〈u(x, 0) · δu(x, 0)〉 (25)

+

∫ T

0

〈

ν ·
{

∂δu

∂t
+ (ulam ·∇)δu+ (δu ·∇)ulam (26)
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+u.∇δu+ δu ·∇u− 1

Re
∇2δu

}〉

dt+

∫ T

0

〈π∇ · δu〉 dt. (27)

The first term in the second line of the above equation can be reexpressed as
∫ T

0

〈

ν · ∂δu
∂t

〉

dt =

∫ T

0

〈

∂

∂t
(δu · ν)

〉

dt−
∫ T

0

〈

δu · ∂ν
∂t

〉

dt

= 〈δu(x, T ) · ν(x, T )− δu(x, 0) · ν(x, 0)〉 −
∫ T

0

〈

δu · ∂ν
∂t

〉

dt, (28)

the second term as

〈ν · {(ulam ·∇)δu}〉 = 〈∇ · ((ν · δu)ulam)− δu · {(ulam ·∇)ν}〉
= −〈δu · {(ulam ·∇)ν}〉 , (29)

the third term as

〈ν · {(δu ·∇)ulam}〉 =
〈

δu ·
{

ν · (∇ulam)
T
}〉

(= 〈δui νj ∂iulam,j〉). (30)
the fourth and fifth as

〈ν · (δu ·∇u+ u ·∇δu)〉 =
〈

δu ·
(

[∇u]T · ν − u ·∇ν

)〉

(31)

and the sixth term as
〈

ν ·
(

− 1

Re
∇2δu

)〉

= −
〈

1

Re
δu · ∇2

ν

〉

, (32)

and finally the last term as

〈π∇ · δu〉 = 〈∇ · πδu〉 − 〈δu ·∇π〉
= −〈δu · ∇π〉 . (33)

where π has to be periodic as 〈δu · ẑ〉 6= 0 (a change in the mass flux is permitted for

constant pressure-drop driven flow) for the surface term to drop. Combining all these

gives
∫ T

0

〈

δL
δu

· δu
〉

= 〈δu(x, T ) · {u(x, T ) + ν(x, T )}〉

+ 〈δu(x, 0) · {λu(x, 0)− ν(x, 0)}〉

+

∫ T

0

〈

δu ·
{

−∂ν

∂t
− ([ulam + u] ·∇)ν + ν · (∇[ulam + u])T

−∇π − 1

Re
∇2

ν

}〉

dt. (34)

For this to vanish for all allowed δu(x, T ), δu(x, 0) and δu(x, t) with t ∈ (0, T ) means

δL
δu(x, T )

= 0 ⇒ u(x, T ) + ν(x, T ) = 0, (35)

δL
δu(x, 0)

= 0 ⇒ λu(x, 0)− ν(x, 0) = 0, (36)

δL
δu

= 0 ⇒ ∂ν

∂t
+ (ulam + u) ·∇ν − ν · (∇[ulam + u])T +∇π +

1

Re
∇2

ν = 0. (37)
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This last equation is the dual (or adjoint) Navier-Stokes equation for evolving ν

backwards in time because of the negative diffusion term. This dual equation has the

same means of driving - constant pressure drop - as the physical problem, a situation

also true for the constant mass-flux situation [86, 87]

The approach for tackling this optimization problem is iterative as in the linear

situation [68, 2, 24, 69, 47] (see also the review [70]), the nonlinear calculation of [116]

using the (parabolic) boundary layer equations and is essentially as outlined in §2.
Step.0 Choose an initial condition u(0)(x, 0) such that

〈

1

2
|u(0)(x, 0)|2

〉

= E0. (38)

The (better) next iterate u(n+1)(x, 0) is then constructed from u(n)(x, 0) as follows:

Step 1. Time integrate the Navier-Stokes equation (21) forward with incompressibility

∇ · u = 0 and using the boundary conditions (16) from t = 0 to t = T with the

initial condition u(n)(x, 0) to find u(n)(x, T ).

Step 2. Calculate ν
(n)(x, T ) using (35) which is then used as the initial condition for

the dual Navier-Stokes equation (37).

Step 3. Backwards time integrate the dual Navier-Stokes equation (37) with

incompressibility (24) and boundary conditions (16) from t = T to t = 0 with

the ‘initial’ condition ν
(n)(x, T ) to find ν

(n)(x, 0).

Step 4. Use the fact that

δL
δu(x, 0)

= λu(x, 0)− ν(x, 0) (39)

is now computable to move ν(x, 0) towards a maximum of L. One approach

[86, 87, 89] is to simply move u(n)(x, 0) in the direction of maximum ascent of

L, i.e. a correction to u(n) is calculated as follows:

u(n+1) = u(n) + ǫ

[

δL
δu(x, 0)

](n)

(40)

= u(n) + ǫ
(

λu(n)(x, 0)− ν
(n)(x, 0)

)

, (41)

with λ chosen such that

E0 =

〈

1

2
|u(n+1)(x, 0)|2

〉

(42)

=

〈

1

2
|(1 + ǫλ)u(n)(x, 0)− ǫν(n)(x, 0)|2

〉

. (43)

Here ǫ is a parameter which can be adjusted as the iteration proceeds to improve

convergence (e.g. [87, 89]).
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t=0 t=T

u(x,t)

ν(x,t)

Figure 4. Checkpointing: during the (backward-in-time) calculation of ν(x, t) the

velocity u(x, t) is recalculated in short sections from each checkpoint (shown as dots

on the forward-in-time calculation.

Other strategies have been adopted - e.g. a relaxation approach [73, 33] or a conjugate

gradient method [18, 19, 20, 21] - but it is presently unclear which, if any, is superior

([86] also experimented with the conjugate gradient method but found no noticeable

improvement in convergence).

The iterations are repeated until some convergence criterion is fulfilled. Some

authors [86, 87, 89] have concentrated on how the residual 〈(δL/δu(x, 0))2〉 behaves

as a function of the iteration number and others [18, 19, 20, 21] have focussed on the

incremental change in L between iterations. The former seems more natural given the

latter depends on how large a step is taken in moving u(x, 0) but has its issues too (e.g.

figure 9 in [87], figure 9(b) in [89]). More work is needed to identify a robust convergence

criterion.

There is one further practical issue which needs to be discussed when the fully

nonlinear optimisation problem is considered: the dual Navier-Stokes equation is

linear in ν but depends on u(x, t). This field either needs to be stored in totality

(over the whole volume and time period), which is only practical for low resolution,

short integrations, or must be recalculated piecemeal during the backward integration

stage. This latter ‘check-pointing’ approach [8, 50] requires that u is stored at regular

intermediate points, e.g. t = Ti := iTopt/n for i = 1, . . . , n − 1, during the forward

integration stage. Then to integrate the adjoint equation backward over the time interval

[Ti, Ti+1], u is regenerated starting from the stored value at t = Ti by integrating the

Navier-Stokes equations forward to Ti+1 again: see Figure 4. The extent of the check

pointing is chosen such that the storage requirement for each subinterval is manageable.

The extra overhead of this technique is to redo the forward integration for every

backward integration, so approximately a 50% increase in cpu time, assuming forward

and backward integrations take essentially the same time. As memory restrictions may

make full storage impossible, this is a small price to pay.
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Figure 5. Pipe flow: the evolution of the linear and nonlinear energy growth optimals

at Re = 1750 in a pipe of length π radii and constant flux [86]. The blue dashed

line corresponds to the linear optimal for E0 → 0 whereas the red solid line is the

nonlinear optimal for ≈ 1.5E3d both calculated using (a short) T equal to the linear

growth optimal time shown as a vertical black dotted line (the nonlinear optimal

actually produces even more growth at a slightly earlier time).

3.2. Results: Minimal seeds and routes to turbulence

In fluid mechanics, the kinetic energy of the perturbation u (defined in (17) ) has

invariably been used as the norm to constrain the competitor initial conditions in the

optimisation problem and typically also used as the objective functional to be optimised.

However a different objective functional can be chosen provided it clearly takes on larger

values in the turbulent state than those reached in the basin of attraction of the laminar

state (e.g. viscous dissipation rate or even the total viscous dissipation over the period

[0, T ] - [73, 33]).

After these choices, the optimisation problem has two operational inputs - the time

horizon T and the initial ‘distance’ d (read energy E0 for the rest of this section) -

beyond a complete specification of the system parameters (e.g. Re and length of pipe

in pipe flow).
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Figure 6. Pipe flow: the evolution of the energy growth optimals at Re = 2400 in

a constant-flux pipe of length 10 radii using a ‘large’ time T = 75D/U indicated by

a vertical black dotted line (see section 5 of [87]). The thin blue lines correspond to

the NLOPs for two E0s just below Ec (within 1%) with turbulence not triggered. The

thick red solid line is for E0 just above Ec (again within 1%) and turbulence is now

clearly triggered (see figure 7 for snapshots of this evolution).

3.2.1. Large T The approach for identifying the minimal seed outlined above is to

choose a large fixed value of T and to explore how the global optimal value behaves as

E0 is increased from zero [86, 87, 89] (complementary work [73, 33] instead reduces

E0 until no turbulent state is found). This was first pursued for the full Navier-

Stokes equations in pipe flow [86] where the l inear (E0 → 0) energy growth o ptimal

p erturbation - hereafter referred to as the ‘LOP’ - is 2-dimensional (streamwise-

independent). The optimal for small but finite E0 is a smooth nonlinear adjustment

of the linear result retaining its 2 dimensionality and with a slightly reduced energy

gain. Beyond an initial critical energy E3d, however, a new completely different 3-

dimensional perturbation was found as the global optimal and christened the ‘NLOP’

(nonl inear o ptimal p erturbation) [86]: see Figure 5. This NLOP reflects a clear strategy

by the fluid to spatially localise the starting perturbation so that its peak amplitude

is larger but only over a limited volume to cheat the global energy constraint. The

original pipe geometry used in [86] was very short so the NLOP is only localised in
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Figure 7. Pipe flow: snapshots showing the evolution (time running downwards and

fluid flow left to right) of a turbulence-triggering perturbation which approximates

the minimal seed in a 10 radii long pipe at Re = 2400 (constant flux) [87] (the

corresponding evolution of the total energy is shown as the red thick line in figure

6). The isocontours in each plot correspond to 50% of the maximum (light/yellow)

and 50% of the minimum (dark/red) of the streamwise perturbation velocity in the

pipe at t = 0 (top: essentially the minimal seed), t = 5 (second down), t = 20 (third

down) and t = 75D/U (bottom: the target time). The perturbation energy is initially

localised but quickly spreads out to generate streamwise streaks (by t ≈ 10) which

then break up to generate turbulence.

the radial and azimuthal directions (see Figure 2(a) in [86]). Subsequent computations

in much longer pipe geometries have confirmed that the NLOP fully localises by also

localising in the axial (streamwise) direction too [87, 88]: see Figure 7. Physically,

the NLOP evolves by initially ‘unpacking’ (delocalising) under the influence of the

background shear flow and taking advantage of 3 distinct linear mechanisms for transient

growth: the Orr mechanism which occurs quickly, oblique wave growth which operates

over an intermediate timescale, and lift-up which occurs over a slow timescale. These

mechanisms are unrelated in the linear problem i.e. initial conditions exploiting each

are distinct from each other so that the mechanisms do not combine. However they can

communicate with the addition of nonlinearity which allows each mechanism to ‘pump

prime’ the next generating a much higher overall growth [87, 33]. Figure 5 shows a

period of growth in the NLOP curve (the oblique wave growth stage) which terminates

at t ≈ 2.5 before further growth (lift up) occurs until t ≈ 16 (the Orr mechanism occurs
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over a much faster timescale - O(0.1) see Figure 1 of [87] - and is therefore hidden in

this plot). Appendix B discusses a very simple model to illustrate this phenomenon

(compare Figures 5 and 9).

As E0 is increased further, this NLOP remains the global optimal until another

critical energy Efail is reached beyond which the optimisation procedure fails to

converge. Pringle et al. [87] interpret (their conjecture 1) that this corresponds to

the first energy at which an initial condition can reach the turbulent state since then

the extreme sensitivity of the final-state energy at T to changes in the initial condition,

due to exponential divergence of adjacent states will effectively mean non-smoothness

and prevent convergence. That the turbulent state has been reached at Efail is easily

confirmed by examining the endstates u(x, T ) reached as part of the iteration algorithm

so that Efail is at least an upper bound on the true critical energy Ec, which is the

lowest energy at which turbulence can be triggered. Arguing that in fact Efail = Ec

requires a belief or hope that the search algorithm will find any state on the (initial)

energy hypersurface which can reach the turbulent state if it exists. This is never likely

to be proved but can at least be made plausible by rerunning the algorithm with a

variety of initial starting states (e.g. see Figure 14 in [87]).

Pringle et al. [87] also noticed (their conjecture 2) that the NLOP converged to

the minimal seed as E0 → E−
c for their choice of the energy functional. It now seems

clear that there is nothing special about using the perturbation energy as an objective

functional merely that it is one of a class of functionals which take on heightened values

for turbulent flows. Providing such a functional is chosen, the best way to maximise

it should be to get as close to the basin boundary as possible while remaining on the

E0 hypersurface since all other states will be sucked into the laminar state if T is

chosen larger than the typical transient growth time. This is certainly borne out by

comparing estimates for Ec and the corresponding minimal seed found in plane Couette

flow using the total viscous dissipation over [0, T ] [73] or the final energy growth [89] as

objective functionals. One of the motivations for choosing the total dissipation over the

time period in [73, 33] was to capture the fastest transition. Finding the critical energy,

however, is a problem in finding just one state which triggers turbulence so, conceptually,

the final viscous dissipation rate could have been used just as well (although practically,

time averaging the dissipation rate helped smoothen the effect of dealing with turbulent

endstates in their optimisation algorithm).

3.2.2. Optimising over T Given the need to choose T ‘large enough’, one natural idea

has been to ‘optimise it out of the problem’ by asking the question ‘for a given initial

perturbation of energy E0 what is the largest growth over any T?’ Algorithmically, this

requires only a small change but can dramatically alter the results for E0 < Ec. Work

by [89] in plane Couette flow has shown how a LOP achieving large growth at small

times can ‘mask’ the emergence of a NLOP (which has a longer growth time) as E0

increases (see their Figure 2). When Ec is reached, however, there is the same leap in

optimal value which is now also accompanied with a sudden leap in the optimal time
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T (e.g. see Figures 3 and 10 in [89]). Operationally, this means that the minimal seed

(and Ec) can still be found albeit only when the algorithm fails to converge rather than

as a smooth convergence procedure for as E0 approaches Ec from below.

3.2.3. Small T Cherubini and coworkers [18, 19, 20] have computed the nonlinear

optimal energy growth disturbances for small T in boundary layer flow. This is a

particularly challenging system since the flow is spatially developing and open (flow

leaving the computational domain is not recycled using periodic boundary conditions)

making longer time runs very expensive. Rather than isolating minimal seeds§,
their focus has been to establish that nonlinear mechanisms can enhance transition

by uncovering energies E0 where the NLOP subsequently triggers turbulence (when

integrated beyond T ) whereas the linear optimal, scaled up in energy, does not. By

analysing the transition path of their NLOP in detail, they find a number of mechanisms

believed generic to boundary layer transition [19, 20]. Some of these appear to carry over

to plane Couette flow [21] when transition is studied again using short-time optimisation

analysis. Here, for small T , at least two scenarios are found: a ‘highly dissipative’

bursting path and short-path depending on how close the perturbation is initially to the

basin boundary.

3.3. Summary

The key points to note in applying this variational approach in fluid mechanics are as

follows.

(i) The choice of objective functional is not important provided it takes on heightened

values for turbulent flows compared to the laminar state. The algorithm works

best when there is a good separation between functional values attained within the

basin of attraction and the turbulent state. This is typically the case for final time

values of the perturbation kinetic energy or viscous dissipation rate when the flow

domain is large enough, and Re is not too close to the critical value at which the

turbulent state first appears [87].

(ii) When seeking the transition threshold Ec, T needs to be large enough to avoid

two problems: a) possible transients with large growth caused by some parts of the

basin boundary attaining large functional values, and b) to allow sufficient times

for states to reach the turbulent attractor [87, 89].

(iii) The minimal seed can either be identified smoothly as a converged NLOP for

E0 → E−
c at fixed but large T [87] or as the first initial condition encountered by

the algorithm which triggers turbulence as E0 is increased if T is being optimised

over [89].

§ Note Cherubini and coworkers [18, 19, 20] use the term ‘minimal seed’ differently to this article: they

use it to describe the minimal spatial structure found in their NLOPs whereas here it is the minimal

energy state, when infinitesimally disturbed, to trigger turbulence.
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Finally, we end this section with a note of caution. The approach relies on the

correct identification of the global optimal to a (non-convex) nonlinear optimisation

problem. There is unlikely to ever been a formal criterion to verify that this has been

accomplished (in contrast to the linearised problem) so care must be taken to collect

supporting evidence for this claim if possible. So far, the results obtained have been

checked for consistency in a number of different ways:

(i) Robustness: it is clearly good practice to check global optimality by seeding the

variational algorithm with a suite of very different initial states to see if the same

optimal emerges each time (e.g. Figures 14 and 15 of [87]) or, if not, that the new

optimal is just a local optimal.

(ii) Physical plausibility: it is reassuring that the NLOPs found are localised and appear

to ‘join up’ the various hitherto-unconnected linear energy-growth mechanisms

during their evolution [87, 19, 33].

(iii) Using different objective functionals: the cross-checking of results between two

groups [73, 89] using different algorithms and objective functionals has been

crucial in establishing the feasibility of this approach to realistics problems in fluid

mechanics.

(iv) Of all the states on the basin boundary, the minimal seed should experience the

largest increase in ‘distance’ (read perturbation energy) as it evolves up to the edge

state and states ‘close’ to the minimal seed should evolve to pass close to the edge

state before either relaminarising or trigger turbulence (e.g. Figure 17 of [87]).

4. Applications

4.1. Climate modelling and Weather Forecasting

In climate modelling and weather forecasting, the sensitivity of predictive models to

uncertainty in their initial conditions (the current best guess of the model’s state) is

of central importance. Lorenz [67] was the first to introduce the concept of singular

vectors as a way to analyse how this uncertainty (presumed small) may grow with time.

However, it wasn’t until the late 1980s when the idea really took hold following the work

of Farrell [40, 41] in atmospherics and the accompanying realisation in general shear

flows of the phenomenon of (linear) transient growth or (linear) ‘optimal perturbations’

[12, 39, 48, 15, 108, 92]. This quickly led to the implementation of singular vectors to

generate ensemble forecasts (e.g. at the European Centre for Medium-Range forecasting

(ECMWF) [84, 14]).

The initial uncertainties, however, needn’t be small and their true behaviour with

time may differ significantly from that given by the evolution operator linearised around

the base solution. As a result, there have been attempts to include some nonlinearity

into the problem by an iterative approach [82, 6] as well as a proposal for a fully nonlinear

approach by Mu and coworkers: [74, 75, 77, 78, 79] and more recently [31, 115, 55]. [75]

in particular introduced the concept of a ‘Conditional nonlinear optimal perturbation’
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(CNOP), which is exactly the NLOP discussed above, to study the predictability of

a very simple coupled atmosphere-ocean model. As mentioned in the Introduction,

the idea to study the transitions between different stable states was also suggested by

Mu and co-workers in the context of ocean modelling where multiple equilibria are

a generic feature of general circulation models. To illustrate this idea, [76] studied

a very simple box model of the thermohaline circulation consisting of 2 ODEs using

CNOPs. Subsequent work has tried to scale up the calculation of CNOPs to realistic

PDE models with [77] computing CNOPs for a 2D quasigeostrophic model with 512

grid points and [104] treating a 2D barotropic double-gyre ocean flow model with 4800

degrees of freedom. The latter study, however, concluded that finding basin boundaries

was just too computationally expensive to attempt. Given the recent successes in the

transition problem, this conclusion probably deserves to be revisited.

Before leaving this section, the work of Toth and Kalnay [106, 107, 56] on the so

called ‘breeding’ method deserves mention. This consists of adding a small arbitrary

perturbation to the full forecasting model, allowing this to evolve and then rescaling it

after a given time to reseed the next forecast period. This procedure, which breeds ‘bred

vectors’, is less optimal in identifying optimal perturbations for a given period (in fact

perturbations which emerge have just grown the fastest rather than will grow the fastest)

but is readily generalised to incorporate the finite-amplitude nature of the uncertainties

since the full forecasting model is used. This method is used to generate ensemble

forecasts at the National Centers for Environmental Prediction (NCEP) (formerly the

US National Meteorological Center).

4.2. Thermoacoustics

The idea of using an optimisation approach to locate a basin boundary was also

introduced to the field of thermoacoustics at the same time as in the transition to

turbulence community. [62] treated a simple model of thermoacoustic system - a

horizontal Rijke tube - and showed that a sufficiently large impulse can trigger a self-

sustained oscillation using the strategy discussed in this article. This model system is

sufficiently simple (a couple of time-dependent 1-space dimension PDEs) to perform

an exhaustive survey of transient growth possibilities over amplitude and event horizon

T [63] as well as including noise [112]. It is also realistic enough to achieve some

correspondence with experiments [54].

4.3. Control

Work in controlling fluid flows has long flirted with fully nonlinear methods (e.g. [9])

but they remain currently very expensive and probably still impractical [60]. The

recent success in calculating identifying NLOPs and minimal seeds, however, has

lead to some new activity in this direction. [85] has recently used the adjoint-based

optimisation procedure discussed here for the full Navier-Stokes equations to control

the 2D boundary layer dynamics over a bump by blowing and sucking appropriately
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through the boundaries. This work has been subsequently extending to 3D [22] where

initial conditions corresponding to the LOP and NLOP have been treated.

In a slightly different vein, a more nonlinearly stable plane Couette flow has been

designed by imposing spanwise oscillations on the usual streamwise boundary shearing

[90]. This work builds upon the fact that if the critical energy of the minimal seed

can be found then new boundary conditions can be designed to increase this energy

thereby improving the stability of the base state. While the choice of imposing spanwise

oscillations was motivated by a large body of experimental and theoretical work (see [90]

for references), it also meant that the base state was no longer steady but time-periodic.

This has implications for the optimisation procedure which now not only has to search

for the optimal initial perturbation but also the exact time (or phase) during the base

flow period when it should be introduced.

4.4. Magnetic field generation

[113] treats the kinematic dynamo problem looking for the velocity field of an electrically-

conducting fluid which produces the greatest growth of magnetic field at the end of a

time interval T . The set of competitor fields is constrained either by the total energy

or the L2 norm of their strain rate (or equivalently the viscous dissipation rate) only.

By using the optimisation procedure described here, a lower bound on the magnetic

Reynolds number is identified for a dynamo which is only a 1/5th of that possible

within the well-studied ABC-class of flows [23, 1].

Finally, we close this section by noting that the optimisation procedure discussed

in this article is closely related to the well known data assimilation procedure wherein

a dynamical model of, and incomplete observations about, a real time-evolving system

are used to constrain the initial state of the model such that the ‘best’ solution over

a given time horizon can be sought. This is achieved by minimising an appropriate

cost functional which penalises the deviations of the predicted solution away from

known observations and possible uncertainties in the dynamical model. In contrast,

the optimisation approach discussed here assumes a perfect dynamical model and seeks

to maximise an objective functional over all initial conditions of a certain size in the

absence of constraining observations. Data assimilation is used extensively in many

areas of the geosciences (such as weather forecasting e.g [28, 56], oceanography [7] and

more recently modelling the Earth’s dynamo [42] ).

5. Final summary and future directions

This article has been a simple introduction to an optimisation technique which offers a

new way to probe the basin boundary of a state in a dynamical system. Although the

discussion has concentrated on this well-defined situation for clarity of exposition, the

technique can also usefully be employed for systems with just one global attractor and
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at least one long-lived but ultimately-repelling state (sheared fluid flows with enforced

short wavelength dynamics are prime examples of this situation since then the turbulence

seems only transient e.g. [38, 100]). Then the global attractor does not have a basin

boundary but there is instead an ‘edge’ or manifold in phase space which divides initial

conditions which immediately converge to the global attractor and those that first visit

one of the repellors. The same game can then be played providing a functional can be

identified which is clearly maximised in the target repellor for a time long enough for the

repellor to be reached yet shorter than the mean lifetime of that repellor. This is in fact

probably the situation in all the fluid flow calculations done so far (e.g. the turbulence

in the 5 diameter long pipe in [87] is actually only transient at Re = 2400 but the mean

lifetime is so large ≫ 100D/U that it mimicks an attractor on the timescales of the

calculations).

The optimisation technique involves maximising a functional which takes on much

larger values in the target state than in the basin of attraction of the starting state

subject to an initial amplitude constraint and other constraints which include that the

governing equations are satisfied - see the summary in §3.3. The iterative approach

to solving this variational problem is not new or the realisation that there should be

a sudden jump in the optimal value as the initial amplitude increases to penetrate

the basin boundary particularly profound. What is noteworthy, however, is that the

technique appears to work for large degree-of-freedom discretizations of PDE systems

approaching practical application.

For the particular application studied here - transition to turbulence in shear

flows - the optimisation approach provides a pleasing theoretical bridge between the

two different theoretical perspectives of (linear) optimal perturbation theory and the

(nonlinear) dynamical system approach. It is now much clearer how nonlinearity

interacts with the linear transient growth mechanisms to achieve transition at least close

to the amplitude threshold. Furtrhermore, the first steps have been taken to actively

use the technique to design more stable states by adjusting their driving slightly [90].

There are practical issues, however, needing development. The optimisation

techniques being used to maximise the objective function given gradient information

with respect to the initial conditions are typically simple-minded with no attempt made

so far to tailor them to the system being treated. There is also no consensus as yet

on what convergence criteria should be used or a posteriori checks to confirm that the

global maximum has been found. The last issue is particularly important of course and

an agreed level of care is needed.

5.1. Future directions

The optimisation approach is incredibly flexible and there is no reason why other

information cannot be sought from a dynamical system. For example, [87] talks about

identifying the peak instantaneous pressure in a transitional fluid flow, which is of

key concern in certain applications (e.g. pipeline structural integrity). Also, so far,
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only the basin boundaries of steady and time-periodic states have been probed using

this technique. Demonstrating feasibility for a state with more exotic time-dependence

remains to be done.

In terms of making greater connection with experiments, the competitor set of

initial states can also be restricted to acknowledge the fact that only a reduced subset

of all initial conditions are achievable in the laboratory. This can be accomplished

simply by projecting the gradient vector of the objective functional onto a reduced

set of realisable initial conditions and looking for the minimal seed in this subclass of

disturbances. Looking to make contact with real systems also highlights a considerable

simplification implicit in the discussion so far: the assumption has been that the system

is disturbed once and then evolves perfectly. In practice, disturbances to real systems

are not isolated or indeed equally likely. Developing the optimisation technique to

encompass these realities will obviously be important. Some tentative steps have already

been made by considering multiple discrete disturbances [66] and examining how adding

noise to a system can still pick out the minimal seed route to ‘transition’ [112].

Hopefully, the power of the optimisation technique discussed here should be clear

now. Ever increasing computer power is making direct simulations of systems more

common with the concomitant need to process and interpret this data crucial. The

optimisation technique discussed here has a huge potential to help with this and should

surely become a standard theoretical tool in the near future.
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Appendix A: The 2D linear transient growth problem

The dynamics in the simple ODE model (10) around the equilibrium X0 = (0, 0) are

linearised when d ≪ 1. In this limit, the equation for x is just

dx

dt
= Lx, where L :=

[

−1 10

0 −10

]

(44)

and standard matrix manipulations can then calculate the maximal achievable distance

after a time T . L has eigenvalues λ1 = −1 and λ2 = −10 and corresponding eigenvectors

q1 and q2. Defining the matrix Q := (q1|q2) (the 2 eigenvectors arranged in columns)
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Figure 8. The maximum gain G (thick red line) against target time T for the

linear system (44). The thinner solid/dashed blue lines indicate the starting/finishing

values of ρ := x2/x1 for the corresponding optimal. Also shown as horizontal (black)

dotted lines are the orientations where energy growth starts (ρ+) and finishes (ρ− ) (ρ

decreases in time for x2(0) > 0). Notice that the maximum growth occurs precisely

when the initial condition has ρ(0) = ρ+ and T is such that ρ(T ) = ρ−.

and

eΛT =

[

eλ1T 0

0 eλ2T

]

(45)

then, if a is a vector specifying the initial condition

x(0) =
2

∑

j=1

ajqj = Qa ⇒ x(t) =
2

∑

j=1

aje
λjTqj = QeΛTa. (46)

Then maxL := Gd2 where the gain

G(T ) = max
a

‖x(T )‖22
‖x(0)‖22

= max
a

a†eΛTQ†QeΛTa

a†Q†Qa
= ‖M‖22 (47)

and M := QeΛTQ−1 († indicating transpose). G is therefore the largest singular value

of M or equivalently the largest (real) eigenvalue of the symmetric matrix M†M. The

linear optimal θ = θ∗ increases monotonically from 0.1413 (25.4o) at T = 0, through

0.2322 (41.8o) at T=0.16615 where G peaks at 1.26590, and then onto 0.2667 (48.0o)

where G → 0 as T → ∞: see figure 8.
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In 2D, the situation is sufficiently simple to analyse completely for the general linear

problem

dx

dt
= Lx :=

[

−a b

0 −c

]

x (48)

with a, b and c all positive real numbers (the interesting stable case). Defining ρ(t)

as the orientation x2(t)/x1(t) and energy E(t) := 1
2
x(t)2, energy growth begins at the

orientation ρ+ and ends at the orientation ρ− where

ρ± :=
b±

√
b2 − 4ac

2c
. (49)

The eigenvalues of L are −a and −c and with their corresponding eigenvectors, the

general solution to (48) can be written down as

x(t) = α

[

1

0

]

e−at + β

[

b/(a− c)

1

]

e−ct. (50)

Imposing the conditions that ρ(0) = ρ+ and ρ(T ) = ρ− requires

β

α
=

ρ+(c− a)

c− a+ bρ+
, T ∗ :=

1

c− a
log

[

(

ρ+

ρ−

)

c− a+ bρ−

c− a+ bρ+

]

(51)

so that

Gmax =
ρ+2(ρ−2 + 1)

ρ−2(ρ+2 + 1)
e−2cT ∗

. (52)

Appendix B: Linear verses nonlinear transient growth

Here we discuss how nonlinear optimals are related to linear optimals when the

nonlinearity in the system preserves the functional being optimised (a prime example

being the energy-preserving nonlinearity of the Navier-Stokes equations in fluid

mechanics). Consider an ODE system whose phase space is partitioned into subspaces

each of which is invariant under the linearised dynamics about the origin x = 0 which

is a stable fixed point. If some of the subspaces support transient growth then it is

possible for nonlinearities in the system to couple these growth processes to give much

larger overall growth than any possible in the linearised dynamics. To illustrate this,

we take a simple 4D system which has two such subspaces,

ẋ :=
dx

dt
=











−a b 0 0

0 −c 0 0

0 0 −ǫa ǫb

0 0 0 −ǫc











x+











−x1x4

0

0

x2
1











. (53)

For simplicity, the linear dynamics in each subspace are identical up a change in

timescale which means that the same maximum transient growth ( Gmax given by

(52) ) occurs in each but at two different times (given by (51) ); T ∗ for subspace

U1 := {(x1, x2, 0, 0) | x1, x2 ∈ R} and T ∗/ǫ for subspace U2 := {(0, 0, x3, x4) | x3, x4 ∈ R}:
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Figure 9. Linear and nonlinear transient growth for the system (53) with (a, b, c, ǫ) =

(1, 10, 2, 0.1). The thin blue and cyan lines show optimal growth in U1 and U2 which

both have a peak gain G of 6.57 but at different times T ∗ = 0.66 and T ∗/ǫ respectively

for infinitesimally small initial energies. The thick red line is the result of using the

optimal initial condition (54) for the U1 with δ = 0.15 which is sufficient to allow

the two transient growth processes to combine to produce much larger overall growth.

Note the similarity of this nonlinear curve to that in figure 5.

see Figure 9. Minimal nonlinear terms are included designed to a) conserve energy (as

in the Navier-Stokes equations) and b) to allow the faster energy growth in subspace

U1 to pump-prime the slower growth in subspace U2. This is clearly seen to occur for δ

large enough when taking the optimal initial condition for U1

x(0) = (x1, x2, x3, x4) = δ(1, ρ+, 0, 0), (54)

see Figure 9 for an example using (a, b, c, ǫ) = (1, 10, 2, 0.1) (for the linear problem in

U1, Gmax = 6.57 and T ∗ = 0.66).

If the terms ‘LOP’ and ‘NLOP’ indicate the global linear and nonlinear optimals

over asymptotically large T , both clearly must have

Ė(0) = 0 (55)

(E := 1
2
x2) otherwise the time origin could be adjusted to increase the overall growth

[25]. Since Ė is only determined by the linear terms (the nonlinear terms can’t contribute

as they are energy-preserving), then all the candidate initial conditions satisfying the
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constraint Ė = 0 for the full nonlinear optimisation problem are actually present in

the linear problem. However, the linear problem may never select the NLOP for any T

because without nonlinearity its growth is overshadowed by other candidates (i.e. the

NLOP would be only be a local rather than global maximum). To illustrate this with a

concrete example, consider a 6D extension of the above 4D system by adding another

2D subspace U3 to U1

⊕

U2. If the linear transient growth in U3 always produces slightly

more growth over any choice of T than U1 (at least until the slower growth in U2 takes

over), the linear optimisation problem will never select any candidate initial condition

which has some projection in U1. In contrast the NLOP will be the linear optimal for

U1 (i.e. (54) ) since this is the only way Ė(0) vanishes non-trivially in U1. This situation

is borne out by the NLOP found in (very high dimensional) pipe flow [86, 87]. In just

2D, however, there are only two candidates in the linear problem which are joint global

optimisers. Hence in this case the NLOP has to be contained in the linear problem

trivially.
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