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ABSTRACT 

Numerical computations are presented for the temperature and velocity distributions of two 

differentially heated liquid columns with liquor depths of 0.1 m and 2.215 m respectively. The 

temperatures in the liquid columns vary considerably with respect to position for pure 

conduction, free convection and nucleate boiling cases using 1D thermal resistance 

networks. In the thermal resistance networks the solutions are not sensitive to the type of 

condensing and boiling heat transfer coefficients used. However these networks are limited 

and give no indication of velocity distributions occurring within the liquor. To alleviate this 

issue, 2D axisymmetric and 3D CFD simulations of the test rigs have been performed. The 

axisymmetric conditions of the 2D simulations produce unphysical solutions; however the full 

3D simulations do not exhibit these behaviours. There is reasonable agreement for the 

predicted temperatures, heat fluxes and heat transfer coefficients when comparing the boiling 

case of the 1D thermal resistance networks and the CFD simulations. 

This work was undertaken by the University of Leeds and National Nuclear Laboratory Ltd 

as part of our on-going support of Sellafield Ltd’s operations. The work was funded by the 

EPSRC, National Nuclear Laboratory Ltd and Sellafield Ltd/NDA through an EPSRC CASE 

award. 
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INTRODUCTION 

In the UK, during refuelling of nuclear reactors, fuel bundles are removed and stored 

in spent fuel ponds to allow short lived fission products to decay. After a suitable length of 

storage, the fuel bundles are sent to the Magnox or Thorp facilities at the Sellafield nuclear 

reprocessing site (hereinafter referred to as Sellafield), depending on the type of reactor from 

which they originate. The spent fuel is dissolved in nitric acid where solvent extraction and 

other processes occur [1] (for further details of highly active waste management at Sellafield 

the reader is referred to Upson [2]). One of the products of this process is highly active liquor 

which is sent to several low pressure (0.1 bar) kettle type evaporators currently in operation at 

Sellafield. The purpose of the evaporators is to boil the highly active liquor, thus reducing its 

water content and causing it to become more concentrated with a much lower volume. The 

evaporation of highly active liquor occurs prior to vitrification into solid glass and long term 

storage. The Sellafield evaporators depicted in Figure 1 operate by condensing dry saturated 

steam inside an external heating jacket and inside a number of helical coils which are 

submerged within the highly active liquor. 

The liquor fill height of the Sellafield evaporators is approximately 2 m from the base. 

The saturation temperature of the liquor is greatest at the base of the evaporator due to the 

contribution of the hydrostatic head, and lowest at the free surface. Hence it is hypothesised 

that a subcooled boiling region may exist with respect to liquor depth inside the Sellafield 

evaporators as shown in Figure 1. In region A, sensible heating increases the temperature of 

the bulk liquor which approaches the saturation temperature. In this region liquor circulations 

are prevalent due to natural convection. In region B, the conditions are met for the onset of 

nucleate boiling. The local wall superheat produces vapour bubbles at nucleation sites which 

will condense back into the liquor; or detach and become carried away with the circulations 

of the liquor where it will grow in size and escape at the free surface. In region C, the wall 
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and bulk liquor are at saturated conditions where boiling takes place. At the walls, vapour 

bubbles are continuously formed and detached which escape at the free surface. At the free 

surface flashing occurs which contributes to the generation of vapour. 

During the evaporation process crystalline salt solids are formed which may settle on 

the bed of the evaporator or stay in suspension due to the density variations within the liquor. 

The presence of these crystalline salt solids may affect the position of boiling and circulations 

within the liquor. 

The highly active liquor is highly corrosive. The lifetime of the various heating 

components are limited by the rate of corrosion of the heat transfer surfaces, which is a 

function of the temperature at the heat transfer surface [3]. Hence accurate predictions of 

temperature and flow distributions inside the Sellafield evaporators are highly desirable.  

 It is difficult to monitor heat transfer, boiling and multiphase flow components of the 

Sellafield evaporators and to directly relate the results to the predictions of internal surface 

temperatures and flows. To address this issue National Nuclear Laboratory Ltd have 

commissioned two small scale non-radioactive test rigs to characterise the transport 

phenomena occurring within the Sellafield evaporators, illustrated in Figure 2. The two test 

rigs have a diameter of 0.1 m and metal base plate thickness of 0.02 m, but different fill 

heights of 0.1 and 2.215 m (hereinafter referred to as the short and tall test rigs respectively). 

The fill height for the short test rig has a 1:1 ratio between the fill height and vessel width, 

which is close to the aspect ratio found in the Sellafield evaporators. The fill height of the tall 

test rig is similar to that found in the Sellafield evaporators, and has been chosen such that the 

hydrostatic pressure dependence of heat transfer and the fluid circulations occurring in the 

tall test rig can be studied. The tall test rig also has two features not found in the short test rig: 

(i) a central draught tube to provide a similar core to annulus ratio as found in the Sellafield 
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evaporators; (ii) three circumferential heating jackets which provide additional heating to the 

liquor. 

 The test rigs operate by condensing saturated steam on the lower surface of the 

stainless steel base plate, where the upper surface of the base plate is in contact with the 

liquid column. In addition, for the tall test rig, the three heating jackets are set to temperatures 

of 50, 60 and 70 °C for the upper, middle and lower heating jackets respectively. The ullage 

pressure and temperature is maintained at a saturation pressure and temperature of 0.1 bar 

and 45.8 °C respectively. 

Heat transfer across the boundaries of the liquid column causes density variations in 

the liquid which lead to flow circulations. The position of the boiling within the liquid 

column greatly affects the circulations. Depending upon the pressure head of the liquid 

column, boiling can occur on the top surface of the base plate, or close to the free surface of 

the liquid column. In the latter case, the internal circulation will be equivalent to an 

unconstrained thermosyphon reboiler situation [4], with the generation of vapour greatly 

increasing the circulation. The temperature distributions within the liquid column will 

significantly affect the temperatures of the heat transfer surfaces, which are essential 

requirements for the estimation of rates of corrosion of the surfaces. It is an essential 

requirement to understand where boiling will occur with respect to liquor depth. 

Previous Studies 

 Previous studies have been conducted to obtain a more accurate understanding of free 

convection, boiling and condensation inside the test rigs. Geddes et al. [3] performed an 

iterative calculation procedure based on the precedence ordering technique [5] to estimate the 

heat flux and temperature distribution over the length of the internal coils of the Sellafield 

evaporators. They assumed boiling did occur at the coil surface, and tested and compared a 
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number of correlations for the boiling heat transfer coefficient. The largest disagreement for 

the coil surface was 9°C when using different correlations for the boiling heat transfer 

coefficient. 

Wakem et al. [1] presented an overview of the heat transfer modelling work that was 

undertaken between National Nuclear Laboratory Ltd and Sellafield Ltd to remove 

conservative predictions on the condition of the Sellafield evaporators. The paper presents a 

thermal resistance methodology to estimate the wall superheat. It was estimated that surface 

temperatures were high enough to initiate nucleate boiling at the heat transfer surface that 

was under investigation. A CFD investigation was also conducted, modelling one of their 

experimental test rigs as a 2D rectangular slice through the centre, and using water as the 

liquor in a single phase convection simulation. The velocity and circulatory behaviour of the 

simulated liquor was a function of plate and wall temperatures. In addition to the simulation 

of the experimental test rigs, a preliminary CFD investigation of heat and fluid flow localised 

at the base of the Sellafield evaporators was conducted. 

Perry and Geddes [6] used Nusselt’s analytical approach of condensation on a vertical 

flat surface [7] and extended it to account for the condensation on the outer surface of the 

toroidal section of the Sellafield evaporators (i.e. the external heating jacket as shown in 

Figure 1). Using the same assumptions as those used by Nusselt [7], the analytical 

condensation model by Perry and Geddes [6] attempts to account for increasing condensate 

thickness down the walls. The model was presented in terms of a local heat transfer 

coefficient. The model was compared to a mean condensation heat transfer coefficient and 

showed general agreement. 

Aims 
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The aims of this paper are to provide a greater understanding of the heat transfer and 

fluid circulations in the test rigs, and to develop simple numerical models to predict these 

behaviours. As CFD simulations can become computationally prohibitive with respect to 

complexity, available resources and time, a simple technique is desirable to estimate the 

temperatures and heat fluxes occurring in the test rigs without using CFD. The temperatures 

and heat fluxes can be compared to CFD models to ascertain if agreement between the two 

methods exists. Additionally fluid circulations are difficult to monitor directly inside the test 

rigs when using experimental methods. CFD simulations are used to estimate the fluid 

circulations occurring inside the test rigs. Furthermore this paper aims to clarify if symmetry 

boundary conditions can be used to model buoyancy driven flow within the test rigs. 

 

THERMAL RESISTANCE INVESTIGATION 

 The temperatures and heat fluxes in the test rigs are predicted by thermal resistance 

networks which accommodate condensation below the base plate and conduction through the 

base plate, and three conditions in the liquor above the base plate by pure conduction, free 

convection and nucleate boiling. This involved generating a system of equations which 

describes the transport of heat through thermal resistances. 

Several assumptions have been included in the thermal resistance investigation: the heat 

transfer analysis is 1D in the vertical y direction; two temperatures in the system are known 

(Dirichlet boundary conditions) which are the steam and ullage temperatures, or the steam 

and liquor saturation temperatures. For all three cases the common steam temperature is 

126.9 °C, and for the pure conduction and free convection cases the ullage temperature is 

45.8 °C corresponding to the ullage saturation pressure of 0.1 bar. For the nucleate boiling 

cases the saturation temperatures of the liquor are 51.7 and 70.4 °C for the short and tall test 
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rigs respectively. The liquor is water and no fouling exists on the heat transfer surfaces. For 

the pure conduction case for the liquor, the thermal conductivity of water is constant 

throughout the liquid column. For the free convection case it is assumed that no boiling 

occurs, and the liquor is divided by two rotating convection cells between the upper plate and 

free surface. For the boiling case it is assumed that nucleate boiling occurs at the heat transfer 

surface. Radiation heat transfer is ignored and the side walls are adiabatic. The thermal 

resistance networks of the three cases are illustrated in Figure 3. Due to the non-linear 

correlations for the condensation, convection and boiling heat transfer coefficients that are 

used the values of the unknowns are solved for iteratively, using a numerical program written 

in MatLab which used the Newton Raphson iterative technique. Curve fitted correlations are 

used for the thermophysical properties of water and steam as a function of temperature [8].  

Test Case (a): Pure Conduction Through The Liquor 

 Figure 3 (a) represents the thermal resistance network diagram for the pure 

conduction through the liquor. There are four resistances in sequence described by equations 

(1) to (4). Equation (1) describes the condensation resistance underneath the base plate. 

Equations (2) and (3) describe the conduction resistances through the base plate and liquor 

respectively. Equation (4) describes the free convection resistance in the ullage region. The 

four unknown values to be determined are the heat flux, lower plate temperature, upper plate 

temperature and free surface temperature. 

ሶݍ  ൌ ൫ ௦ܶ௧௠ െ ௣ܶ௟൯ ܴଵΤ ൌ ௖௦௡൫ߙ ௦ܶ௧௠ െ ௣ܶ௟൯  (1) 

ሶݍ  ൌ ൫ ௣ܶ௟ െ ௣ܶ௨൯ ܴଶΤ ൌ ቀ ఒఋ௬ቁ௣௟௔௧௘ ൫ ௣ܶ௟ െ ௣ܶ௨൯  (2) 

ሶݍ  ൌ ൫ ௣ܶ௨ െ ௙ܶ௦൯ ܴଷΤ ൌ ቀ ఒఋ௬ቁ௟௜௤ ൫ ௣ܶ௨ െ ௙ܶ௦൯  (3) 

ሶݍ  ൌ ൫ ௙ܶ௦ െ ௨ܶ௟௚൯ ܴସΤ ൌ ௖௩௡൫ߙ ௙ܶ௦ െ ௨ܶ௟௚൯  (4) 
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Two correlations for the condensation heat transfer coefficient in equation (1) are used 

independently of each other: (i) the analytical Nusselt [7] heat transfer coefficient for the 

condensation of vapours on vertical flat plates; and (ii) the empirical Gerstmann and Griffith 

[9] heat transfer coefficient for the condensation of vapours underneath downward facing 

surfaces. The Nusselt heat transfer coefficient takes the form as shown in equation (5). 

 N� ൌ ఈ೎ೞ೙௅ఒ೗ ൌ ͲǤͻͶ͵ ൤ఘ೗൫ఘ೗ିఘ೒൯௚௛೗ǡ೒ᇲ ௅యఓ೗ఒ೗൫ ೞ்೟೘ି்೛೗൯ ൨ଵ ସΤ
  (5) 

The enthalpy of vaporisation in Nusselt’s correlation is replaced with an augmented enthalpy 

of vaporisation [10] which takes into effect the condensate subcooling as shown in equation 

(6). 

 ݄௟ǡ௚ᇱ ൌ ݄௟ǡ௚ ൅ ͲǤ͸ͺܥ௣ǡ௟൫ ௦ܶ௧௠ െ ௣ܶ௟൯ (6) 

The Gerstmann and Griffith [9] condensation heat transfer coefficient is formulated in terms 

of a Rayleigh number in the following equation: 

 N� ൌ ൜ ͲǤ͸ͻRa଴Ǥଶ଴ ͳͲ଺ ൏ Ra ൏ ͳͲ଼ͲǤͺͳRa଴Ǥଵଽଷ ͳͲ଼ ൏ Ra ൏ ͳͲଵ଴ (7) 

The Nusselt and Rayleigh numbers in equation (7) are defined as follows:  

 N� ൌ ఈ೎ೞ೙ఒ೗ ൬ ఙ௚൫ఘ೗ିఘ೒൯൰଴Ǥହ
 (8) 

 Ra ൌ ௚ఘ೗൫ఘ೗ିఘ೒൯௛೗ǡ೒ఓ೗൫ ೞ்೟೘ି்೛೗൯ఒ೗ ൬ ఙ௚൫ఘ೗ିఘ೒൯൰ଷ ଶΤ
 (9) 

The free convection heat transfer coefficient in the ullage region in equation (4) is 

treated as a hot surface facing upward from the free surface (or a cold surface facing 

downward) [11] as shown in equation (10). 

 N� ൌ ఈ೎ೡ೙௅ఒ೗ ൌ ͲǤͷͶRaଵ ସΤ ͳͲସ ൑ Ra ൑ ͳͲ଻ �� ൒ ͲǤ͹ͲǤͳͷRaଵ ଷΤ ͳͲ଻ ൑ Ra ൑ ͳͲଵଵ ݈݈ܽ ��  (10) 
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The Rayleigh number is defined as: 

 Ra ൌ G��� ൌ ௚ఉ୼்௅యఔ௞  (11) 

Test Case (b): Free Convection In The Liquor 

The network for free convection in Figure 3 (b) has five sequential thermal resistances. 

The bottom two are identical to the previous case which are condensation on the lower 

surface of the base plate and conduction through the base plate described by equations (1) 

and (2) respectively. The next two resistances in Figure 3 (b) represent free convection in the 

liquor. It is assumed there are two rotating convection cells inside the liquid column which 

are treated as a hot surface facing upward from the upper plate as shown in equation (12), and 

a cold surface facing downward from the free surface as shown in equation (13) [11], and 

hence the heat transfer coefficients are treated by equation (10). The free convection 

resistance in the ullage region is also identical to the previous case described by equation (4). 

Hence the governing equations for the free convection case are equations (1), (2), (4), (12) 

and (13), and the five unknown values that are to be determined are the heat flux, lower plate 

temperature, upper plate temperature, mid liquor temperature and free surface temperature. 

ሶݍ  ൌ ൫ ௣ܶ௨ െ ௟ܶ௜௤൯ ܴଷΤ ൌ ௖௩௡൫ߙ ௣ܶ௨ െ ௟ܶ௜௤൯ (12) 

ሶݍ  ൌ ൫ ௟ܶ௜௤ െ ௙ܶ௦൯ ܴସΤ ൌ ௖௩௡൫ߙ ௟ܶ௜௤ െ ௙ܶ௦൯ (13)  

Test Case 3: Nucleate Boiling In The Liquor 

The network diagram for nucleate boiling in Figure 3 (c) has only three resistances. The 

thermal resistances described by equations (1) and (2) in the pure conduction case remain 

applicable for the nucleate boiling case. Equation (14) describes nucleate boiling occurring at 

the upper plate surface. Hence the governing equations for the nucleate boiling case are 
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equations (1), (2) and (14), and the three unknown values to be determined are the heat flux, 

lower plate temperature and upper plate temperature. 

ሶݍ  ൌ ൫ ௣ܶ௟ െ ௦ܶ௔௧൯ ܴଷΤ ൌ ௕௢௜௟൫ߙ ௣ܶ௟ െ ௦ܶ௔௧൯  (14) 

It is assumed that nucleate boiling occurs at the upper plate surface, where the 

saturation temperature corresponds to the liquor depth. The saturation temperature is 

determined using Antoine’s vapour pressure correlation as shown in equation (15), using the 

constants by Linstrom and Mallard [12], which are 5.20389 bar, 1733.926 °C and -39.485 °C 

for A, B and C respectively. The saturation temperatures are 51.7 and 70.4 °C for the short 

and tall test rigs respectively, corresponding to 0.1 bar ullage pressure and the liquid column 

hydrostatic pressure head. At the free surface it is assumed the liquor flashes to vapour. 

 lo�ଵ଴ ௦ܲ௔௧ ൌ lo�ଵ଴൫ ௨ܲ௟௚ ൅ ȟ݄൯݃ߩ ൌ ܣ െ ஻஼ା ೞ்ೌ೟ (15) 

Six individual correlations for the nucleate boiling heat transfer coefficient are used in 

equation (14). The first correlation used for the boiling heat transfer coefficient is the Forster 

and Zuber [13] correlation defined as: 

௕௢௜௟ߙ  ൌ ଴Ǥ଴଴ଵଶଶ൫்೛೗ି ೞ்ೌ೟൯బǤమర൫௉೛೗ି௉ೞೌ೟൯బǤళఱ஼೛೗బǤరఱఘ೗బǤరఱఒ೗బǤళఱఙబǤఱ௛೗ǡ೒బǤమరఘ೒బǤమర  (16) 

The second and third correlations used are the Mostinskii [14] and Bier et al. [15] 

correlations, which share the same expression for heat transfer coefficient shown in equation 

(17), however differ by their definition for the pressure correction factor as shown in 

equations (18) and (19) respectively. 

௕௢௜௟ߙ  ൌ ͲǤͲͲͶͳ͹ ஼ܲ଴Ǥ଺ଽݍሶ ଴Ǥ଻ܨ௉ (17) 

௉ܨ  ൌ ͳǤͺ ோܲ଴Ǥଵ଻ ൅ Ͷ ோܲଵǤଶ ൅ ͳͲ ோܲଵ଴ (18) 

௉ܨ  ൌ ʹǤͳ ோܲ଴Ǥଶ଻ ൅ ሾͻ ൅ ሺͳ െ ோܲଶሻିଵሿ ோܲଶ (19) 
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The fourth and fifth correlations used are the Cooper [16] and Rohsenow [17] boiling heat 

transfer coefficients, shown in equations (20) and (21) respectively. 

௕௢௜௟ߙ  ൌ ͷͷݍሶ ଴Ǥ଺଻ ோܲ଴Ǥଵଶି଴Ǥଶ ୪୭୥ ோುሺെ lo� ோܲሻି଴Ǥହହିܯ଴Ǥହ (20) 

௕௢௜௟ߙ  ൌ ଵܥ ଴ǤଷଷΤ  (21) 

In the Rohsenow correlation in equation (21) C is defined as: 

ܥ  ൌ ஼ು൫்೛೗ି ೞ்ೌ೟൯஼ೄಷ௛೗ǡ೒ ቀ஼೛ఓ೗ఒ೗ ቁି௡ ቆఈ್೚೔೗൫்೛೗ି ೞ்ೌ೟൯ఓ೗௛೗ǡ೒ ට ఙ௚൫ఘ೗ିఘ೒൯ቇି଴Ǥଷଷ
 (22) 

The exponent n is taken as unity, which is valid for boiling water (and 1.7 for other fluids) 

[18]. The value of the surface finish is dimensionless, and values can be obtained from 

Collier and Thome [19]. For this investigation its value is taken as 0.0080. The sixth 

correlation used is that by Gorenflo and Kenning [20] as shown in equation (23). 

௕௢௜௟ߙ  ൌ ௉ܨ଴ߙ ቀ ௤ሶ௤ሶబቁ௡ ൬ ோ೛ோ೛ǡబ൰଴Ǥଵଷଷ
 (23) 

For boiling water, the pressure correction factor is calculated using equation (24). 

௣ܨ  ൌ ͳǤ͹͵ ோܲ଴Ǥଶ଻ ൅ ቀ͸Ǥͳ ൅ ଴Ǥ଺଼ଵି௉ೃቁ ோܲଶ (24) 

The exponent n for boiling water is determined as follows: 

 ݊ ൌ ͲǤͻ െ ͲǤ͵ ோܲ଴Ǥଵହ (25) 

The values for the reference heat transfer coefficient, surface roughness and heat flux are 

5600 W/m2·°C, 0.4 ȝm, and 20,000 W/m2 respectively. Hewitt et al. [18] report that there are 

large deviations between the boiling heat transfer coefficients, and no general guidelines can 

be provided on the boiling correlation that should be used. The wall superheat required to 

initiate nucleate boiling for each test case is calculated using the Davis and Anderson 

correlation as shown in equation (26). 
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 ȟ ைܶே஻ ൌ ௣ܶ௨ െ ௦ܶ௔௧ ൌ ൬଼ఙ ೞ்ೌ೟ఔ௤ሶ௛೗ǡ೒ఒ೗ ൰ (26) 

Thermal Resistance Investigation Results 

The results from the thermal resistance investigation for the three cases (case (a) pure 

conduction through the liquor, case (b) free convection in the liquor and case (c) nucleate 

boiling in the liquor) are tabulated in Tables 1, 2 and 3 respectively. The overall heat transfer 

coefficients are orders of magnitude lower in cases (a) and (b) than in case (c). This is 

because the values of the free convection heat transfer coefficient in the ullage region are 

small which reduces the overall heat transfer coefficient. Hence the free convection thermal 

resistance in the ullage region is the limiting resistance in cases (a) and (b). In case (c) the 

limiting thermal resistance is conduction heat transfer through the base plate. However all 

three cases share the same conduction thermal resistance through the base plate, and in all 

three cases their resistance values are the same. To reduce the conduction thermal resistance, 

and consequently increase the heat flux through the system the thickness of the base plate 

should be reduced, or alternatively a base plate material with a higher thermal conductivity 

should be used. 

In case (c) with the exception of the Cooper correlation, all boiling heat transfer 

coefficients are in agreement, despite their very diverse formulations. Rohsenow et al. [20] 

report that the square root of the molecular weight in the Cooper correlation is an 

oversimplification which can yield significant errors in the value of the boiling heat transfer 

coefficient.  

Figures 4 and 5 are plots of the temperature variation with height, starting at the lower 

plate surface up to the free surface for cases (a) and (b), and up to the upper plate surface for 

case (c) – boiling of the liquor. For case (c) the temperature difference between the lower and 

upper base plate surfaces are in agreement despite the very diverse boiling and condensation 
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correlations used. For all boiling heat transfer coefficients, the temperature difference 

between the upper plate surface and liquor saturation exceeds the calculated wall superheat 

required to initiate nucleate boiling when calculated using equation (26). 

There is very little variation in the solutions when using either the Nusselt or 

Gerstmann and Griffith condensing correlations on both test rigs. This is because the thermal 

resistance due to conduction in the baseplate removes any sensitivity of the solution to using 

different condensation or boiling heat transfer coefficients. 

 

CFD INVESTIGATION 

 A limitation of the thermal resistance investigation is that it does not provide 

information regarding the circulation of liquor, such as liquor velocities and direction. 

Instead, assumptions had to be made based on the number of convection cells occurring 

within the liquid column (free convection cases) or the position of boiling inside the system 

(nucleate boiling cases). Furthermore the thermal resistance investigation was only 1D hence 

further information is required of the heat transfer and circulations inside the test rigs. 

CFD simulations are performed of the two test rigs and their results compared to the 

results from the thermal resistance investigation. For the short test rig, simulations on 2D 

axisymmetric and a full 3D geometry is performed to ascertain if axisymmetric conditions are 

a viable alternative to a full 3D simulation. Furthermore a full 3D simulation is performed on 

the tall test rig. The commercial code Ansys CFX v14.0 is used to perform the CFD 

simulations. 

Upon start-up the thermal behaviour of the liquor in the test rigs will be dominated by 

pure conduction for a finite time, until a critical Rayleigh number is achieved wherein free 

convection will dominate until phase change takes place. The primary time of interest for the 
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CFD cases is when phase change occurs in the bulk liquor. During this time a pseudo steady 

state condition may exist where flow features may repeat periodically.  

Boundary Conditions 

The free surface and ullage region is modelled as an opening with pressure and 

temperature equal to the ullage pressure and temperature which are 0.1 bar and 45.8 °C 

respectively. In the short and tall test rigs, ambient heat loss from the non-jacketed side walls 

and from the non-insulated sides of the base plate is taken into consideration. At the vertical 

sides of the baseplate, the correlation recommended by Churchill and Chu [22] as shown in 

equation (27) is used. The ambient outside temperature is taken as 26.9 °C. 

 N� ൌ ఈ೎ೡ೙௅ఒ೗ ൌ ቆͲǤͺʹͷ ൅ ଴Ǥଷ଼଻ୖୟభ లΤൣଵାሺ଴Ǥସଽଶ ୔୰Τ ሻవ భలΤ ൧ఴ మళΤ ቇ (27) 

At the non-jacketed walls of the liquid columns an average heat transfer coefficient is used 

which takes the wall glass thickness, ݔߜ into consideration as shown in equation (28).  

௪௔௟௟ߙ  ൌ ଵቀഃഊೣ ቁ೒೗ೌೞೞା భഀ೎ೡ೙ (28) 

In the tall test rig the top, middle and bottom heating jackets are set to fixed wall 

temperatures of 50, 60 and 70 °C respectively. In both test rigs, condensation underneath the 

baseplate is not directly modelled; instead the Nusselt [7] heat transfer coefficient described 

by equation (5) is applied with an outside steam temperature of 126.9 °C. 

Within the liquid column, the IAPWS IF97 formulation is used to model the fluid to 

capture the pressure dependence of the thermophysical properties of water. With this an 

implicit method of detecting phase change is used by defining a new variable called T*  as 

defined by equation (29). Using this definition, if T*  is more than 0 then boiling may occur, 

and if T*  is less than 0 boiling may not occur. The saturation temperature is not provided 
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directly by the CFD solver. This is defined by using the Antoine’s vapour pressure equation 

as shown in equation (15) which is inputted as a user expression, as shown in equation (29). 

כܶ  ൌ ்೗೚೎ೌ೗ି ೞ்ೌ೟ೞ்ೌ೟  (29) 

The CFD simulations are based on single phase, transient turbulent flow using the k - 

Ȧ SST turbulence model [21]. This generally provides good predictions to flows which 

involve strong streamline curvature, adverse pressure gradients, wall bounded flows and flow 

separations. This is achieved by switching between Ȧ and İ formulations near and far from 

the wall respectively. Furthermore the k - Ȧ SST model has the added benefit of accounting 

for the transport of turbulent shear stress. 

Convergence Strategy 

A pseudo steady state condition may exist in the bulk liquor. A steady state analysis is 

first performed to achieve as close to a steady state solution as possible. Then to achieve final 

convergence the steady state result is used as the initial condition for a transient simulation. 

The convergence strategy used is to first solve a pure conduction simulation (no flow, no 

turbulence modelling) with a large false time step for the fluid and solid domains shown in 

equation (30). The thermal diffusivity term in equation (30) is calculated independently for 

the solid (baseplate) and fluid (liquor) domains. 

ݐߜ  ൎ ௅మ௞  (30) 

The result for the pure conduction case is then used as the initial guess for a free 

convection steady state simulation using first order upwind schemes for the advection 

numerics. This in turn is used as the initial guess for a more accurate simulation using high 

resolution schemes for the advection numerics. The false time step for the steady state 
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simulations in the fluid domain is determined by using the relationship shown in equation 

(31) [23]. 

ݐߜ  ൎ ට ஽ఉ௚୼் (31) 

All of the measures up to this point are to ensure a suitable initial guess for a final 

transient simulation which is computed for 30 s for the short and tall test rigs. 30 s simulation 

time is arbitrarily chosen to ascertain if periodic flow features occur within this window.  

 In the transient simulations high resolution numerics for the advection scheme and a 

second order backward Euler method for the transient scheme are used. An adaptive time 

stepping approach is taken which allows the solver to select a suitable time step for 

convergence. For the adaptive time stepping configuration, the minimum and maximum time 

steps chosen are 0.01 and 29 s respectively. The minimum and maximum number of 

coefficient loops is 1 and 6 respectively. Lastly the time step decrease and increase factors are 

0.75 and 1.1 respectively.  

Convergence of each simulation is ensured by letting the root mean square and 

maximum non-dimensionalised residuals of the momentum, mass, energy and turbulence 

equations fall to at least 10-4. Additionally to ensure conservation of the solved equations 

domain imbalances are monitored at the end of every simulation to ensure that they are less 

than 0.01 % of the maximum imbalance over the entire domain. For the transient simulations 

using the adaptive time stepping approach, the solver computes a suitable time step within the 

minimum and maximum range of time steps and coefficient loops. The time step is computed 

based on the convergence criteria. The solver attempts to increase or decrease the time steps 

using the increase or decrease factors, which are used based on successful convergence of 

each equation per coefficient loop calculation. Lastly the values of temperature and velocity 
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at selected monitor points inside the domain are recorded during the simulation to monitor for 

pseudo steady state periodic flow features. 

 

Mesh Resolution 

All of the geometries conform to a standard coordinate system as shown in Figure 6 

(a). Hexahedral elements are used in all of the meshes for all of the geometries. Pertinent 

flow features are well resolved such as near wall inflation as shown in Figure 6 (b). Near wall 

inflation is used to ensure that the dimensionless wall distance, y+ ie less than 1 during the 

simulations in order to capture the boundary layer resolution. This allows the full benefit of 

the k - Ȧ SST turbulence model to be harnessed since a low Reynolds number formulation 

can be achieved inside the boundary layer. To minimise numerical diffusion, structured 

meshes are generated, where the elements are positioned in the general direction of flow as 

shown in Figure 6 (c - f). To minimise discretisation error the mesh quality, element 

skewness and element orthogonally for every mesh is checked, and significant errors in the 

mesh are rectified. 

Mesh independence studies are conducted on all of the simulations presented in this 

paper. The variables that are ensured to be mesh independent are the wall heat fluxes, wall 

temperatures and fluid velocities at pertinent locations within the geometry. After mesh 

independence studies the final mesh for the 2D axisymmetric case produces a mesh with 

39330 elements (Figure 6 (d)). For the short test rig full 3D case, the final mesh after the 

mesh sensitivity study produces a mesh with 422940 elements (Figure 6 (e)). Lastly, for the 

tall test rig full 3D case, the final mesh after the mesh sensitivity study produces a mesh with 

1205952 elements (Figure 6 (f)). These meshes are used to compute the final CFD solution. 

CFD Investigation Results 
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 The CFD simulations consist of three cases, (i) a 2D axisymmetric geometry for the 

short test rig, (ii) a full 3D geometry for the short test rig, and (iii) a full 3D geometry for the 

tall test rig. The Cartesian coordinate system defined in Figure 6 (a) is used as a reference to 

present several plots of time averaged variables with respect to planar x or z directions, at 

different vertical y positions. The time averaged results are presented after the initial transient 

has dissipated sufficiently. 

Figure 7 illustrates the time average velocity vectors superimposed onto time average 

T*  contours for the x – y plane for the short test rig. The size of the velocity vectors are 

arbitrary and are used only to indicate circulation patterns occurring within the liquor. The 

circulations of liquor are in disagreement between the 2D axisymmetric and the full 3D 

geometries for the short test rig. In the 3D geometry liquor is driven vertically upwards at the 

walls and returns vertically downward at the centreline. Conversely in the 2D axisymmetric 

case the liquor is driven upward at the walls and the centre line (where the symmetry plane 

occurs) and driven down the middle of the geometry. The simulations using a 2D 

axisymmetric geometry produce an unphysical solution because the imposition of 

axisymmetry enforces an unstable solution which is broken in the simulations using a full 3D 

geometry. In the 2D axisymmetric case, the instantaneous time-dependent solution is forced 

to be axisymmetric. In the full 3D case the instantaneous time-dependent fields are not 

restricted to be axisymmetric. The time-averaged 3D solution is axisymmetric; however this 

axisymmetric solution cannot be predicted using 2D axisymmetric conditions. 

There is moderate agreement for the contours of time average T*  in both 2D 

axisymmetric and 3D cases. The time-averaged T*  is more than 0 close to the upper plate 

surface. This implies phase change is likely to occur close to the upper plate surface since the 

local temperature has exceeded the local saturation temperature for the liquor. 
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Figure 8 is a plot of time average temperature and velocity for both 2D axisymmetric 

and full 3D geometries for the short test rig, in the x – y plane. The effects of the unphysical 

solution which the 2D axisymmetric simulation produces are seen. The 2D axisymmetric 

geometry over predicts the values of temperature at the centreline (x = 0.00 m) and at the 

walls (x = 0.05 m), and over predicts the values of velocity at the centreline (x = 0.00 m) 

when compared to the equivalent 3D geometry.  

Figure 9 is a plot of time average temperature and velocity for the full 3D geometry 

for the short test rig, in the z – y plane. In this plot results from the 2D axisymmetric case are 

absent since the 2D axisymmetric geometry exists only in the x – y plane. In Figure 9 the 

values of time average temperatures and velocities in the z – y plane are largely the same as 

the values of the time average temperatures and velocities in the x – y plane. This suggests the 

full 3D short test rig does produce axisymmetric time-averaged results. Due to the unphysical 

results which are produced using 2D axisymmetric conditions, only a full 3D simulation of 

the tall test rig is performed. 

Figure 10 illustrates the time average velocity vectors superimposed onto time 

average T*  contours for the x – y plane for the 3D tall test rig at the bottom, middle and top 

sections of the test rig. The pattern of velocity circulations show the liquor is driven down the 

walls and up the centre, which contrasts in behaviour for the 3D short test rig which does not 

contain a draught tube. The presence of the draught tube in the tall test rig forces flow 

reversal in the liquor. This suggests the draught tube has a large influence on the circulations 

of the liquor. Since the draught tube in the tall test rig is implemented to represent the heating 

coils of the Sellafield evaporators (see Figure 1), it can be hypothesised that the presence of 

the coils in the Sellafield evaporators may have a similar effect on the liquor in the 

evaporators. In Figure 10 at the lower test section the liquor is subcooled, where T*  is less 

than 0. In the mid test section the liquor begins to become superheated where T*  is more than 
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0, and increases in value at the top of the test section at the free surface. The time average T*  

contours suggest significant flashing from liquid to vapour may occur at the free surface, 

since the pressure dependence of the saturation temperature is reduced here. 

Figures 11 and 12 are plots of time average temperature and velocity in the x – y and 

the x – z planes respectively. Symmetric conditions are largely found for the time average 

temperature and velocity profiles for the tall test rig in the x – y and z – y planes respectively. 

However in comparison to the short 3D case the free surface temperatures for the tall test rig 

(at y = 2.225 m) vary significantly with position. Where as in the short case the free surface 

temperature (at y = 0.12 m) remains largely symmetric. 

Comparisons Between The Thermal Resistance and CFD Investigations 

The area average temperatures, wall heat transfer coefficients and heat fluxes are 

computed and are presented in Table 4 for the CFD investigations. There is poor agreement 

between thermal resistance results for cases (a) and (b) in Tables 1 and 2 and the CFD results 

in Table 4. The heat transfer coefficients produced by CFD at the upper plate are similar in 

orders of magnitude to nucleate boiling. The results in Tables 1 and 2 from cases (a) and (b) 

in the thermal resistance investigation do not predict nucleate boiling so have poor agreement 

with the CFD results in Table 4. Table 3 for case (c) of the thermal resistance investigation 

however provides reasonable agreement since the heat transfer coefficients used in case (c) 

are for nucleate boiling which may occur as shown by the CFD results. 

 

CONCLUSIONS 

 Thermal resistance networks are a computationally inexpensive tool to predict 

temperatures, heat transfer coefficients and heat fluxes in a heat transfer system when 

compared to complex CFD simulations. There is poor agreement between pure conduction 
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and free convection thermal resistance cases and the CFD investigation. There is however 

reasonable agreement between the nucleate boiling case and CFD investigations. In the 

nucleate boiling thermal resistance case there is good agreement between the six different 

boiling heat transfer coefficients used, and the solutions in all three thermal resistance cases 

are not sensitive to the type of condensation heat transfer coefficient used. 

Poor flow physics is observed in the 2D axisymmetric geometry in the CFD 

simulations of the short test rig because the symmetry planes enforce an unphysical solution 

which is broken in the simulations using a full 3D geometry. Hence using 2D axisymmetric 

conditions to model buoyancy driven flow in the test rigs is not prudent, even if the 3D 

solution is symmetric. T*  distributions in the short test rig indicate that nucleate boiling at the 

upper plate may occur, and in the tall test rig the T*  distributions indicate that the liquor is 

heated above its saturation temperature in the upper regions of the test rig. The CFD 

simulations have shown that phase change in the liquor is highly dependent on the pressure 

head of the liquid column. 

 

NOMENCLATURE  

 ௣   Specific heat capacity at constant pressure, J/kg·Kܥ

 ௌி   Constant depending on surface finishܥ

 ௉   Pressure correction factorܨ

݃   Gravitational acceleration, m/s2 

݄   Enthalpy of vaporisation, J/kg 

݄ᇱ   Augmented enthalpy of vaporisation, J/kg 

݇   Thermal diffusivity, m2/s 
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 Characteristic length, m   ܮ 

ܲ   Pressure, bar 

ሶݍ    Heat flux, W/m2 

ܴ   Thermal resistance, m2·°C/W 

ܴ௉   Roughness parameter, ȝm 

ܶ   Temperature, °C 

 Time, s   ݐ

ܷ   Overall heat transfer coefficient, W/m2·K 

Greek Symbols 

 Heat transfer coefficient, W/m2·°C   ߙ

 Expansion coefficient, °C-1   ߚ

 Vertical position, m   ݕߜ

 Horizontal position, m   ݔߜ

 Time step, s   ݐߜ

ȟ   A change in a property 

 Thermal conductivity, W/m·°C   ߣ

 Kinematic viscosity, m2/s   ݒ

 Viscosity, N·s/m2   ߤ

 Density, kg/m3 R   ߩ

 Surface tension, N/m   ߪ

Dimensionless Groups 
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Gr   Grashof number 

Nu   Nusselt number 

Pr   Prandtl number 

Ra   Rayleigh number 

 Dimensionless temperature   כܶ

Subscripts 

Ͳ   Reference 

 Boiling   ݈݅݋ܾ

 Critical   ܥ

 Condensation   ݊ݏܿ

 Convection   ݊ݒܿ

  Free surface   ݏ݂

݃   Gas 

݈   Liquid 

 Liquor    ݍ݈݅

 Onset of nucleate boiling   ܤܱܰ

 Lower plate   ݈݌

  Upper plate    ݑ݌

  Base plate   ݁ݐ݈ܽ݌

ܴ   Reduced 

 Saturated conditions   ݐܽݏ
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 Steam   ݉ݐݏ 

 Ullage   ݈݃ݑ

 Wall   ݈݈ܽݓ
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Condensing 
Correlation 

 ࢙ࢌࢀ
(°C) 

 ࢛࢖ࢀ
(°C) 

 ࢒࢖ࢀ
(°C) 

ሶࢗ  
(KW/m 2) 

 ࢔࢙ࢉࢻ
(KW/m 2

·°C) 
ሺࣅ Τ࢟ࢾ ሻࢋ࢚ࢇ࢒࢖ 
(KW/m 2

·°C) 
ሺࣅ Τ࢟ࢾ ሻࢗ࢏࢒ 
(W/m2

·°C) 
 ࢍ࢒࢛ࢻ

(W/m2
·°C) 

  ࢁ
(W/m2

·°C) 
ઢ࡮ࡺࡻࢀ 

(°C) 
 Case (a): Short Test Rig 

Nusselt 102.5 126.7 126.9 0.15 181.91 0.76 6.13 2.62 1.83 0.48 
Ger. and Gr. 102.5 126.7 126.9 0.15 41.77 0.76 6.13 2.62 1.83 0.48 

 Case (a): Tall Test Rig 
Nusselt 56.9 126.8 126.9 0.02 358.53 0.76 0.28 1.74 0.24 0.10 

Ger. and Gr. 56.9 126.8 126.9 0.02 67.97 0.76 0.28 1.74 0.24 0.10 

Table 1: Results from case (a) of the thermal resistance investigation. Boundary conditions are steam and ullage temperatures, which have values 

of 126.9 °C for steam, and 45.8 °C for the ullage temperatures respectively. 
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Condensing 
correlation 

 ࢙ࢌࢀ
(°C) 

 ࢗ࢏࢒ࢀ
(°C) 

 ࢛࢖ࢀ
(°C) 

 ࢒࢖ࢀ
(°C) 

ሶࢗ  
(KW/m 2) 

 ࢔࢙ࢉࢻ
(KW/m 2

·°C) 
ሺࣅ Τ࢟ࢾ ሻࢋ࢚ࢇ࢒࢖ 
(KW/m 2

·°C) 
 ࢛࢖ࢻ

(KW/m 2
·°C) 

 ࢙ࢌࢻ
(KW/m 2

·°C) 
 ࢍ࢒࢛ࢻ

(W/m2
·°C) 

 ࢁ
(W/m2

·°C) 
ઢ࡮ࡺࡻࢀ 

(°C) 

 Case (b): Short Test Rig 
Nusselt 125.7 126.1 126.6 126.9 0.23 157.67 0.76 0.52 0.52 2.85 2.81 0.59 

Ger. and Gr. 125.7 126.1 126.5 126.8 0.23 37.69 0.76 0.52 0.52 2.85 2.81 0.59 
 Case (b): Tall Test Rig 

Nusselt 125.7 126.1 126.6 126.9 0.23 157.67 0.76 0.52 0.52 2.85 2.81 0.36 
Ger. and Gr. 125.7 126.1 126.5 126.8 0.23 37.69 0.76 0.52 0.52 2.85 2.81 0.36 

Table 2: Results from case (b) of the thermal resistance investigation. Boundary conditions are steam and ullage temperatures, which have values 

of 126.9 °C for steam, and 45.8 °C for the ullage temperatures respectively. 
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Boiling 
Correlation 

Condensing 
Correlation 

  ࢛࢖ࢀ
(°C) 

  ࢒࢖ࢀ
(°C) 

ሶࢗ   
(KW/m 2) 

 ࢔࢙ࢉࢻ
(KW/m 2

·°C) 
ሺࣅ Τ࢟ࢾ ሻࢋ࢚ࢇ࢒࢖ 
(KW/m 2

·°C) 
 ࢒࢏࢕࢈ࢻ

(KW/m 2
·°C) 

 ࢁ
(KW/m 2

·°C) 
ઢ࡮ࡺࡻࢀ 

(°C) 
 Case (c): Short Test Rig 

Forster and 
Zuber 

Nusselt 60.96 125.02 48.36 26.45 0.76 3.64 0.61 8.65 
Ger. and Gr. 60.74 122.44 46.58 10.56 0.76 3.56 0.59 8.49 

Mostinskii 
Nusselt 59.96 124.98 49.10 26.32 0.76 3.99 0.62 8.72 

Ger. and Gr. 59.82 122.36 47.22 10.52 0.76 3.89 0.60 8.55 

Bier et al. 
Nusselt 56.42 124.85 51.67 25.87 0.76 5.90 0.65 8.94 

Ger. and Gr. 56.31 122.08 49.65 10.40 0.76 5.74 0.63 8.77 

Cooper 
Nusselt 48.10 124.54 57.71 24.94 0.76 132.00 0.73 9.45 

Ger. and Gr. 48.10 121.39 55.34 10.13 0.76 128.34 0.70 9.25 

Rohsenow 
Nusselt 55.65 124.82 52.23 25.78 0.76 6.54 0.66 8.99 

Ger. and Gr. 55.55 122.01 50.18 10.37 0.76 6.37 0.63 8.81 
Gorenflo and 

Kenning 
Nusselt 64.44 125.15 45.84 26.92 0.76 2.73 0.58 8.42 

Ger. and Gr. 64.31 122.73 44.11 10.70 0.76 2.65 0.56 8.26 
 Case (c): Tall Test Rig 

Forster and 
Zuber 

Nusselt 79.19 125.66 35.08 29.43 0.76 3.98 0.62 4.47 
Ger. and Gr. 79.04 123.88 33.85 11.40 0.76 3.90 0.60 4.39 

Mostinskii 
Nusselt 79.61 125.67 34.78 29.51 0.76 3.76 0.62 4.45 

Ger. and Gr. 79.51 123.92 33.53 11.42 0.76 3.67 0.59 4.37 

Bier et al. 
Nusselt 78.11 125.62 35.87 29.21 0.76 4.63 0.64 4.52 

Ger. and Gr. 78.03 123.80 34.56 11.34 0.76 4.51 0.61 4.43 

Cooper 
Nusselt 70.69 125.37 41.28 27.88 0.76 130.07 0.73 4.84 

Ger. and Gr. 70.68 123.23 39.68 10.97 0.76 126.66 0.70 4.75 

Rohsenow 
Nusselt 75.69 125.54 37.64 28.75 0.76 7.08 0.67 4.63 

Ger. and Gr. 75.62 123.62 36.24 11.21 0.76 6.90 0.64 4.54 
Gorenflo and 

Kenning 
Nusselt 82.27 125.76 32.84 30.08 0.76 2.76 0.58 4.32 

Ger. and Gr. 82.18 124.12 31.66 11.58 0.76 2.68 0.56 4.24 

Table 3: Results from case (c) of the thermal resistance investigation. Boundary conditions are steam and liquor saturation temperatures, which 

have values of 126.9 °C for steam, and 47.7 °C and 70.4 °C for liquor saturation for the short and tall test rigs respectively.
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CFD Case Tf,s (°C) Tliq (°C) Tp,u (°C) Tp,l (°C) 
qլ  

(KW/m 2) 
 ࢔࢙ࢉࢻ

(KW/m 2
·°C) 

ሺࣅ Τ࢟ࢾ ሻࢋ࢚ࢇ࢒࢖ 
(KW/m 2

·°C) 
 ࢛࢖ࢻ

(KW/m 2
·°C) 

 ࢍ࢒࢛ࢻ
(KW/m 2

·°C) 
2D axisymmetric short test rig 46.7 47.4 82.2 125.8 31.92 30.34 0.76 13.42 0.01 

3D short test rig 46.8 47.0 79.3 125.7 33.22 29.96 0.76 13.39 0.01 
3D tall test rig 49.9 56.0 81.0 125.8 32.55 30.17 0.76 67.27 0.01 

Table 4: Area and transient average results from the CFD investigations. 
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List of Figure Captions 

Figure 1: Arrangement of the Sellafield evaporators (not to scale), and the different heat 

transfer regions. 

Figure 2: Planar views of the (a) short test rig and (b) the tall test rig. 

Figure 3: Thermal resistance networks for case (a) pure conduction through the liquor, case 

(b) free convection in the liquor, and case (c) nucleate boiling in the liquor. 

Figure 4: Temperature variations relative to the lower plate surface in the short test rig for the 

pure conduction, free convection and nucleate boiling cases. 

Figure 5: Temperature variations relative to the lower plate surface in the tall test rig for the 

pure conduction, free convection and nucleate boiling cases. 

Figure 6: (a) Cartesian coordinate system for the three geometries; (b) inflation layers in both 

the solid (baseplate) and fluid (liquor) domains; (c) plan view of the structured hexahedral 

mesh for the 3D short test rig; final mesh produced after mesh sensitivity studies for the (d) 

2D axisymmetric short test rig; (e) 3D short test rig and (f) 3D tall test rig. Due to the height 

of the tall test rig only the lower portion is pictured. 

Figure 7: Contours of T*  with superimposed velocity vectors showing the direction of 

circulation in the x - y plane for the (left) 2D axisymmetric short test rig and (right) the 3D 

short test rig.   

Figure 8: Time average velocities and temperatures for the short test rig in the x – y plane. 

Figure 9: Time average velocities and temperatures for the short test rig in the z – y plane. 
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Figure 10: Contours of T*  with superimposed velocity vectors showing the direction of 

circulation for the tall test rig in the x - y plane; from bottom (a) to top (g) in increments of 

0.3164 m. The total height of the tall test rig is 2.215 m. 

Figure 11: Transient average velocity and temperature for the tall test rig in the x plane. 

Figure 12: Transient average velocity and temperature for the tall test rig in the z plane.
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Figure 1: Arrangement of the Sellafield evaporators (not to scale), and the different heat 

transfer regions.
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Figure 2: Planar views of the (a) short test rig and (b) the tall test rig.
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Figure 3: Thermal resistance networks for case (a) pure conduction through the liquor, case 

(b) free convection in the liquor, and case (c) nucleate boiling in the liquor. 
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Figure 4: Temperature variations relative to the lower plate surface in the short test rig for the 

pure conduction, free convection and nucleate boiling cases. 
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Figure 5: Temperature variations relative to the lower plate surface in the tall test rig for the 

pure conduction, free convection and nucleate boiling cases.
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Figure 6: (a) Cartesian coordinate system for the three geometries; (b) inflation layers in both 

the solid (baseplate) and fluid (liquor) domains; (c) plan view of the structured hexahedral 

mesh for the 3D short test rig; final mesh produced after mesh sensitivity studies for the (d) 

2D axisymmetric short test rig; (e) 3D short test rig and (f) 3D tall test rig. Due to the height 

of the tall test rig only the lower portion is pictured.
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Figure 7: Contours of T*  with superimposed velocity vectors showing the direction of 

circulation in the x - y plane for the (left) 2D axisymmetric short test rig and (right) the 3D 

short test rig.   
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Figure 8: Time average velocities and temperatures for the short test rig in the x – y plane.

45

50

55

60

65

70
-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

-0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

0.00

0.01

0.02

0.03

0.04

 

 

T
rn

. A
vg

. T
em

p
er

at
u

re
 (

ºC
)

 

 2D AS y = 0.03 m
 2D AS y = 0.07 m
 2D AS y = 0.12 m
 3D y = 0.03 m
 3D y = 0.07 m
 3D y = 0.12 m

T
rn

. A
vg

. V
el

o
ci

ty
 (

m
/s

)

x Position (m)



41 
 

 

Figure 9: Time average velocities and temperatures for the short test rig in the z – y plane. 
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(a) (b) (c)

(d) (e) (f) (g)
 

Figure 10: Contours of T*  with superimposed velocity vectors showing the direction of 

circulation for the tall test rig in the x - y plane; from bottom (a) to top (g) in increments of 

0.3164 m. The total height of the tall test rig is 2.215 m.
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Figure 11: Transient average velocity and temperature for the tall test rig in the x plane. 
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Figure 12: Transient average velocity and temperature for the tall test rig in the z plane.
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