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Abstract

We consider the problem of identifying a nonlinear heat transfer law at the boundary, or

of the temperature-dependent heat transfer coefficient in a parabolic equation from boundary

observations. As a practical example, this model applies to the heat transfer coefficient that

describes the intensity of heat exchange between a hot wire and the cooling water in which it

is placed. We reformulate the inverse problem as a variational one which aims to minimize a

misfit functional and prove that it has a solution. We provide a gradient formula for the misfit

functional and then use some iterative methods for solving the variational problem. Thorough

investigations are made with respect to several initial guesses and amounts of noise in the input

data. Numerical results show that the methods are robust, stable and accurate.

Keywords: Inverse problem; Nonlinear boundary condition; Heat transfer law.

1 Introduction

There are many physical phenomena occurring at high temperatures/high pressures or, in hostile

environments, e.g. in combustion chambers, gas turbines, cooling steel or hot glass processes, gas-

quenching in furnaces, etc. in which either the actual method of heat and mass transfer is not

known, or it cannot be assumed that the governing boundary law has a simple form, e.g. linear

Newton’s law of cooling or, fourth-order power Stefan-Boltzmann’s black-body radiation law. In

such situations, we model these as an inverse problem of identifying a nonlinear heat transfer

law at the boundary, or of the temperature-dependent heat transfer coefficient. In other fields of

application, this formulation may also be considered as a model for the concentration of gaseous

diffusion with an unknown chemical reaction at surface or, for the population density with an

unspecified migration law at the boundary, [23].
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In [11], Pilant and Rundell considered the problem of determining the heat transfer law function

g(·) and the temperature u(x, t) in the initial boundary value problem

ut − uxx = γ(x, t), 0 < x < 1, 0 < t < T, (1.1)

u(x, 0) = u0(x), 0 < x < 1, (1.2)

ux(0, t) = g(u(0, t)), 0 ≤ t ≤ T, (1.3)

−ux(1, t) = g(u(1, t)), 0 ≤ t ≤ T (1.4)

from the additional condition

u(0, t) = h(t), (1.5)

where the functions γ, u0 and h representing a heat source, an initial temperature and a boundary

temperature, respectively, are given. Note that from (1.1) and (1.5) we obtain ux(0, t) = g(h(t)) for

t ∈ [0, T ]. Under certain conditions, the authors of [11] proved that there exists a unique pair (u, g)

to (1.1)–(1.5) over the interval 0 ≤ t ≤ t∗, for some t∗ ∈ (0, T ]. They also proposed an iterative

method for this inverse problem and tested it briefly on computer. Later on, Rundell and Yin [21]

studied a similar problem, but in multidimensions. Namely, for T > 0 and Q = Ω × (0, T ] with Ω

being a bounded domain in R
m, they considered the problem of finding a pair of functions u(x, t)

and g(s) defined on Q and [A,B], respectively, which satisfies the equations

ut − ∆u = γ(x, t) in Q, (1.6)

u(x, 0) = u0(x) on Ω, (1.7)

∂u

∂n
= g(u) + ϕ on S := ∂Ω × [0, T ], (1.8)

and the additional condition

u(ξ0, t) = h(t), t ∈ [0, T ], (1.9)

where the functions γ, u0, ϕ and h are given, ξ0 is a fixed point of ∂Ω, n is the outer normal to ∂Ω,

A = minQ u(x, t) and B = maxQ u(x, t). Under some conditions, the authors of [21] established

a stability estimate for g and from that they obtained the uniqueness of a solution to (1.6)–(1.9).

It is clear that the function g can be determined only in the interval [A,B], but not on the whole

real axis R. However, in [3], Choulli raised the question: how many measurements do we need to

recover g(s) for s ∈ R? Choulli proved that: (i) if all lateral boundary measurements are available

and g′ is bounded, then we have uniqueness; (ii) if lateral boundary measurements are generated

by a one-dimensional vector space, then we also have uniqueness, provided that g = g0 + g1, where

g0 is known and g1 is unknown with no accumulation point of zeros. In the above context, it is

also worth citing the natural linearization numerical algorithm of [4] for the identification of the

nonlinear heat transfer law g(u) in (1.8) when, instead of the single measurement (1.9), one has

available the overdetermined measurement of the temperature u on the whole boundary S.

Finally, note that the identification of the heat transfer law g(u) in (1.8) is one-dimensional although

the underlying temperature state u(x, t) may depend on the time t and on x := (x1, . . . , xm).

Similar problems have been investigated in a series of papers by Tröltzsch and Rösch [8], [20], [14]–

[19]. Namely, these authors considered the problem of determining the heat transfer coefficient

σ(u) in the initial boundary value problem

ut − ∆u = 0 in Q, (1.10)

u(x, 0) = u0(x) on Ω, (1.11)

∂u

∂n
= σ(u(ξ, t))(u∞ − u(ξ, t)) on S = ∂Ω × [0, T ], (1.12)
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where u∞ is the ambient temperature which is assumed a given constant, from various additional

conditions: u(x, t) is given in the whole domain Q, or u(x, ti) are given at fixed time points

ti, i = 1, . . . , L, [20], [14], or u is given on the whole boundary S, [17]. They reformulated the

inverse problem as an optimal control problem and proved the Fréchet differentiability of the

functional to be minimized. They also solved the problem numerically by iterative methods. We

also note that in some continuous casting of steel processes, the heat transfer coefficient σ in (1.12)

may depend on both temperature u and time t, [5], but the investigation of this more complex

inverse problem is deferred to a future work.

Later on, Lesnic and co-authors [9], [10], Janicki and Kindermann [7] also attempted to solve the

inverse problems (1.1)–(1.5) and (1.10)–(1.12) numerically. For more physical meaning of these

inverse problems in heat transfer, we refer the reader to the aforementioned references.

In this paper, we consider the inverse problem of determining the function g(·, ·) in the initial

boundary value problem, [22],

ut − ∆u = 0 in Q, (1.13)

u(x, 0) = u0(x) in Ω, (1.14)

∂u

∂n
= g(u, f) on S (1.15)

from the additional condition (1.9). Here,

g : I × I → R (with I a subinterval of R) is assumed to be locally Lipschitz continuous,

monotone decreasing in u and increasing in f and to satisfy g(u, u) = 0, u0 and f are

given functions with range in I belonging, respectively, to L2(Ω) and L2(S).

Throughout, we assume that g satisfies this condition, and write that as g ∈ A. Usually, the heat

transfer coefficient is identified as a function of time or space, [6], but in this paper we refer to

applications where it depends on the boundary temperature.

The model (1.13)–(1.15) describes many practical situations, [1, 22]. It includes the linear boundary

condition g(u, f) = c(f −u) with c a positive constant. It includes nonlinear conditions of the form

g(u, f) = φ(f) − φ(u), with φ Lipschitz and monotone increasing on I; these include the Stefan-

Boltzmann radiation condition for which φ(w) = w4 and I = [0,∞), the Michaelis-Menten law

of enzyme diffusion for which φ(u) = cu/(u + k), where c and k are positive constants. It also

covers the case g(u, f) = ψ(f −u), where ψ is Lipschitz and monotone increasing on the ”difference

interval” I − I; in particular one can take ψ(w) = w5/4 for w > 0, and = 0 for w < 0, which relates

to natural convection.

As the additional condition (1.9) is pointwise, it cannot be defined if the solution is understood in

the weak sense, as we intend to use in this paper. Therefore, we consider the following alternative

conditions.

1) Observations on a part of the boundary:

u|Σ = h(ξ, t), (ξ, t) ∈ Σ, (1.16)

where Σ = Γ × (0, T ], Γ is a non-zero measure part of ∂Ω;

2) Boundary integral observations:

lu :=

∫

∂Ω
ω(ξ)u(ξ, t)dξ = h(t), t ∈ (0, T ], (1.17)
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where ω is a non-negative function defined on ∂Ω, ω ∈ L1(∂Ω) and
∫

∂Ω ω(ξ)dξ > 0. We note

that if we take ω as approximations to the Dirac δ-function, then the observations of this kind

can be considered as an averaged version of (1.9). Such integral observations are alternatives to

model pointwise measurements (thermocouples have non-zero width) and they will make variational

methods for the inverse problem much easier.

This paper is organized as follows. In the next section we will outline some well-known results on

the direct problem (1.13)–(1.15). Section 3 is devoted to the variational method for solving the

inverse problem (1.13)–(1.15), (1.17), and (1.13)–(1.15), (1.16), where we formulate the method

and prove the existence result for it, as well as deliver the formula for the gradient of the functional

to be minimized. As a by-product, we derive also the variational method for solving the inverse

problem (1.10)–(1.12), (1.17). Section 4 is devoted to presenting and discussing thoroughly the

numerical results, whilst Section 5 presents the conclusions of this study.

2 Direct problem

In this section, we outline the results on the direct problem (1.13)–(1.15), [22]. We use the standard

Sobolev spaces H1(Ω), H1,0(Q) and H1,1(Q) (see e.g., [24, p. 111]).

For a Banach space B, we define

L2(0, T ;B) = {u : u(t) ∈ B a.e. t ∈ (0, T ) and ‖u‖L2(0,T ;B) <∞},

with the norm

‖u‖2
L2(0,T ;B) =

∫ T

0
‖u(t)‖2

Bdt.

In the sequel, we shall use the space W (0, T ) defined as

W (0, T ) = {u : u ∈ L2(0, T ;H1(Ω)), ut ∈ L2(0, T ; (H1(Ω))′)},

equipped with the norm

‖u‖2
W (0,T ) = ‖u‖2

L2(0,T ;H1(Ω)) + ‖ut‖
2
L2(0,T ;(H1(Ω))′).

We take the convention of notation in [22]: letting J be a subinterval of I we shall use J as a

subscript on function spaces to denote the subset of functions having essential range in J .

Definition 2.1. Let u0 ∈ L2
I(Ω) and f ∈ L2

I(S). Then u ∈ H1,0
I (Q) is said to be a weak solution

of (1.13)–(1.15) if g(u, f) ∈ L2(S) and for all η ∈ H1,1(Q) satisfying η(·, T ) = 0,
∫

Q

(

− u(x, t)ηt(x, t) + ∇u(x, t) · ∇η(x, t)
)

dxdt =

∫

Ω
u0(x)η(x, 0)dx +

∫

S
g(u(ξ, t), f(ξ, t))η(ξ, t)dξdt.

(2.1)

In [22] the following results have been proved.

Theorem 2.2. Let J be a subinterval of I such that g(u, f) is uniformly Lipschitz continuous on

J × J . Then, for every u0 in L2
J(Ω) and f in L2

J(S), the problem (1.13)–(1.15) has a unique weak

solution.

Theorem 2.3. Let u be a weak solution of (1.13)–(1.15). If u0 and f are bounded below by m (or

above by M) almost everywhere, the same is true for u.
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We note that in [22] the strict monotonicity of g is assumed. However, it is in fact not needed.

We have also stronger results.

Theorem 2.4. ([2, 12, 13]) If u0 ∈ C(Ω) and f ∈ L∞(S), then there exists a unique solution of

(1.13)–(1.15) in W (0, T ) ∩ L∞(Q). This solution is continuous in Q and there exists a positive

constant c independent of u0, f such that

‖u‖W (0,T ) + ‖u‖C(Q) ≤ c
(

‖u0‖C(Ω) + ‖g‖L∞(I×I)

)

. (2.2)

From now on, to emphasize the dependence of the solution u on the coefficient g, we write u(g) or

u(x, t; g) instead of u. We shall prove that the mapping u(g) is Fréchet differentiable with respect

to g. In doing so, first we prove that this mapping is Lipschitz continuous. To this purpose, we

assume that

g(u, f) is continuously differentiable with respect to u in I and denote that by g ∈ A1.

Furthermore, since f is fixed, we shall write g(u) instead of g(u, f), but we always keep in mind

that g depends on the both variables, and f has the same essential range in I as u0 does. Also, as

we consider g as a function of one variable, we write ġ(u) instead of dg(u)/du.

Lemma 2.5. Let g1, g2 ∈ A1 such that g1 − g2 ∈ A. Denote the solutions of (1.13)–(1.15)

corresponding to g1 and g2 by u1 and u2, respectively. Further, suppose that u0 ∈ L2
I(Ω) and

f ∈ L∞
I (S). Then there exists a constant c such that

‖u1 − u2‖W (0,T ) + ‖u1 − u2‖C(Q) ≤ c‖g1 − g2‖L∞(I×I). (2.3)

Proof. Denote v = u1 − u2. Then, v satisfies the problem

vt − ∆v = 0 in Q, (2.4)

v(x, 0) = 0 in Ω, (2.5)

∂v

∂n
= g1(u1) − g2(u2) on S. (2.6)

Since v(x, 0) = 0,

g1(u1) − g2(u2) = (g1(u1) − g1(u2)) + (g1(u2) − g2(u2))

=

∫ u1

u2

ġ1(θ)dθ + g1(u2) − g2(u2),

g1(u2) − g2(u2) ∈ L∞(S) and ġ1 < 0, from Theorem 2.4 (see also [13, Proposition 3.3]) applied to

the problem (2.4)-(2.6), we have v ∈W (0, T ) ∩ C(Q) and the estimate (2.3).

Now we prove that u(g) is Fréchet differentiable with respect to g. In doing so, we introduce the

sensitivity problem:

ηt − ∆η = 0 in Q, (2.7)

η(x, 0) = 0 in Ω, (2.8)

∂η

∂n
= ġ(u(g)) + z(u(g)) on S. (2.9)
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Here, z ∈ A1 and g ∈ A1. Since η(x, 0) = 0, there exists a unique solution of (2.7)–(2.9) in

W (0, T )∩L∞(Q) which belongs to C(Q). From the proof of Lemma 2.5 we see that η is a bounded

linear operator mapping z ∈ A1 into W (0, T ).

We have the following result.

Theorem 2.6. Let u0 ∈ L2
I(Ω), f ∈ L∞

I (S) and g ∈ A1. Then the mapping g 7→ u(g) is Fréchet

differentiable in the sense that for any g, g + z ∈ A1 there holds

lim
‖z‖L∞(I×I)→0

‖u(g + z) − u(g) − η‖W (0,T )

‖z‖C1(I)
= 0. (2.10)

Proof. Set w = u(g +w) − u(g) − η, where η is the solution of problem (2.7)–(2.9). We see that w

is the solution of the problem

wt − ∆w = 0 in Q, (2.11)

w(x, 0) = 0 in Ω, (2.12)

∂w

∂n
= g(u(g + z)) + z(u(g + z)) − g(u(g)) − ġ(u(g))η − z(u(g)) on S. (2.13)

We have

g(u(g + z)) + z(u(g + z)) − g(u(g)) − ġ(u(g))η − z(u(g))

= ġ(u(g))(u(g + z) − u(g) − η)

+ g(u(g + z)) − g(u(g)) − ġ(u(g))(u(g + z) − u(g))

+ z(u(g + z)) − z(u(g)).

Thus, w is the solution of the problem

wt − ∆w = 0 in Q, (2.14)

w(x, 0) = 0 in Ω, (2.15)

∂w

∂n
− ġ(u(g))w = g(u(g + z)) − g(u(g))

− ġ(u(g))
(

u(g + z) − u(g)
)

+ z(u(g + z)) − z(u(g)) on S. (2.16)

Since g is continuously differentiable, we have

‖g(u(g + z)) − g(u(g)) − ġ(u(g))(u(g + z) − u(g))‖L∞(S) = o(‖u(g + z)|S − u(g)|S‖L∞(S)

= o(‖z‖L∞(I)),

due to Theorem 2.4. Furthermore,

‖z(u(g + z)) − z(u(g))‖L∞(S) =
∥

∥

∥

∫ u(g+z)

u(g)
ż(θ)dθ

∥

∥

∥

L∞(S)

≤ c‖ż‖L∞(I)‖z‖L∞(I) = o(‖z‖C1(I)). (2.17)

From the estimates (2.17) and the estimates in Theorem 2.4 we arrive at (2.10). Since η is a

bounded linear operator mapping z ∈ A1 into W (0, T ), the theorem is proved.
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3 Variational method

3.1 Inverse problem (1.13)–(1.15) and (1.17) over A1

In this subsection we study a variational method for the inverse problem (1.13)–(1.15) and (1.17).

We minimize the functional

J(g) =
1

2
‖lu(g) − h‖2

L2(0,T ) (3.1)

over A1. First, we prove that this functional is Fréchet differentiable and derive a formula for the

gradient. Second, under some stronger conditions on g we shall prove that there exists a solution

of the variational problem.

Let ǫ > 0 and z be in A1 such that g + ǫz ∈ A1 for 0 ≤ ǫ ≤ ǫ0, ǫ0 is given and sufficiently small.

Denoting uǫ the solution of (1.13)–(1.15) with g replaced by g + ǫz, we have

J(g + ǫz) − J(g) =
1

2
‖lu(g + ǫz) − h‖2

L2(0,T ) −
1

2
‖lu(g) − h‖2

L2(0,T )

=
1

2
‖l(uǫ − u(g))‖2

L2(0,T )+ < l(uǫ − u(g)), lu(g) − h >L2(0,T ) .

Letting ǫ → 0, in virtue of Lemma 2.5, we have ‖l(uǫ − u(g))‖2
L2(0,T ) = o(‖z‖L∞(I)). On the other

hand, since u(g) is Fréchet differentiable, J(g) is also Fréchet differentiable and its gradient has the

form

J ′(g)z =< l(u̇(g)z), lu(g) − h >L2(0,T )

=

∫ T

0

(

∫

∂Ω
ω(ξ)η(ξ, t)dξ

)(

∫

∂Ω
ω(ξ)u(g)|Sdξ − h(t)

)

dt, (3.2)

where η is the solution of the sensitivity problem (2.7)–(2.9).

Introduce the adjoint problem

− ϕt − ∆ϕ = 0 in Q, (3.3)

ϕ(x, T ) = 0 in Ω, (3.4)

∂ϕ

∂n
= ġ(u(g))ϕ + ω(ξ)

(

∫

∂Ω
ω(ξ)u(g)|Sdξ − h(t)

)

on S. (3.5)

Since ġ(u(g)) < 0 and ω(ξ)
(

∫

∂Ω ω(ξ)u(g)|Sdξ − h(t)
)

∈ L2(S), this problem has a unique weak

solution in W (0, T ) and due to Green’s formula [24, Theorem 3.18], we have

∫ T

0

(

∫

∂Ω
ω(ξ)η(ξ, t)dξ

)(

∫

∂Ω
ω(ξ)u(g)|Sdξ − h(t)

)

dt =

∫

S
z(u(g))ϕ(ξ, t)dξdt.

Thus,

J ′(g)z =

∫

S
z(u(g))ϕ(ξ, t)dξdt. (3.6)

We summarize this result as follows.

Theorem 3.1. The functional J(g) is Fréchet differentiable in A1 and its gradient has the form

(3.6).

From this statement, we can derive the necessary first order optimality condition.
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Theorem 3.2. Let g∗ ∈ A1 be a minimizer of the function (3.1) over A1. Then for any z =

g − g∗ ∈ A1,

J ′(g∗)z =

∫

S
z(u(g∗))ϕ(ξ, t; g∗)dξdt ≥ 0, (3.7)

where ϕ(x, t; g∗) is the solution of the adjoint system (3.3)–(3.5) with g = g∗.

Now we prove the existence of a minimizer of the function (3.1) over an admissible set. We introduce

the set A2 as follows ([20]),

A2 :=
{

g ∈ C1,ν [I],m1 ≤ g(u) ≤M1,M2 ≤ ġ(u) ≤ 0,∀u ∈ I,

sup
u1,u2∈I

|ġ(u1) − ġ(u2)|

|u1 − u2|ν
≤ C

}

. (3.8)

Here, ν,m1,M1,M2 and C are given.

Suppose that u0 ∈ Cβ(Ω) for some constant β ∈ (0, 1]. Then, due to [12, Corollary 3.2], u ∈

Cγ,γ/2(Q) for some γ ∈ (0, 1).

Following [20], set

Tad :=
{

(g, u(g)) : g ∈ A2;u ∈ Cγ,γ/2(Q)
}

.

Lemma 3.3. The set Tad is precompact in C1[I] × C(Q).

Proof. The set A2 is compact in C1[I] (see [20]). Due to [12, Corollary 3.2], when g ∈ A2 the

solution u(g) is bounded in Cγ,γ/2(Q), which is compactly imbedded in C(Q). Hence, Tad is

precompact.

Theorem 3.4. The set Tad is closed in C1[I] × C(Q).

Proof. Let (gn, un) be a convergent sequence in Tad with the limit (g, u). We shall prove that

u = u(g). Since gn ∈ A2, following [20], g also belongs to A2. Besides, since u0 and f have the

essential range in I, so do the functions un and u. It follows that

|g(u) − gn(un)| ≤ |g(u) − g(un)| + |g(un) − gn(un)|

≤M1‖u− un‖C(Q) + ‖g − gn‖L∞(I).

Hence, gn(x, t) = gn(un) converges uniformly to g(x, t) = g(u). From Definition 2.1 we see that

u = u(g).

Since J(g) is continuous, from the last theorem we have the following result.

Theorem 3.5. The problem of minimizing J(g) over A2 admits at least one solution.

3.2 Inverse problem (1.13)–(1.15) and (1.16) over A1

To solve the inverse problem (1.13)–(1.15) and (1.16), we approach it similarly: minimize the

functional

J(g) =
1

2
‖u(g) − h(·, ·)‖2

L2(Σ) (3.9)
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over A1. All the above results are valid for this functional, except for the formula of the gradient

of J . To obtain it, we introduce the adjoint problem

− ϕt − ∆ϕ = 0 in Q, (3.10)

ϕ(x, T ) = 0 in Ω, (3.11)

∂ϕ

∂n
= ġ(u(g))ϕ +

(

u(ξ, t) − h(ξ, t)
)

χΣ(ξ, t) on S. (3.12)

Here, χΣ is the characteristic function of Σ: χΣ(ξ, t) = 1 if (ξ, t) ∈ Σ, = 0 otherwise. Taking z as

in the previous subsection, we obtain that the gradient of J(g) has the same form of (3.6).

3.3 Inverse problem (1.10)–(1.12) and (1.17) over A2

As a by-product, we consider now the variational method for (1.10)–(1.12) and (1.17) under the

condition that σ ∈ A2. We denote the solution of (1.10)–(1.12) by u(σ): A function u ∈ H1,0(Q)

is said to be a weak solution of (1.10)–(1.12) if for all η ∈ H1,1(Q) satisfying η(·, T ) = 0,
∫

Q

(

− u(x, t)ηt(x, t) + ∇u(x, t) · ∇η(x, t)
)

dxdt =

∫

Ω
u0(x)η(x, 0)dx

+

∫

S
σ(u(ξ, t))(u∞ − u(ξ, t))η(ξ, t)dξdt.

(3.13)

If we suppose that u0 ∈ C(Ω), due to [2, 12, 13], there exists a weak solution of (1.10)–(1.12) in

W (0, T ) ∩ L∞(Q) which belongs to C(Q) and if u0 ∈ Cβ(Ω) for some constant β ∈ (0, 1], then

u ∈ Cγ,γ/2(Q) for some γ ∈ (0, 1). Furthermore, as noted in [20], due the maximum principle,

min {u∞, infx∈Ω u0(x)} ≤ u(x, t) ≤ max {u∞, supx∈Ω u0(x)}.

Now we consider the problem of minimizing the functional

J(σ) =
1

2
‖lu(σ) − h‖2

L2(0,T ) (3.14)

over A2. It can be proved that there exists a solution of this minimization problem.

It is proved in [15] that the mapping from σ ∈ C1(I) to u(σ) ∈ C(Q) is Fréchet differentiable.

Here, I :=
[

min {u∞, infx∈Ω u0(x)} ,max {u∞, supx∈Ω u0(x)}
]

. We note however that this result

can be proved also by the same way as above. If we take the variation z as in §3.1, then the Fréchet

derivative η = u̇(σ)z satisfies the sensitivity problem ([15])

ηt − ∆η = 0 in Q, (3.15)

η(x, 0) = 0 in Ω, (3.16)

∂η

∂n
=

(

σ̇(u(σ))(u∞ − u(σ)) − σ(u)
)

η + z(u(σ))
(

u∞ − u(σ)
)

on S. (3.17)

Due to [2, 12, 13], there exists a unique weak solution of (3.15)–(3.17) in W (0, T ) ∩ L∞(Q) which

belongs to C(Q).

Now we derive a formula for the gradient of J . In doing so, we introduce the adjoint problem:

− ϕt − ∆ϕ = 0 in Q, (3.18)

ϕ(x, T ) = 0 in Ω, (3.19)

∂ϕ

∂n
=

(

σ̇(u(σ))(u∞ − u(σ)) − σ(u)
)

ϕ+ ω(ξ)
(

∫

∂Ω
ω(ξ)u(ξ, t;σ)dξ − h(t)

)

on S. (3.20)
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Similarly to the above, we can prove that

J ′(σ)z =

∫

S
z(u(σ))

(

u∞ − u(σ)
)

ϕ(ξ, t)dξdt. (3.21)

4 Numerical results

We tested our algorithms for the two-dimensional domain Ω = (0, 1) × (0, 1) and T = 1. For the

temperature we take the exact solution to be given by,

uexact(x, t) =
100

4πt
exp

(

−
|x− x0|

2

4t

)

, (4.1)

where x0 = (−2;−2). This gives the intial condition (1.14) given by u(x, 0) = u0(x) = 0. From

(4.1) it is easy to check that the minimum of uexact occurs at t = 0 giving A = 0, whilst the

maximum of uexact occurs at t = T = 1 and x = (0; 0) giving B = 100
4π e

−2.

We consider the physical examples of retrieving a linear Newton’s law and a nonlinear radiative

fourth-power law in the boundary condition (1.15) which is written in the slightly modified notation

form
∂u

∂n
= g(u) − gexact(f), on S,

where the input function f is given by

f =
∂uexact

∂n
+ uexact, on S

in the linear case gexact(f) = −f , and

f =

(

∂uexact

∂n
+ u4

exact

)1/4

, on S

in the nonlinear case gexact(f) = −f4. One can calculate the extremum points of the function f

on S in the above expressions and obtain that [m := minSf,M := maxSf ] ⊃ [A,B] = [0, 100
4π e

−2].

From the max-min principle Theorem 2.3 we know that m ≤ u ≤ M , and we have available these

upper, M , and lower, m, bounds because the functions u0 and f are given input data. However,

in our preliminary numerical investigation reported in this section, we have taken that the full

information about the end points A and B is available, although from Theorem 2.3 we only know

that [A,B] is a subset of the known interval [m,M ]. In the absence of such information being

a priori available, one could run the inverse problem on the wider interval [m,M ] and retain a

posteriori the function g only on the reliably obtained range of the function u.

We investigate two weight functions in the boundary integral observations (1.17), namely,

ω(ξ) =







1

ε
for ξ ∈ [(0; 0), (ε; 0)],

0 otherwise,
ε = 10−5, (4.2)

and

ω(ξ) = ξ21 + ξ22 + 1, (4.3)

where ξ = (ξ1; ξ2). Note that the weight function (4.2) with ε vanishingly small is supposed to

mimic the case of a pointwise measurement (1.9) at the origin ξ0 = (0; 0).
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We employ the Gauss-Newton method for minimizing the cost functional (3.1), namely,

J(g) =
1

2
‖lu(g) − h‖2

L2(0,T ) =:
1

2
‖Φ(g)‖2

L2(0,T ), (4.4)

as follows. For a given gn, we consider the sub-problem to minimize (with respect to z ∈ L2(I))

1

2
‖Φ(gn) + Φ′(gn)z‖2

L2(0,T ) +
αn

2
‖z‖2

L2(I), Method 1 (M1), (4.5)

or
1

2
‖Φ(gn) + Φ′(gn)z‖2

L2(0,T ) +
αn

2
‖z − gn + g0‖

2
L2(I), Method 2 (M2). (4.6)

Then we update the new iteration as

gn+1 = gn + 0.5z. (4.7)

Here we choose the regularization parameters

αn =
0.001

n+ 1
. (4.8)

The direct and adjoint problems are solved using the boundary element method (BEM) with 128

boundary elements and 32 time steps. We also use a partition of the interval [A,B] into 32 sub-

intervals.

In what follows, we present the numerical results for both cases of linear and nonlinear unknown

functions g(u) using methods M1 and M2 for several choices of initial guess g0 and noisy data

||hδ − h||L2(0,T ) ≤ δ.

4.1 The linear case

In this case, we wish to retrieve the linear function g(u) = −u. Consider three sufficiently different

initial guesses

g0(u) ∈
{

0,−
1

2
u,−

1

B
u2

}

. (4.9)

For the weight function (4.2), Figures 1 and 2 show the numerical solutions obtained using methods

(M1) and (M2), for various initial guesses (4.9), and amounts of noise δ = 0.001 and δ = 0.01,

respectively. Figures 3 and 4 presents the same results as Figures 1 and 2, respectively, but for the

weight function (4.3). From Figures 1–4 it can be seen that both methods (M1) and (M2) perform

similarly well and show independence of the initial guesses (4.9). Except for some isolated large

jumps occurring at u = B, the numerical results are accurate, stable and robust, i.e. independent of

the initial guesses. By comparing Figures 1 and 2 with Figures 3 and 4 it seems that the choice of

weight function (4.2) or (4.3) slightly influence the behaviour of the numerical results. In particular,

Figures 3 and 4 show a staircase behaviour of the numerical results for g(u), as a function of u,

and there is also some slight dependence on the initial guess (4.9) which is more pronounced for

method (M2) and for the larger noise δ = 0.01. The numerical solution for the function g is not so

smooth because we approximate it by piecewise constant functions.

4.2 The nonlinear case

In this case, we wish to retrieve the nonlinear function g(u) = −u4. Consider three sufficiently

different initial guesses

g0(u) ∈
{

0,−B3u,−
1

2
u4

}

. (4.10)
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Figure 1: The exact linear function g(u) = −u in comparison with the numerical solutions obtained

using method (M1) (left) and method (M2) (right), for δ = 0.001 noise. The weight function ω is

given by (4.2).
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Figure 2: The exact linear function g(u) = −u in comparison with the numerical solutions obtained

using method (M1) (left) and method (M2) (right), for δ = 0.01 noise. The weight function ω is

given by (4.2).

For simplicity, we only show the numerical results obtained using the method (M2). Figures 5 and

6 show the numerical solutions obtained using method (M2), for various initial guesses (4.10) and

amounts of noise δ ∈ {0.001, 0.01}, for the weight functions (4.2) and (4.3), respectively. Similar

conclusions to those obtained for the linear case of the previous section can be drawn from these

figures.

5 Conclusions

This paper presented a novel theoretical and numerical nonlinear analysis of a multi-dimensional in-

verse heat conduction problem which allows the determination of the heat transfer law from bound-
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Figure 3: The exact linear function g(u) = −u in comparison with the numerical solutions obtained

using method (M1) (left) and method (M2) (right), for δ = 0.001 noise. The weight function ω is

given by (4.3).
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Figure 4: The exact linear function g(u) = −u in comparison with the numerical solutions obtained

using method (M1) (left) and method (M2) (right), for δ = 0.01 noise. The weight function ω is

given by (4.3).

ary temperature integral observations (1.17). A weak form variational formulation was adopted

in which the least-squares functional (3.1) or (3.9) was minimized over a couple of admissible sets

A1 (sections 3.1 and 3.2) or A2 (section 3.3). The Fréchet differentiability (Theorem 3.1) of the

objective functional and the existence of its minimizer (Theorem 3.5), as well as explicit formulae

(3.6) and (3.21) for the gradient have all been rigorously established. The numerical solution was

found by employing the Gauss-Newton method for the nonlinear minimization of (4.4) based on

either (4.5) (method (M1)) or, (4.6) (method (M2)). The numerically obtained results in Sec-

tion 4 demonstrated that the methods proposed were able to retrieve in an accurate, stable and

robust manner, the unknown both linear (section 4.1) and nonlinear (section 4.2) heat transfer

laws g(u), from the noisy boundary temperature integral measurements (1.17). Future work will

consider a more general nonlinear identification of a heat transfer law g(u, t) depending on both
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Figure 5: The exact nonlinear function g(u) = −u4 in comparison with the numerical solutions

obtained using method (M2): δ = 0.001 noise (left) and δ = 0.01 noise (right). The weight function

ω is given by (4.2).
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Figure 6: The exact nonlinear function g(u) = −u4 in comparison with the numerical solutions

obtained using method (M2): δ = 0.001 noise (left) and δ = 0.01 noise (right). The weight function

ω is given by (4.3).

the temperature u and the time t.

Acknowledgement

This research was partially supported by a Marie Curie International Incoming Fellowship within

the 7th European Community Framework Programme and by Vietnam National Foundation for

Science and Technology Development (NAFOSTED).

14



References

[1] Barbu V., Boundary control problems with nonlinear state equation. SIAM J. Control Optim.

20(1982), 125–143.

[2] Casas E., Pontryagin’s principle for state-constrained boundary control problems of semilinear

parabolic equations. SIAM J. Control Optim. 35(1997), 1297–1327.

[3] Choulli M., On the determination of an unknown boundary function in a parabolic equation.

Inverse Problems 15(1999), 659–667.

[4] Engl H.W., Fusek P. and Pereverzev S.V., Natural linearization for the identification of non-

linear heat transfer laws. Inverse problems: modeling and simulation. J. Inverse Ill-Posed

Problems 13(2005), 567–582.

[5] Grever W., A nonlinear parabolic initial-boundary value problem modelling the continuous

casting of steel. Z. Angew. Math. Mech. (ZAMM) 78(1998), 109–119.
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