
This is a repository copy of A WS-Agreement Based SLA Implementation for the CMAC
Platform.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/85684/

Version: Accepted Version

Proceedings Paper:
Galati, A, Djemame, K orcid.org/0000-0001-5811-5263, Fletcher, M et al. (3 more authors)
(2014) A WS-Agreement Based SLA Implementation for the CMAC Platform. In: Altmann,
J, Vanmechelen, K and Rana, OF, (eds.) Economics of Grids, Clouds, Systems, and
Services (Lecture Notes in Computer Science). Economics of Grids, Clouds, Systems, and
Services: 11th International Conference, GECON 2014, 16-18 Sep 2014, Cardiff, UK.
Springer , pp. 159-171. ISBN 978-3-319-14608-9

https://doi.org/10.1007/978-3-319-14609-6_11

© 2014 Springer International Publishing Switzerland. This is an author produced version
of a paper presented at the 11th International Conference, GECON 2014, and published in
Economics of Grids, Clouds, Systems, and Services (Lecture Notes in Computer Science
8914). Uploaded in accordance with the publisher's self-archiving policy. The final
publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-14609-6_11

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

A WS-Agreement Based SLA Implementation

for the CMAC Platform

Adriano Galati1, Karim Djemame1, Martyn Fletcher2,3, Mark Jessop2,
Michael Weeks2, and John McAvoy3

1 Distributed Systems and Services Research Group, School of Computing,
University of Leeds, E.C. Stoner Building, Woodhouse Lane, LS2 9JT, UK

2 Advanced Computer Architecture Group, Department of Computer Science,
University of York, YO10 5DD, UK

3 Cybula Ltd. R&D Team, Science Park, York, YO10 5DD, UK

Abstract. The emerging transformation from a product oriented econ-
omy to a service oriented economy based on Cloud environments envi-
sions new scenarios where actual QoS (Quality of Service) mechanisms
need to be redesigned. In such scenarios new models to negotiate and
manage Service Level Agreements (SLAs) are necessary. An SLA is a
formal contract which defines acceptable service levels to be provided
by the Service Provider to its customers in measurable terms. SLAs are
an essential component in building Cloud systems where commitments
and assurances are specified, implemented, monitored and possibly ne-
gotiable. This is meant to guarantee that consumers’ service quality ex-
pectations can be achieved. In fact, the level of customer satisfaction is
crucial in Cloud environments, making SLAs one of the most important
and active research topics. This paper presents an SLA implementation
for negotiation, monitoring and renegotiation of agreements for Cloud
services based on the CMAC (Condition Monitoring on A Cloud) plat-
form. CMAC offers condition monitoring services in cloud computing
environments to detect events on assets as well as data storage services.

Keywords: SLA, WS-Agreement, Requirements, Negotiation.

1 Introduction

Cloud computing [1] is emerging as a new computing paradigm and it is gain-
ing increasing popularity throughout the research community. One aspect of the
cloud is the provision of software as a service over the internet, i.e. providing
applications (services) hosted remotely. Ideally, these services do not require

Corresponding author: Dr. Adriano Galati, recently moved to Disney Re-
search Zurich, Stampfenbachstrasse 48, 8006 Zurich, Switzerland, email: adri-
ano.galati@disneyresearch.com

end-user knowledge of the physical compute resource they are accessing, nor
particular expertise in the use of the service they are accessing. Whilst the
cloud offers opportunities for remote monitoring of assets, there are issues re-
garding resource allocation and access control that must be addressed to make
the approach as efficient as possible to maximize revenues. From the service
provider perspective, it is impossible to satisfy all customers’ requests and a bal-
ance mechanism needs to be devised through a negotiation process. Eventually,
such a process will end up with a commitment between provider and customer.
Such a commitment is a commercial contract that guarantees satisfaction of the
QoS requirements of customers according to specific service level agreements.
SLAs define the foundation for the expected level of service agreed between the
contracting parties. Therefore, they must cover aspects such as availability, per-
formance, cost, security, legal requirements for data-placements, eco-efficiency,
and even penalties in the case of violation of the SLA. An SLA is defined as an
explicit statement of the expectations and obligations that exist in a business re-
lationship between the user and the service provider. A formalised representation
of commitments in the form of an SLA document is required to achieve both au-
tomated information collection and SLA evaluation. At any given point in time
many SLAs may exist, and each SLA in turn may have numerous objectives to
be fulfilled. Therefore, QoS attributes need to be explicitly defined with clear
terms and definitions by SLAs which exhibit how service performance is being
monitored, and what enforcement mechanisms are in place to ensure SLAs are
met [2]. Thus, a user accessing Cloud services on demand and with defined QoS
agreements which enables commitments to be fulfilled is a primary requirement.
The user can specify an SLA which will guarantee resources, provide job mon-
itoring and record violations if they are detected. The SLA document records
agreement provenance allowing for auditing mechanisms after it has terminated.
Although the cloud computing research community recognises SLA negotiation
as a key aspect of the WS-Agreement specifications, little work has been done to
provide insight on how negotiation, and especially automated negotiation, can
be realised. In addition, it is difficult to reflect the quality aspects of SLA re-
quirements. In this paper, which follows from our previous work [3], we present
our SLA implementation for the management of the negotiation, the monitoring
and the renegotiation phase of the agreed terms and requirements for the CMAC
(Condition Monitoring on A Cloud) platform [4, 5] which offers a range of ana-
lytical software tools designed to detect events on assets and complex systems as
well as data storage services. For this purpose, we choose the WSAG4J frame-
work [6, 7] which is an implementation of the WS-Agreement standard [8] from
the Open Grid forum (OGF). It provides comprehensive support for common
SLA management tasks such as SLA template management, SLA negotiation
and creation, and SLA monitoring and accounting. In the rest of this paper we
present in Section 2 an exhaustive overview of current literature, in Section 3
we introduce our SLA protocol drawing attention to some aspects related to its
design and integration in the CMAC platform. In Section 4 we present all of
the requirements we consider for CMAC services, in Section 5 we describe our

SLA implementation, and in Section 6 we provide the lessons we have learned
throughout this experience. Finally, Section 7 concludes this paper.

2 Related Work

A Service Level Agreement (SLA) is a contract, between the service provider and
the customer which specifies the function performed by the service, the agreed
bounds of performance, the obligations on both contractual parties and how
deviations are handled [8–10]. Unlike the provision of traditional basic services
through SLAs, providing support for real-time applications over service-oriented
infrastructures is a complex task that requires enhanced SLA protocols. The
Grid Resource Allocation Agreement Protocol Working Group (GRAAP-WG)
of the Open Grid Forum (OGF) has produced the Web Services Agreement
(WS-Agreement) standard [8] to create bilateral agreements. Kubërt et al. [11]
analyze different fields where SLAs are used, examine the proposed solutions,
and investigate how these can be improved in order to better support the creation
of real-time service-oriented architectures. The IRMOS project [12] proposes an
SLA framework which introduces a chain of linked SLAs implemented on differ-
ent layers in order to provide support for the provision of real-time applications.
Menychtas et al. [13] present a novel cloud platform, which was developed in the
frame of the EU-funded project IRMOS targeting soft real-time applications that
have stringent timing and performance requirements. Their platform combines
Service Oriented Infrastructures (SOIs) [14] with virtualisation technologies to
manage and provision computational, storage and networking resources as well
as to communicate with legacy systems such as WiFi locators. Ludwig et al.
[15] describe the use of WS-Agreement for Service Level Agreements paving the
way for using multiple distributed resources to satisfy a single service request.
Battre et al. [16] describe the Web Services Agreement Negotiation protocol
proposed by the Open Grid Forum to extend the existing specification. This
proposal is the result of combining various research activities that have been
conducted to define protocols for negotiating service levels or to supersede the
existing ”take-it-or-leave-it” protocol. The main characteristics of this proposal
are the multi-round negotiation capability, renegotiation capability, and com-
pliance with the original specification. Pichot et al. [17] propose and discuss
extensions to the WS-Agreement protocol which support dynamic negotiation
and creation of SLAs in an efficient and flexible manner. Some examples of WS-
Agreement implementations are WSAG4J [6, 7], Cremona [18] and the SORMA
project [19]. WSAG4J (WS-Agreement for Java) framework is a tool developed
by Fraunhofer SCAI [6, 7] to create and manage service level agreements (SLAs)
in distributed systems. It is an implementation of the OGF WS-Agreement spec-
ification [8]. WSAG4J helps designing and implementing SLAs and automates
typical SLA management tasks like SLA offer validation, service level monitor-
ing, persistence and accounting. It provides infrastructure components for service
providers and consumers supporting the negotiation of SLAs as well as the re-
trieval of information about negotiated SLAs. A possible extension for WSAG4J

would be the support for SLA template deployment from a tool for designing
SLA templates. SLA templates can be created during the design process of a
service and the deployment of an SLA template from the design tool would al-
low a better integration with the SLA infrastructure. Cremona (Creation and
Monitoring of Agreements) [18] was developed by IBM using an early version of
WS-Agreement. It is a middleware, which supports the negotiation, monitoring,
and management of WS-Agreement-based service level agreements. The provided
functionality supports both parties involved in the service provisioning and con-
sumption process, i.e. the service provider and the service consumer. SORMA
(Self-Organizing ICT Resource Management) [19] implement an Open Grid Mar-
ket in a comprehensive way by addressing three arguments: the economic model
providing an economically sound market structure; the self-organization model,
which deals with the interaction between the Grid-application and the market
and provides intelligent tools; and the economic middleware model, which builds
the bridge between the self-organization and the economic model on the one side
and state-of-the-art Grid infrastructure on the other side.

3 SLA Protocol Design

In this section we draw attention to some aspects related to the design and
integration of an SLA protocol for the CMAC platform to a point where it can
be commercially implemented. Most research up to now provides little insight
on how negotiation, and in particular automated negotiation, can be realised. In
addition, it is difficult to define the quality aspects of SLA requirements. Here,
we have designed an SLA protocol which is integrated in the CMAC platform.
For this purpose, the main challenges that we tackle in order to provide QoS
guarantees, are mainly three:

– the identification of the QoS properties, i.e. its requirements and terms, and
their publication in the SLA template;

– SLA generation and negotiation control based on service requirements and
assets available to satisfy customer requests, as well as the decision process
to accept, reject, or renegotiate the counteroffer in the negotiation process;

– maximising providers’ profit implementing an optimal service and resource
allocation policy. Profits are recognised when SLA agreements are honored,
generally when workload execution completes on time, otherwise penalties
are incurred;

With regard to the first issue, it is not currently tackled by the WS-Agreement
specification. We have decided to structure the SLA template distinguishing
between requirements and terms. We assume requirements to describe sufficient
conditions required by the service to be executed. More precisely, a service might
have need for technical (i.e. a specific operating system, CPU capacity, amount
of RAM), syntactical (i.e. defined format of the input data) and ethical require-
ments (i.e. majority age for the consumer to use the service). Requirements are
presented exclusively by the service provider and cannot be negotiable; they are

essential for the fulfillment of the service. Our SLA protocol allows negotiation
based on the terms presented by the parties. In this context, the agreed terms are
necessary conditions, but not sufficient, to reach an agreement; service require-
ments must be satisfied anyway. It is necessary to determine all the guarantee
terms that will be signed by both parties. For the CMAC services we identify
some terms which are QoS parameters like the delivery ability of the provider,
the performance of user’s workloads, the bounds of guaranteed availability and
performance, the measurement and reporting mechanisms, the cost of the ser-
vice, the terms for renegotiation, and the penalty terms for SLA violation. Our
SLA protocol defines ad-hoc SLA template structures for each service on the
base of its prerequisites. Our SLA protocol has been designed to allow negotia-
tion only for the guarantee terms. In this respect, the WS-Agreement negotiation
protocol decides whether to accept or reject the user’s offer, or eventually rene-
gotiate providing a counteroffer, if there are the prerequisites for raising one.
The negotiation is quite flexible; it is based on temporal restrictions, resource
constraints, previous offers and a maximum number of renegotiations is possi-
ble. Once the service requirements and the guarantee terms are met the contract
has been stipulated. The negotiation constraints in the negotiation template are
used to control the negotiation process. Although, virtualization of resources
is a prerequisite for building a successful cloud infrastructure, we do not con-
sider it at this stage. At this point CMAC can start monitoring the service and
determining whether the service objectives are achieved or violated. Namely,
if the provider has delivered the service within the guaranteed terms. At this
early stage we assume only the service provider to be in charge of this process,
although each party should be in charge of this task and how fairness can be
assured between them is an open issue. The monitoring process helps the service
provider to prevent violations of the guarantee terms by renegotiating them.

4 CMAC Requirements

An SLA can define different QoS for each service so as to create ad-hoc service
provisions to each service consumer. In this work we target services provided by
the CMAC platform [4, 5]. It offers a range of analytical software tools designed
to detect events on assets and complex systems as well as data storage services.
In particular, in this section, we focus on the Terms block of the agreement
template. Therefore, we identify requirements and guarantee terms of CMAC
services which need to be agreed by service consumers and provider to spec-
ify ad-hoc service level agreements before creating a new binding contract. The
Table 1 shows the service description terms presented in the implementation
of the SLA template for CMAC. Service description terms express a functional
description of the provided service. Therefore, such service description terms
contain a domain specific description of the service. In particular, the Tables
1(a) and 1(b) list out service constraints and resources derived from the im-
plementation of the CMAC namespace and from the OGF (Open Grid Forum)
namespace respectively. CMAC users can select one service among the eeg (elec-

Table 1: Service Description Terms in the CMAC’s SLA template.

(a)

CMAC namespace

Service
eeg
ecg

storage

Format
csv
ndf

Time
Start, end
Duration
Frequency

Pipeline Boolean

Browser
Firefox

IE

Alerting System Failure
Critical
Severe

Substantial

Error Handling
Moderate

Low
Absent

Renegotiation
Boolean

Age of majority

Communication of email
violations call

QoS communication
text
post

Cost Integer

(b)

OGF namespace

Operating System
Linux
MacOs

(Type, Version) Solaris
Windows

CPU Architecture
x86 64
x86 32

(Type) ARM
sparc

PowerPC
mips

Physical Memory Size

Virtual Memory Size

Disk Space Size

Bandwidth Size

Candidate Host Name

Exclusive Execution Boolean

troencephalogram), the ecg (electrocardiogram), and the storage of data. The
eeg and ecg are both software tools designed for medical signal analysis. Such
applications can read data in cnv (vector image files primarily associated with
DB2 conversion files) and ndf format. CMAC allows users to request service
provisioning, by allocating time-slots and frequency, between a start-time and
end-time. Thus, requested services and resources are available for use during the
selected time-slots . Workflows are also supported within the system. This allows
users to build a pipeline of individual services and execute them as an orches-
trated set of tasks via the workflow execution engine. Processes and output data
can be captured via a workflow system, which can orchestrate a pipeline of pro-
cessing activity. As a matter of course, CMAC archives eeg and ecg output data
but they may be further processed for remote visualization on a web browser [4].
Users can decide which connection bandwidth would be suitable for the service
performance and the visualization rendering of output data on the web browser.
Furthermore, users can choose the alerting level for system errors and service

failures. For that, CMAC can detect anomalies and system failures in signal
processing and notify them to service consumers based on the selected alerting
level. The error handling level is concerned with recording and communication of
failures of the CMAC services. System errors and service failures are notified to
CMAC users by means of the preferred communication method, that is, email,
call and text. The same communication method is used to notify SLA violations
and QoS auditing. CMAC also allows users to upload and make available for
use any own software for processing data as long as some requirements such
as the operating system and version, CPU architecture, physical memory, vir-
tual memory and disk space can be run on an execution node. Execution nodes
can be exclusively allocated or shared among CMAC users. Therefore, users can
choose the terms presented in Table 1(b) both for their own and CMAC services.
Service consumers can be contacted anytime to renegotiate the agreed terms if
the renegotiation flag is set to true. Finally, CMAC users can define maximum
cost that they are willing to pay for the service provision and must state they
are over eighteen on the SLA template.

<?xml version="1.0" encoding="UTF-8"?>
<wsag:Template wsag:TemplateId="1"
xmlns:wsag="http://schemas.ggf.org/graap/2007/03/ws-agreement">
<wsag:Name>CMAC-1</wsag:Name>
<wsag:Context>

<wsag:ServiceProvider>AgreementResponder</wsag:ServiceProvider>
<wsag:TemplateId>1</wsag:TemplateId>
<wsag:TemplateName>CMAC-TEMPLATE-1</wsag:TemplateName>

</wsag:Context>
...

</wsag:Template>

Fig. 1: Name and Context sections of the CMAC’s SLA template described by
means of the OGF XML Schema.

5 Implementation

The focus on service level rather than on network level enables the defini-
tion of SLA and QoS independently from the underlying network technology.
Nonetheless, a service should be defined without ambiguity. Therefore, we use the
WS-Agreement specification, a standard which defines a language and provides
generic support to build common functionalities for advertising the capabilities
of service providers, creating agreements based on templates, and for monitoring
agreement compliance at runtime. In this context, WSAG4J provides support to
design and create highly flexible SLAs using the WS-Agreement language and to
validate dynamic agreement offers based on template creation constraints. It also
supports common functionality to monitor agreements in a generic way and en-
ables users to build and deploy WS-Agreement based services. WSAG4J allows
publishing SLA templates in XML format. The Figure 1 presents the first two
sections, name and context, of an SLA template for the CMAC services which are
described by means of the OGF XML schema. We name the agreement described

...
<wsag:ServiceDescriptionTerm
wsag:Name="TIME_CONSTRAINT_SDT" wsag:ServiceName="SAMPLE-SERVICE">
<wsag4cmact:TimeConstraint xmlns:wsag4cmact=

"http://schemas.wsag4cmact.org/2012/10/wsag4j-scheduling-extensions">
<wsag4cmact:StartTime>$STARTTIME</wsag4cmact:StartTime>
<wsag4cmact:EndTime>$ENDTIME</wsag4cmact:EndTime>
<wsag4cmact:Duration>$DURATION</wsag4cmact:Duration>
<wsag4cmact:Frequency>$FREQUENCY</wsag4cmact:Frequency>

</wsag4cmact:TimeConstraint>
</wsag:ServiceDescriptionTerm>

...
<wsag:ServiceDescriptionTerm
wsag:Name="SERVICE_CONSTRAINT_SDT" wsag:ServiceName="SAMPLE-SERVICE">
<wsag4cmact:ServiceConstraint xmlns:wsag4cmact=
"http://www.comp.leeds.ac.uk/2012/10/CMAC-scheduling-extensions">

$SERVICE
</wsag4cmact:ServiceConstraint>

</wsag:ServiceDescriptionTerm>
<wsag:ServiceDescriptionTerm
wsag:Name="RENEGOTIATION_CONSTRAINT_SDT"
wsag:ServiceName="SAMPLE-SERVICE">
<wsag4cmact:RenegotiationConstraint xmlns:wsag4cmact=
"http://schemas.wsag4cmact.org/2012/10/CMAC-scheduling-extensions">

$RENEGOTIATION
</wsag4cmact:RenegotiationConstraint>

</wsag:ServiceDescriptionTerm>
...

</wsag:All>
</wsag:Terms>

Fig. 2: Resources described by means of the wsag4cmact XML Schema in the
terms block of the CMAC’s SLA template.

by the SLA template as CMAC-1. In the context section we define the party that
creates the agreement as ”agreement responder”, namely the service consumer,
and assign him with a unique identifier composed of the template name and id,
CMAC-TEMPLATE-1 and 1 respectively for the sample presented in Figure
1. All of the service description terms in the CMAC SLA template presented
in the previous section are exposed in XML format in the terms section. Since
the WS-Agreement is designed to be domain independent, the content of a ser-
vice description term can be any valid XML document. In such a section CMAC
resources and several constraints are available to users to help specifying require-
ments and guarantee terms of the provided services. Figure 2 presents CMAC
service constraints described by means of wsag4cmact, Our XML schema pre-
senting the CMAC service constraints is described by wsag4cmact, which is avail-
able at http://schemas.wsag4cmact.org/2012/10/wsag4j-scheduling-extensions.
Both parties involved in the agreement, i.e. agreement initiator and agreement
responder, must understand the domain specific service description. Our XML
Schema language is shown in Figure 4. Java interfaces and classes that can
be used to access and modify XML instance data have been derived from the
XML schema by means of XMLBeans which allows compiling the schema, and
generating and jarring Java types. An important requirement for dynamic SLA
provisioning is preventing illegal modification of agreement offers. Therefore our

<wsag:CreationConstraints>
...
<wsag:ItemConstraint>
<xs:sequence xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="OperatingSystem" minOccurs="1" maxOccurs="1"
type="jsdl:OperatingSystem_Type"/>

<xs:element name="CPUArchitecture" minOccurs="1" maxOccurs="1"
type="jsdl:CPUArchitecture_Type"/>

...
</xs:sequence>

</wsag:ItemConstraint>
</wsag:Item>
<wsag:Item wsag:Name="ResourcesSDT_JobDefinition_JobDescription_Resources_

CPUArchitecture_CPUArchitectureName">
<wsag:Location>

...
$this/wsag:AgreementOffer/wsag:Terms/wsag:All/wsag:ServiceDescriptionTerm
[@wsag:Name=’RESOURCE_SDT’]/jsdl:JobDefinition/jsdl:JobDescription/
jsdl:Resources/jsdl:CPUArchitecture/jsdl:CPUArchitectureName

</wsag:Location>
<wsag:ItemConstraint>
<xs:simpleType xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:restriction base="xs:string">
<xs:enumeration value="sparc"/>

<xs:enumeration value="powerpc"/>
<xs:enumeration value="x86_32"/>
<xs:enumeration value="x86_64"/>
...

</xs:restriction>
</xs:simpleType>
</wsag:ItemConstraint>

...
</wsag:CreationConstraints>

Fig. 3: Snippets of creation constraints in the CMAC’s SLA template.

implementation of the CMAC’s agreement template contains several sections of
creation constraints which can be used by an agreement responder to define the
structure and possible values of valid agreement offers. Only offers that are valid
with respect to its template creation constraints are accepted by CMAC. Our
creation constraints support CMAC in finding out acceptable values for service
descriptions. Besides, they protect the agreement responder from accepting of-
fers that are created in an illegal way. The CMAC agreement template we have
designed helps both the agreement initiator and the responder to come to a
common understanding of the provided service in the context of an SLA. The
agreement offer is valid only if all of the offer items are valid according to the
specified item constraints. Figure 3 shows snippets of value and structural con-
straints described in jsdl of the CMAC SLA templates. The first item refers to
the resources defined in the terms section of the CMAC SLA template. Here,
they must occur once. The second item refers to the CPU architecture name.
The location tag points to the CPUArchitectureName field which is also defined
in the terms section. A string type can be assigned to such a variable and CMAC
users can choose a CPU architecture out of the ones provided in the list. The
third snippet of Figure 3 defines the structural constraints of the agreement of-
fer. They specify which child elements can be part of a certain offer, the order

<?xml version="1.0" encoding="UTF-8"?>
...
<xs:complexType name="FrequencyConstraintType">

<xs:sequence>
<xs:element name="StartTime" type="xs:dateTime" minOccurs="0" maxOccurs="1" />
<xs:element name="EndTime" type="xs:dateTime" minOccurs="0" maxOccurs="1" />
<xs:element name="Duration" type="xs:int" minOccurs="0" maxOccurs="1" />
<xs:element name="Frequency" type="xs:int" minOccurs="0" maxOccurs="1" />

</xs:sequence>
</xs:complexType>
<xs:simpleType name="FormatConstraintType">

<xs:restriction base="xs:string">
<xs:enumeration value="csv"/>
<xs:enumeration value="ndf"/>

<xs:enumeration value="plain"/>
</xs:restriction>

</xs:simpleType>
<!-- ecg: electrocardiogram, eeg: elettroencephalogram -->
<xs:simpleType name="ServiceConstraintType">

<xs:restriction base="xs:string">
<xs:enumeration value="ecg"/>
<xs:enumeration value="eeg"/>
<xs:enumeration value="storage"/>
</xs:restriction>

</xs:simpleType>
<xs:simpleType name="AlertingSystemFailureConstraintType">

<xs:restriction base="xs:string">
<xs:enumeration value="Critical"/>
<xs:enumeration value="Severe"/>

<xs:enumeration value="Substantial"/>
<xs:enumeration value="Moderate"/>

<xs:enumeration value="Low"/>
<xs:enumeration value="Absent"/>

</xs:restriction>
</xs:simpleType>
...

</xs:schema>

Fig. 4: CMAC’s XML Schema.

with which such child elements must occur, their cardinality and how they are
clustered. This part implies that the context and the terms sections must be
specified in the CMAC SLA template, whereas its name section is optional.

6 Lessons Learned

Several questions and problems surfaced during the development of the Service
Level Agreement for the CMAC platform. Being CMAC a software platform
which offers condition monitoring services to detect events on assets and data
storage services in cloud environments, these questions mainly focused on the
”how” to implement and ”what” requirements need to be taken into account to
design an SLA protocol to provide CMAC services. The answers that were found
are described here as the lessons learned. Several lessons were learned between
the initial analysis phase and the actual implementation of the SLA. During the
first phase we identified and analyzed terms and requirements for each of the
CMAC services. Therefore, the first lesson is to decide at an early stage what the

provided services are so as to identify all of their requirements and determine
how they will be defined in the document structure of the SLA. Besides, the
identification of QoS properties, namely, service requirements, guarantee terms
and their publication in the SLA template strongly help designing the process to
accept, reject or renegotiate an offer and to monitor SLA violations accordingly.
For the purpose, we have chosen the WSAG4J framework which helps design-
ing and implementing SLAs and automates typical SLA management tasks like
SLA offer validation, service level monitoring, persistence and accounting. In
this work we provide a practical lesson on using WSAG4J to define and pro-
vide specific services of the CMAC platform. From the best of our knowledge,
this is the first employment of WSAG4J for a real-world cloud platform. There-
fore, we provide evidence that WSAG4J is a suitable tool for designing SLA
agreements. It provides support to design and create highly flexible SLAs using
the WS-Agreement language and to validate dynamic agreement offers based
on template creation constraints. One more lesson is about the possibility to
differentiate between the different SLA components. After investigating service
requirements it became clear that some aspects of the service needed more at-
tention than others. Therefore, it would help untangling the components of the
provided services and focus on such parts individually, rather than on the ser-
vices as a whole. Furthermore, the work presented in this paper is part of a
common project where researchers and software engineers from both academia
and industry are involved. However, some members were not involved in this
SLA implementation and would have to work with it as being part of the entire
project. This emphasised the need for a specific and readable document based
on the WS-Agreement specification and service requirements. An SLA document
that can be understood and easily adapted, even by people who have not been
involved in the earlier SLA implementation, including descriptions of taken deci-
sions on both document structure and services. A final lesson we learned is that
in cloud environments an agreement should not been seen as a rigid contract
that cannot be renegotiated and meant to be used only in case of conflicts or
agreement violations. It is a document that tries to bring two or more parties
into conformity for a common agreement. Therefor commitments on QoS results
might not always be enough. A balance between commitments on final results
and service performance should be defined by flexible agreements from both ser-
vice provider and service consumer in order to achieve a fair cooperation. The
lessons we have learned provide us with basis references for the development of
WS-Agreement based SLAs. Our recommendations provide practitioners with a
set of operational SLA concepts. In particular, the identification and definition
of requirements of cloud services play a key role in the design of suitable SLA
agreements and efficient SLA protocols. By focusing on the gathered require-
ments and by modelling the SLA process step by step all of the researchers and
software engineers involved in this project were able to discuss and contribute
to the SLA definition process and the final implementation. Both aspects lead
to a well-structured and understandable SLA document, which is the basis for
successful service delivery in cloud environments.

7 Conclusions

Currently, WS-Agreement provides little insight on how negotiation, and in par-
ticular automated negotiation, can be realized. In addition, it is difficult to define
the quality aspects of SLA requirements. This paper presents an SLA protocol
designed to guide the negotiation, the monitoring and the renegotiation phase
of the agreed terms to maximize revenues in the CMAC platform. Besides, we
also provide a clear distinction between quality aspects of SLA requirements. In
this work we integrate our SLA protocol into the CMAC platform which offers
a range of analytical software tools designed to detect events on assets and com-
plex systems as well as data storage services. For this purpose, we choose the
WSAG4J framework which is a tool to create and manage service level agree-
ments in distributed systems. In this work, we have developed the first SLA
protocol for the CMAC platform with the intention to maximize revenues by
designing an appropriate resource allocation process based on time restrictions
and related service parameters agreed during the negotiation phase and possi-
bly modified by means of renegotiations. The lessons learned provide us with
basis references for the development of WS-Agreement based SLAs. Our rec-
ommendations provide practitioners with a set of operational SLA concepts. In
particular, we draw attention to the identification and definition of requirements
of cloud services as fundamental for the design of suitable SLA agreements and
efficient SLA protocols. In future work we would like to implement and evaluate
the renegotiation protocol we have designed in this work. We would also like
to consider varying expiration times based on historical records to handle the
duration of the negotiation phase so as to enhance its flexibility. Besides, we
would also like to provide service consumers with estimates on previous service
executions along with service performance measurement methods, measurement
periods and data analysis reports, which will help choosing suitable service re-
quirements. Moreover, we are examining the possibility of integrating the SLA
protocol with service pricing and discounting policies to apply when SLA com-
mitments are not satisfied.

Acknowledgment

We would like to thank Wolfgang Ziegler, Oliver Wäldrich and Hassan Rasheed
from the Fraunhofer Institute SCAI for their valuable advices. This research is
partly funded by the University of Leeds through a Knowledge Transfer Secon-
dement grant, and the European Union within the 7th Framework Programme
under contract ICT-257115 - OPTIMIS.

References

1. R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg and I. Brandic, Cloud computing and
emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th
utility, Future Gener. Comput. Syst. 25, 6, 599-616 (2009).

2. E. Keller and H. Ludwig, The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services, Journal of Network and Systems Management,
Vol. 11, pp. 57-81 (2003).

3. A. Galati, K. Djemame, M. Fletcher, M. Jessop, M. Weeks, S. Hickinbotham, J.
McAvoy, Designing an SLA Protocol with Renegotiation to Maximize Revenues for
the CMAC Platform, at the Cloud-enabled Business Process Management (CeBPM
2012), Paphos, Cyprus (2012).

4. S. Hickinbotham, J. Austin and J. McAvoy, Interactive Graphics on Large Datasets
Drives Remote Condition Monitoring on a Cloud, In the Proceedings of the Open
Access Journal of Physics: Conference Series, Part of CMAC project, for Cybula
Ltd. and the University of York, COMADEM2012, 18-20 (2012).

5. B. Liang, S. Hickinbotham, J. Mcavoy and J. Austin, Condition Monitoring Under
the Cloud, In the Proceedings of the Digital Research 2012, Oxford (UK), (2012).

6. D. Battré, M. Hovestadt and O. Wäldrich, Grids and Service-Oriented Architectures
for Service Level Agreements, Springer, pp. 23-34 (2010).

7. O. Wäldrich and W. Ziegler, WSAG4J - Web Services Agreement for Java, [online]
Available: https://packcs-e0.scai.fraunhofer.de/wsag4j

8. A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Kakata,
J. Pruyne, J. Rofrano, S. Tuecke, M. Xu, Web Services Agreement Specifica-
tion (WS-Agreement), GRAAP-WG, OGF recommendation, [online] Available:
http://www.ogf.org/documents/GFD.192.pdf

9. OGF GFD.120: Open Grid Services Architecture - Glossary of Terms, J. Treadwell
(2007).

10. SLA Management Handbook: Volume 2 Concepts and Principles, Release 2.5, Tele-
Management Forum, GB 917-2(2005).

11. R. Kubërt, G. Gallizo, T. Polychniatis, T. Varvarigou, E. Oliveros, S.C. Phillips and
K. Oberle, Service Level Agreements for Real-time Service-Oriented Infrastructures,
Chapter 8 in Achieving Real-Time in Distributed Computing book: From Grids to
Clouds. , IGI Global Books, Information Science Pub, (2011).

12. IRMOS Project, Available [online]: http://www.irmosproject.eu
13. A. Menychtas, D. Kyriazis, S. Gogouvitis, K. Oberle, T. Voith, G. Gallizo, S.

Berger, E. Oliveros and M. Boniface, A Cloud Platform for Real-time Interactive
Applications, 1st International Conference on Cloud Computing and Service Science
(CLOSER 2011), Noordwijkerhout, The Netherlands, (2011).

14. T. Erl, Service-oriented Architecture: Concepts, Technology, and Design, Upper
Saddle River: Prentice Hall PTR, ISBN 0-13-185858-0, (2005).

15. H. Ludwig, T. Nakata, O. Wäldrich and W. Ziegler Coregrid Tr, Reliable Orches-
tration of Resources using WS-Agreement, High Performance Computing and Com-
munications Lecture Notes in Computer Science Volume 4208, pp 753-762,(20060.

16. D. Battré, F.M.T. Brazier, K.P. Clark, M.A. Oey, A. Papaspyrou, O. Wäldrich, P.
Wieder and W. Ziegler, A Proposal for WS-Agreement Negotiation, In Proc. of the
11th IEEE/ACM Int. Conference on Grid Computing, pp. 233-241, (2010).

17. A. Pichot, P. Wieder, O. Wäldrich and W. Ziegler, Dynamic SLA-negotiation based
on WS-Agreement, CoreGRID TR-0082, Technical Report. (2007)

18. H. Ludwig, A. Dan, R. Kearney, Cremona: An architecture and library for creation
and monitoring of WSAgreements, Proceedings of the International Conference on
Service Oriented Computing (ICSOC172004), 65-74, ACM: New York (2004).

19. D. Neumann, J. Stoesser, A. Anandasivam, N. Borissov, SORMA-Building an open
market for grid resource allocation, Grid Economics and Business Models (Lecture
Notes in Computer Science, vol. 4685). Springer 194-200; Berlin (2007).

