This is an author produced version of *Programmed death 1 expressing regulatory T cells in vitiligo*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/85671/

Article:

http://dx.doi.org/10.1111/bjd.13595
Commentary – Programmed death (PD) 1 expressing regulatory T cells in vitiligo

Vitiligo is a common depigmenting skin disease with a prevalence of 1-2%. The exact aetiology and detailed pathogenesis of vitiligo is not fully understood, but destructive CD8⁺ T cell responses against melanocytes are strongly implicated in the development of the disease.²⁻³ Regulatory T cells (Tregs) are a subset of CD4+ lymphocytes that play a key role in maintaining peripheral tolerance in vivo through the active suppression of self-reactive T cell activation and expansion.⁴ Several studies have reported dysregulation of Tregs in vitiligo patients,⁵⁻⁶ and repigmentation in a mouse model of spontaneous epidermal depigmentation was found to be accompanied by an increased Treg cell infiltration, suggesting their importance in preventing an ongoing immune response against melanocytes.⁷

In this issue of BJD, the findings of Tembhre et al⁸ support a role for Tregs in vitiligo pathogenesis. They report a decrease in the frequency of Treg cells and a reduction in the expression of Treg cell-associated molecules such as TGF-β, FOXP3 and chemokine receptor CCL21 in the peripheral blood and the lesional skin of vitiligo patients. Tregs mediate their suppressive function through the programmed death 1 (PD1)/PD1-ligand pathway.⁹ PD1 is an inhibitory cell surface molecule that inhibits activation of autoreactive T and B cells, suppresses their proliferation, and induces apoptosis on interaction with PD1-ligand on Treg cells.⁹ Blocking PD1-ligand in vitro causes the expansion of Tregs suggesting the mechanism by which Treg function is contra-regulated on PD1/PD1-ligand engagement.¹⁰ In the current report⁸, the authors observed an increase in the frequency of peripheral PD1+Tregs and CD3+CD4+PD1⁺ T cells in vitiligo patients compared to healthy controls. They hypothesise
that increased expression of PD1 on Treg cells may be acted upon by autoreactive T cells expressing PD1-ligand leading eventually to the apoptosis of Tregs and their consequent deficiency in vitiligo patients. However, their hypothesis requires much further investigation to provide evidence to support it as a mechanism for Treg cell dysfunction in vitiligo.
Conflicts of interest

None declared

DR. E. HELEN KEMP

Department of Human Metabolism

University of Sheffield

Sheffield S10 2RX

U.K.

Email – e.h.kemp@sheffield.ac.uk
References

