This is a repository copy of *Numerical Stability of Path-based Algorithms For Traffic Assignment*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/85656/

Version: Accepted Version

Article:

https://doi.org/10.1080/10556788.2015.1047018

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Numerical Stability of Path-based Algorithms For Traffic Assignment

O. Perederieievaa,, M. Ehrgottb, A. Raitha, J. Y. T. Wangc

aUniversity of Auckland, Auckland, New Zealand
bLancaster University, Lancaster, UK
cUniversity of Leeds, Leeds, UK

May 3, 2015

Abstract

In this paper we study numerical stability of path-based algorithms for the traffic assignment problem. These algorithms are based on decomposition of the original problem into smaller sub-problems which are optimised sequentially. Previously, path-based algorithms were numerically tested only in the setting of moderate requirements to the level of solution precision. In this study we analyse convergence of these methods when the convergence measure approaches machine epsilon of IEEE double precision format. In particular, we demonstrate that the straightforward implementation of one of the algorithms of this group (projected gradient) suffers from loss of precision and is not able to converge to highly precise solution. We propose a way to solve this problem and test the proposed adjusted version of the algorithm on various benchmark instances.

Keywords: traffic assignment; path-based algorithms; convergence; numerical stability; floating point arithmetic.

1 Introduction

Various traffic assignment (TA) models are used in practice by transportation engineers and urban planners. These models allow to analyse road networks, to predict impact of potential projects and policies and to control traffic with respect to level of congestion, emission, toll revenue etc. Ortúzar and Willumsen (2001). The models aim to predict how road users will decide to travel during a given period of time (usually morning and evening peaks are of interest). The task of predicting how a particular individual will travel is addressed by making certain assumptions on how people usually make their route choices. The classical TA model assumes that drivers travel on their fastest (or shortest) paths and network equilibrium occurs when no traveller can decrease their travel time by shifting to a new path. This assumption is called the user equilibrium condition or Wardrop’s first principle Sheffi (1985).

The key feature of TA models consists in taking into account congestion effects that occur if capacities of some roads are exceeded. In order to consider congestion, so-called link cost functions are used. They represent travel time through a given link of a network depending on traffic flow on that particular link. Thus, given the transportation network, the number of drivers travelling, their origins and destinations and the link cost functions, the goal is to assign traffic flows to links of the road network in such a way that the user equilibrium condition is satisfied.

Several papers discuss the importance of highly precise solutions for the traffic assignment problem. High precision is required for select link analysis and for consistent comparison between design scenarios Slavin et al. (2010); Gentile (2014). Select link analysis provides information
of where traffic is coming from and going to for vehicles at selected links (and combination of links) throughout the modelled network Ortúzar and Willumsen (2001). Bar-Gera et al. (2013) explain that TA is hierarchically embedded in a model for network design and road pricing. The level of precision of TA in this case has a direct impact on precision of the corresponding master problem. This motivates researchers to propose algorithms capable of finding accurate solutions in a reasonable amount of time.

While studying various algorithms for solving the traffic assignment problem, we noticed that one of the methods from our study (projected gradient) is not able to reach the required level of precision Perederieieva et al. (2013, 2014). In this paper we investigate reasons of this behaviour and propose a way to amend the algorithm in such a way that it is able to converge to high precision.

This paper is organised as follows. Section 2 introduces preliminary definitions from floating point arithmetic. Section 3 presents the traffic assignment problem and the algorithms considered in this study. In Section 4 we discuss floating point issues that may arise and how to avoid them. Numerical results are presented in Section 5. Finally, Section 6 summarises our findings.

2 Floating Point Arithmetic

For the sake of completeness, this section introduces some definitions from floating point arithmetic and numerical computing. In the following, all discussions of computations involve real numbers or their computer-based counterparts – floating point numbers.

There are several different sources of approximation and errors that occur when we want to solve a numerical problem. Heath (1996) divides them into two main categories: the ones that happen before computation and the ones that occur during computation. The first group of approximations include errors that come from modelling (simplifications, assumptions, etc.), empirical measurements (finite precision of instruments) and previous computations that might have been approximate. The second group of approximations consists of errors coming from truncation or discretisation (for example, when a derivative of a function is replaced with a difference quotient) and rounding (finite computer precision arithmetic). Because of different errors and approximations, the solution to a given computational problem is only approximate. Accuracy of solution is closeness of a computed solution to the true solution of the problem Heath (1996).

At first sight, it seems that accuracy of solution depends solely on the errors that are incorporated into the model at the different stages presented above. However, accuracy of solution of a computation problem also depends on the problem itself. This is defined by conditioning of the problem Heath (1996). A problem is well-conditioned if a given relative change in the input data results in a reasonably commensurate relative change in the solution Heath (1996). If the relative change in the solution can be much larger than that in the input data, a problem is ill-conditioned Heath (1996).

If the problem is well-conditioned, an algorithm should return a reasonably accurate solution. Such an algorithm is called stable¹. However, some algorithms can have intermediate steps that introduce ill-conditioning causing the solution to diverge Overton (2001). Such algorithms are called unstable. Sedgewick and Wayne (2007) summarise these concepts as follows: “Some problems are unsuitable to floating-point computation.”

What can cause introduction of ill-conditioned steps into an algorithm that tries to solve a well-conditioned problem? Floating point arithmetic can answer this question. First, let us recall how real numbers are represented in computers. Any number \(x \) can be written in the following form with base 2:

\[
x = \pm S \cdot 2^E, \quad 1 \leq S < 2,
\]

where \(S \) is called significant and \(E \) is exponent Overton (2001). The binary expansion of \(S \) is

\[
S = (b_0b_1b_2b_3\ldots)_2,
\]

¹A more formal definition is: “an algorithm is stable if the result it produces is relatively insensitive to perturbations resulting from approximations made during the computation” Heath (1996).
This gap is filled with subnormal number

Figure 1: Example of a small floating point system.

where b_0 is a hidden bit and $b_1b_2b_3...$ is the fractional part of the significant. For example, the number $11/2$ can be expressed as $(1.011)_2 \cdot 2^2$ Overton (2001). Any number (except zero) with zero hidden bit can be alternatively represented by a number with $b_0 = 1$ by changing the exponent. For example, $(0.00011)_2 \cdot 2^6$ can be rewritten as $(1.1)_2 \cdot 2^2$. This process is called normalisation. The numbers with hidden bit b_0 equal 1 are called normalised.

Since computers have limited memory, the fractional part of the significant can have only a finite number of bits. This number defines the precision of the floating point system. Any normalised floating point number with precision p can be expressed as

$$x = \pm (1.b_1b_2...b_{p-2}b_{p-1})_2 \cdot 2^E.$$ \hfill (3)

Since zero cannot be normalised, a special format is used to store it. Overton (2001) presents a small example where all numbers have the form: \(\pm (b_0.b_1b_2) \cdot 2^E\) and exponent E can only take values $-1, 0$ or 1. This floating point system has precision 3. All normalised floating point numbers of this system and zero can be plotted on the real axis as in Figure 1. The gap between zero and the smallest normalised number is relatively big. Because of this, this gap is evenly filled with subnormal numbers that all have zero hidden bit. Any non-zero number with magnitude smaller than the smallest normalised number is subnormal Overton (2001).

Floating point systems allow to approximate the infinite set of real numbers by a finite set of floating point numbers. This means that in all computations based on floating point systems, real numbers are replaced with closest floating point numbers. This leads to round-off errors that can accumulate during the computation process.

Let us come back to the question of ill-conditioned steps that might be introduced by an algorithm. Apart from round-off errors, so-called cancellation might lead to loss of precision. Cancellation occurs when one floating point number is subtracted from another number that is nearly equal to it Overton (2001). In this case all or almost all bits cancel each other. As a result, the number of significant digits is much lower than those of the numbers that are subtracted. Overton (2001) gives a good example of cancellation. Let us consider two numbers $x = 3.141592653589793$ and $y = 3.141592653585682$. The difference of these numbers is $z = x - y = 4.111 \cdot 10^{-12}$. If we now calculate this difference in a C program using type double to store x, y and z, the result of the computation will be $4.11093815582030 \cdot 10^{-12}$. This number agrees to the exact result only to four digits. All other digits are meaningless, since they do not reflect the original data x and y and should be ignored Overton (2001). The effect of cancellation can be disastrous for a computer program. If the error that occurred because of cancellation starts dominating true values, the result of the computation might be completely incorrect. Many examples of such behaviour of computer programs can be found in Heath (1996), Overton (2001) or Stewart (1996). Cancellation can also be explained by the conditioning of the problem. In fact, computing $g(x + h) - g(x)$ is ill-conditioned for small values of h Overton (2001).

One of the ways to deal with cancellation is to find an alternative mathematical formulation that does not introduce ill-conditioned steps. However, it is not always possible. Other alternatives include using higher precision for ill-conditioned steps and choosing parameters of the problem in a more sensible way.

Floating point precision issues might be overcome if fixed point number representation is used, i.e. when each real number is represented as an integer number with a scaling factor (for example, number 1.23 can be represented as 1230 with scaling factor of 10^{-3}). Such a representation might improve accuracy, however, it is also prone to precision loss Yates (2013).
3 Traffic Assignment Problem

This section introduces a mathematical formulation of the TA problem and some of the algorithms to solve it.

3.1 Problem Formulation

A transportation network is defined as a directed graph \(G(N, A) \) where \(N \) is a set of nodes and \(A \) is a set of links. The users of the transportation network travel from their origins to their destinations. Let \(D_p \) denote travel demand between origin-destination (O-D) pair \(p \in Z \), where \(Z \) is the set of all O-D pairs. A demand represents how many vehicles are travelling from an origin to a destination.

As was mentioned before, the key feature of TA models consists in taking into account congestion effects that occur in road networks. In order to consider congestion, link cost functions are introduced into the model. They represent travel times through links of a network depending on the traffic flow on those links. Let \(c_a(f_a) \) denote a link cost function of link \(a \) that depends on link flow \(f_a \). Link flow represents the number of vehicles per time unit on each link. Let \(F = (F_1, ..., F_{|K|}) \) denote a vector of path flows, where \(K \) is the set of simple paths between all O-D pairs of graph \(G(N, A) \). Let \(K_p \subseteq K \) denote the set of paths between O-D pair \(p \).

Let path cost function \(C_k(F) \) denote the travel time on path \(k \). Travel time on each path is the sum of travel times of links belonging to this path, i.e. \(C_k(F) = \sum_{a \in A} \delta^k_a c_a(f_a) \) where \(\delta^k_a = 1 \) if link \(a \) belongs to path \(k \), and \(\delta^k_a = 0 \) otherwise.

The following optimisation problem (4) results in the link flows satisfying the user equilibrium condition Sheffi (1985), i.e. a solution of traffic assignment.

\[
\min \quad \sum_{a \in A} \int_0^{f_a} c_a(x)dx \quad (4a)
\]
\[
\text{s.t.} \quad \sum_{k \in K_p} F_k = D_p, \quad \forall p \in Z, \quad (4b)
\]
\[
F_k \geq 0, \quad \forall k \in K_p, \forall p \in Z, \quad (4c)
\]
\[
f_a = \sum_{p \in Z} \sum_{k \in K_p} \delta^k_a F_k, \quad \forall a \in A. \quad (4d)
\]

Equations (4b) are flow conservation constraints, equations (4c) are non-negativity constraints, equations (4d) relate link and path flows.

If graph \(G(N, A) \) is strongly connected\(^2\), demands \(D_p \) are positive for all O-D pairs and all link cost functions \(c_a(f_a) \) are continuous, positive and strictly increasing for each \(a \), then the TA problem (4) has a solution and equilibrium link flows \(f^* \) are unique (Patriksson, 1994). In the following, we assume that these requirements are satisfied.

The formulation (4) is sometimes referred to as link-route or path flow formulation Patriksson (1994); Bertsekas (1998). The path-based algorithms that are discussed in Section 3.2 use this mathematical programme. Other optimisation formulations of the TA problem based on a different set of decision variables can be found in Patriksson (1994) and Bertsekas (1998).

3.2 Path-based Algorithms

Path-based methods exploit O-D pair separability and path flow formulation (4) of the TA problem. This group of methods operates in the space of path flows. At each iteration, path flows of all but one O-D pair are fixed and flows are moved among the paths connecting the remaining single

\(^2\)A directed graph is strongly connected if at least one path joins each O-D pair (Patriksson, 1994).
Initialise: Generate feasible path sets $K_p^+, \forall p \in Z$;
Set iteration counter $i = 1$;

While (convergence criterion is not met)
For (each O-D pair $p \in Z$)
Update path costs $C_k, \forall k \in K_p^+$;
Improve path set K_p^+;
If (path set K_p^+ was improved or $|K_p^+| > 1$)
Equilibrate path set K_p^+;
Project path flows on links and update corresponding link costs;
Remove unused paths from set K_p^+;
Increment iteration counter $i \rightarrow i + 1$;

PE: shift flow from longest path to shortest path
GP: shift flow from costlier paths to shortest path
PG: shift flow from paths costlier than average path cost to cheaper than average path cost
ISP: shift flow from costlier paths to cheaper paths

Figure 2: Framework for path-based algorithms.

O-D pair. Therefore, paths and the corresponding path flows must be stored. For this purpose we use sets $K_p^+, \forall p \in Z$, that store paths between each O-D pair p that are currently in use, i.e. they carry positive flow. A framework describing this group of algorithms is presented in Figure 2.

In order to prevent storing all possible paths for each O-D pair, a column generation approach is usually applied, which is based on the idea of generating new paths when needed Patriksson (1994). For a given O-D pair p the shortest path is calculated and added to K_p^+ if the found path is shorter than the current shortest path contained in this set. This step corresponds to “Improve path set K_p^+” of the framework. In order to keep only promising paths in K_p^+, the paths that do not carry flow are removed from K_p^+.

Initialisation is performed by all-or-nothing assignment. First, all link flows are set to zero and the corresponding travel times of each link are updated. Then, the shortest paths between each O-D pair are calculated and added to corresponding path sets $K_p^+, \forall p \in Z$. Every such shortest path p is initialised with flow equal to demand D_p.

Let a commodity refer to trips between a single O-D pair. Due to the decomposition by O-D pairs, the solution to the original TA problem is found by solving several single commodity sub-problems sequentially until the desired precision of the solution is reached. This single commodity sub-problem is identical to (4), but restricted to O-D pair p and fixed set of paths K_p^+. Path-based algorithms differ in how such a sub-problem is solved. As presented in Patriksson (1994), for the single commodity sub-problem the feasible direction of descent is defined by the path cost differences between cheaper and costlier paths. Equivalently, moving the current solution in the feasible descent direction means that path set K_p^+ is equilibrated, i.e. some or all of the path costs of set K_p^+ are equalised.

In the following we discuss different path-based algorithms. All algorithmic steps are described for one O-D pair denoted by p. We also simplify the notation of path cost functions by using C_k instead of $C_k(F)$.

Path-based algorithms differ from each other in the way the path set is equilibrated. Usually, this involves two main steps that are specific to a particular algorithm. The first step is to calculate the direction of descent d. In the following, we discuss this step in detail because this is of particular interest for our study of numerical stability of the methods. The second step is to calculate step size λ which measures how far the current solution must be moved in the direction of descent. In order to find an appropriate step size value we use quadratic approximation Gentile (2014); Cheng et al. (2009). Once the direction of descent and step size are known, the current solution F is updated as
\[
F_k := F_k + \lambda d_k, \quad \forall k \in K_p, \forall p \in Z.
\]

Some of the algorithms apply a different strategy of updating the current solution that uses a fixed step size which is usually equal to one.

The first path-based algorithm called path equilibration (PE) is proposed by Dafermos (1968).
This algorithm equalizes the costs of the current longest path \(l \in K_p^+ \) with positive flow and the current shortest path \(s \in K_p^- \). The direction of descent \(\mathbf{d} \) is defined as follows Florian and Hearn (1995):

\[
d_l = \frac{C_s - C_l}{\sum_{a \in A_{s,t}} \frac{d_a}{\partial f_a}},
\]

\[
d_s = -d_l,
\]

\[
d_j = 0, \quad \forall j \in K_p^+, j \neq s, j \neq l,
\]

where \(A_{s,t} \) is the set of links belonging to path \(s \) and to path \(l \) but not to both of them. Once \(\mathbf{d} \) is calculated, the solution is updated by

\[
F_l = F_l - \min \{F_l, -d_l\},
\]

\[
F_s = F_s + \min \{F_s, d_s\}.
\]

Jayakrishnan et al. (1994) propose a different approach called the gradient projection (GP) method and further studied it in Chen and Jayakrishnan (1998). It is similar to PE, but O-D flow is moved from several non-shortest paths to the shortest path. In particular, the GP algorithm moves flow from the paths that have cost greater than the current average path cost to the paths that have cost less than the average value. This algorithm equalizes the costs of the current longest path \(l \in K_p^+ \) with positive flow and the current shortest path \(s \in K_p^- \). Firstly, a direction of descent is calculated:

\[
d_k = \frac{C_s - C_k}{\sum_{a \in A_{s,k}} \frac{d_a}{\partial f_a}} \quad \forall k \in K_p^+, k \neq s.
\]

Secondly, a new solution is projected onto the feasible set:

\[
F_k = F_k - \min \{-\alpha d_k, F_k\}, \quad \forall k \in K_p^+, k \neq s,
\]

\[
F_s = D_p - \sum_{k \in K_p^+, k \neq s} F_k,
\]

where \(\alpha \) is a predefined constant that must be small enough in order to guarantee convergence of the algorithm Jayakrishnan et al. (1994). Jayakrishnan et al. (1994) recommend setting \(\alpha \) to 1.

Another path-based algorithm is proposed in Florian et al. (2009). It is called projected gradient (PG). The main idea of the PG algorithm is to move flow from the paths that have cost greater than the current average path cost to the paths that have cost less than the average value. It is equivalent to defining the direction of descent

\[
d_k = \bar{C}_p - C_k, \quad \forall k \in K_p^+
\]

where \(\bar{C}_p = \frac{\sum_{k \in K_p^+} C_k}{|K_p^+|} \) is the average cost of the paths belonging to \(K_p^+ \). The update of the current solution is then performed as in equation (5).

Another approach similar to PG called the improved social pressure (ISP) algorithm is developed in Kumar and Peeta (2011). The ISP algorithm is based on the idea of “social pressure” which is defined as the difference between the cost of a path and the cost of the shortest path. All the paths are divided into two groups \(P_p \subset K_p^+, \forall p \in Z \) (paths with cost less than or equal to some value \(\pi \)) and \(\bar{P}_p \subset K_p^+, \forall p \in Z \) (paths with cost greater than \(\pi \)) such that \(P_p \cup \bar{P}_p = K_p^+ \).

The value of \(\pi \) is determined at each iteration as \(\pi = C_s + \delta \cdot (C_l - C_s) \), where \(C_s \) and \(C_l \) are the costs of the current shortest and longest paths and \(\delta \) is a predefined constant. In our numerical tests we set \(\delta \) to 0.15 as suggested in Kumar and Peeta (2011). Flow is shifted from the paths belonging to set \(\bar{P}_p \) to the paths belonging to set \(P_p \). This is equivalent to defining direction of descent \(\mathbf{d} \) and moving the solution along this direction with \(\mathbf{d} \) defined as

\[
d_k = C_s - C_k, \quad \forall k \in \bar{P}_p,
\]

\[
d_l = -\frac{-\sum_{k \in \bar{P}_p} d_k}{s_l(F) \cdot \sum_{m \in P_p} \frac{1}{s_m(F)}}, \quad \forall l \in \bar{P}_p,
\]
where \(s_l(F) = \sum_{a \in A} \delta^l_a \cdot \frac{\partial c}{\partial f} \) is the sum of first derivatives of link cost functions of the links belonging to path \(l \). The current solution is then updated according to equation (5).

4 High Precision and Floating Point Issues

This section is devoted to the study of convergence of the algorithms presented above. The most common measure of convergence used in the traffic assignment literature is relative gap Slavin et al. (2006); Florian et al. (2009) which is defined as

\[
RGAP = 1 - \frac{\sum_{p \in Z} D_p \cdot C_p^{\text{min}}}{\sum_{a \in A} f_a \cdot c_a},
\]

where \(C_{\text{min}}^p = \min_{k \in K_p} C_k \) is the shortest path between O-D pair \(p \). The smaller the value of relative gap, the closer the solution is to user equilibrium. We are interested in analysing the behaviour of the algorithms with values of relative gap approaching \(10^{-14} \). Different methods for solving the traffic assignment problem are studied at this level of precision in the literature Bar-Gera (2002); Nie (2010); Bar-Gera (2010); Inoue and Maruyama (2012). However, according to our knowledge only Inoue and Maruyama (2012) test one path-based algorithm at high level of precision. Other numerical studies that analyse path-based algorithms limit the relative gap by values from the interval \([10^{-7}, 10^{-4}]\), see Mitradjieva and Lindberg (2013); Zhou and Martimo (2010); Slavin et al. (2006); Florian et al. (2009); Gentile (2014); Kumar and Peeta (2011).

Let us start by analysing the convergence patterns of path-based algorithms on the Sioux-Falls instance (available at http://www.bgu.ac.il/~bargera/tntp/). Convergence in terms of relative gap is presented in Figure 3. As can be seen from this Figure, the line of convergence of PG starts oscillating when \(RGAP = 10^{-5} \) and stops before reaching the required precision. The algorithm terminates because the current solution becomes infeasible. We examined in more detail what causes this behaviour.

Let us consider a small example presented in Figure 4 that is part of the Sioux Falls instance. We consider O-D pair 13-15. After several iterations two paths are identified and equilibrated to a certain precision. Path \(l \) contains links \(a_{[13,24]}, a_{[24,21]}, a_{[21,22]} \) and \(a_{[22,15]} \) and path \(s \) contains links \(a_{[13,24]}, a_{[24,23]}, a_{[23,22]} \) and \(a_{[22,15]} \). The cost difference of these paths is

\[
C_l - C_s = 43.708039514 \cdot 10^{-15}. \tag{13}
\]
This cost difference seems to be insignificant. However, in order to achieve precision of 10^{-14} we must take small path cost differences into account. If we now calculate the average path cost of these two paths and calculate the corresponding direction of descent, we will get:

$$d_l = -2.35575448 \cdot 10^{-15},$$
$$d_s = 2.352285033 \cdot 10^{-15}.$$ (14)

In the case of two paths, the following must hold $d_l + d_s = 0$. However, because of rounding errors we have that $d_l + d_s = -3.469446952 \cdot 10^{-18} \neq 0$. It seems that the error is too small and cannot impact the computation. However, the next step of the algorithm is to multiply the direction of descent by a step size that might be a large number. For this example the step size is $\lambda = 3.065555135 \cdot 10^{15}$. As a result, the error is multiplied by a large step size and some amount of flow is lost. In our example there are only two paths (l and s) with positive flow for this O-D pair. Hence, the flow conservation constraint (4b) after a flow shift is

$$F_l + \lambda \cdot F_l + F_s + \lambda \cdot F_s = 699.9893642 \neq 700,$$ (15)

where 700 is the demand of O-D pair 13-15. Hence, the amount of flow lost is 0.010635. This loss is significant and it is accumulated further during subsequent iterations. Because of this, after a few more iterations the solution becomes infeasible and the algorithm terminates.

Such a situation is more likely to occur when a high level of accuracy is required. When the algorithm is close to the equilibrium solution, the difference between path costs is very small. Thus, when the two similar numbers are subtracted in order to find a direction of descent, the precision is lost because of cancellation. It seems that small path cost differences must be simply avoided. However, small path cost differences must be taken into account in order to achieve a highly precise solution. For example, for the Sioux Falls instance, if we consider only the differences of order larger than 10^{-13}, infeasibility still occurs. However, if we increase this value to 10^{-12}, the algorithm is not able to reach a relative gap lower than 10^{-11}. This means that other techniques must be applied in order to resolve this issue.

The natural question is why this situation does not occur in other path-based algorithms that we tested. The direction of descent of all path-based algorithms is based on subtracting path costs. Hence, this sub-problem becomes ill-conditioned if path costs are similar numbers.

In fact, in order to avoid the cancellation problem all other path-based algorithms “adjust” their directions of descent or the flow conservation constraint. Usually the directions of descent are constructed in such a way that the sum over all elements of the direction of descent is equal to zero or is a subnormal number. In particular, the mechanisms for PE, GP, and ISP are as follows.

1. PE: From equation (6), $d_s = -d_l$. Hence, $d_l + d_s = 0$.

2. GP: All elements of the direction of descent are calculated as in equation (8), but then the flow on the current shortest path is adjusted as in equation (9) which keeps the flow conservation constraint satisfied.

3. ISP: The calculation of the elements of the direction of descent with cheaper costs (the ones that belong to P_p^+) is based on the elements of the direction of descent belonging to P^+, see equation (11). This leads to the following situation: $\sum_{k \in K^+_p} d_k$ is a subnormal number less
than 10^{-30} which is sufficient to eliminate the error when it is multiplied by a large step size.

Once the source of error is identified, the solution to the problem is not difficult to derive. In order to eliminate the error, we simply have to keep the direction of descent consistent, i.e. we have to make sure that $\sum_{k \in K_p} d_k = 0, \forall p \in Z$ or at least this sum is a subnormal number. To achieve this, we can “adjust” the direction of descent of PG as in (16).

$$d_k = \bar{C}_p - C_k, \quad \forall k \in K_p^+, k \neq k^*,$$

$$d_{k^*} = -\sum_{k \in K_p^+, k \neq k^*} d_k,$$

where k^* can be any component of the direction of descent. For simplicity, we choose k^* to be the last element of d. Equation (16) ensures that the sum over all elements of the direction of descent is always zero, i.e. the flow conservation constraint (4b) is satisfied for any valid value of step size λ.

This adjustment of the direction of descent of PG solves only one of many numerical issues that may occur. As mentioned before, the direction of descent itself is prone to cancellation, especially when the current solution is close to equilibrium.

Another example includes evaluation of link cost functions. Many benchmark instances use BPR link cost functions of the form

$$c_a(f_a) = \text{freeFlow} \cdot \left(1 + B \cdot \left(\frac{f_a}{\text{capacity}}\right)^\text{power}\right),$$

(17)

where freeFlow, B, capacity and power are function parameters. Parameter capacity is of particular interest for traffic assignment. It represents the capacity of a given link of a transportation network. If flow on a link exceeds capacity, then this link becomes congested and travel time of this link increases significantly. As pointed out in Spiess (1990), the use of high powers in BPR functions is not recommended for two reasons. During initial iterations of traffic assignment algorithms, many links can have high values of the ratio $\frac{f_a}{\text{capacity}}$. If the parameter power is also high, this might lead to numerical problems like overflow and loss of precision. In the situation when the ratio $\frac{f_a}{\text{capacity}}$ is small, high values of power might cause the BPR function to become numerically not strictly increasing, i.e. it may return the same value for different link flows.

Therefore, floating point issues can have different causes and must be treated with care. The next sections discuss such issues in more detail based on our numerical tests.

5 Results

In order to demonstrate that the adjusted PG algorithm is able to reach high precision we perform computational tests on the instances available at the web-site http://www.bgu.ac.il/~bargera/tntp/. The main characteristics of these instances are presented in Table 1. The first five instances are of small to medium size and the last three instances are large. All instances implement BPR link cost functions (17).

In these numerical tests we study the algorithms presented in Section 3.2. All algorithms are implemented in the C++ programming language. For all of them we use extended floating point precision (C++ long double type). All tests on small and medium instances are performed under the environment OS – Ubuntu Release 13.10 64-bit; Intel Core i5-2500 CPU, 4 Core, 3.30GHz; 7.7 GB RAM. All tests on large instances are performed under the environment OS – Ubuntu Release 12.10 64-bit; Intel Core i5-3570 CPU, 4 Core, 3.40GHz; 15.6 GB RAM.

Parameter α of GP is set to 1 for all instances as recommended in Jayakrishnan et al. (1994). However, we reduce this value to 0.25 for the Winnipeg, PRISM and Philadelphia instances in order to make GP converge. On these particular instances GP is not able to reach the precision of relative gap smaller than 10^{-6} with $\alpha = 1$. The step size value influences the performance of GP. Smaller values of α lead to slower convergence.
Table 1: Characteristics of problem instances

<table>
<thead>
<tr>
<th>Instance name</th>
<th># of nodes</th>
<th># of links</th>
<th># of zones</th>
<th># of O-D pairs</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sioux Falls</td>
<td>24</td>
<td>76</td>
<td>24</td>
<td>528</td>
<td>small</td>
</tr>
<tr>
<td>Anaheim</td>
<td>416</td>
<td>914</td>
<td>38</td>
<td>1406</td>
<td>small</td>
</tr>
<tr>
<td>Barcelona</td>
<td>930</td>
<td>2522</td>
<td>110</td>
<td>7922</td>
<td>medium</td>
</tr>
<tr>
<td>Winnipeg</td>
<td>1040</td>
<td>2836</td>
<td>147</td>
<td>4344</td>
<td>medium</td>
</tr>
<tr>
<td>Chicago Sketch</td>
<td>933</td>
<td>2950</td>
<td>387</td>
<td>93135</td>
<td>medium</td>
</tr>
<tr>
<td>PRISM</td>
<td>14639</td>
<td>33937</td>
<td>898</td>
<td>470805</td>
<td>large</td>
</tr>
<tr>
<td>Philadelphia</td>
<td>13389</td>
<td>40003</td>
<td>1525</td>
<td>1149795</td>
<td>large</td>
</tr>
<tr>
<td>Chicago Regional</td>
<td>12982</td>
<td>39018</td>
<td>1790</td>
<td>2296227</td>
<td>large</td>
</tr>
</tbody>
</table>

Figure 5: Convergence of the algorithms on Sioux-Falls instance.

Convergence patterns of the algorithms are presented in Figures 5-12. The required level of precision (10^{-14}) is reached for all instances except Philadelphia and Chicago Regional where the time limit of 24 hours is exceeded. The performance of PG with adjusted direction of descent is comparable to other path-based methods. Convergence of the straightforward implementation of PG has a sudden decrease of relative gap before the algorithm stops. This happens because relative gap is calculated for an infeasible solution leading to a smaller value of the convergence measure and this does not indicate rapid convergence.

The adjusted version of PG demonstrates stable numerical behaviour for the majority of instances. The only exception is the Barcelona instance where PG oscillates once relative gap reaches the value of 10^{-6}. GP and ISP show a similar convergence pattern on this particular instance. It appears that the reason of such a behaviour is related to the Barcelona instance since it uses high powers in BPR functions, $\text{power} \in [0, 16.83]$, whereas the usual value of power in BPR functions is 4.

Overall, path-based methods demonstrate the ability to reach high level of precision in terms of relative gap and show similar convergence patterns.
Figure 6: Convergence of the algorithms on Anaheim instance.

Figure 7: Convergence of the algorithms on Barcelona instance.
Figure 8: Convergence of the algorithms on Winnipeg instance. GP with a different value of $\alpha = 0.25$.

Figure 9: Convergence of the algorithms on Chicago Sketch instance.
Figure 10: Convergence of the algorithms on PRISM instance. GP with a different value of $\alpha = 0.25$.

Figure 11: Convergence of the algorithms on Philadelphia instance. GP with a different value of $\alpha = 0.25$.
6 Discussion

In this study we demonstrate the importance of taking into account cancellation that might occur when highly precise solutions are required. In particular, we study path-based algorithms for solving the traffic assignment problem and their convergence behaviour. We identify that the straightforward implementation of PG introduces floating point errors that are further magnified by the algorithm. This leads to unstable numerical behaviour. A more careful implementation takes into account the source of the errors and partially eliminates them resulting in stable numerical behaviour of PG.

However, not all errors come from cancellation and round-off errors occurring because of finite floating point precision. Xie et al. (2013) study a problem of convergence of another algorithm for traffic assignment called linear user cost equilibrium (LUCE). LUCE converges fast in the beginning. However, it is unable to improve the solution when the value of relative gap approaches 10^{-10} to 10^{-12} (the value is instance-dependent). As explained in Xie et al. (2013), the convergence issues of LUCE are related to the calculation of the direction of descent as is the case of PG. However, the source of errors is completely different. Xie et al. (2013) explain that the quadratic sub-problem, that is solved in LUCE to derive the direction of descent, is just an approximation (the closed form second order derivatives are unknown for the formulation of TA used in LUCE). As a result, the second order derivatives contain errors. Hence, the sub-problem is not precise enough which limits the maximum possible precision that can be reached by LUCE. This example is a good demonstration of how the precision of solving a sub-problem can limit the master problem’s precision. The TA problem itself is a sub-problem in network design and road pricing. Hence, for these problems an algorithm used to solve TA must be able to reach precision high enough for the master problem to converge.

This brings us to a conclusion that some errors originate from finite floating point arithmetic, others from model simplifications. Both of them impact the precision of solution that can be reached by an algorithm and its convergence and performance. The potential sources of errors and approximations must always be taken into account and examined, especially in the case when the precision of a solution is crucial.
References

