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A Game Characterisation of Tree-like

Q-Resolution Size⋆

Olaf Beyersdorff1, Leroy Chew1, and Karteek Sreenivasaiah2

1 School of Computing, University of Leeds, UK
2 The Institute of Mathematical Sciences, Chennai, India

Abstract. We provide a characterisation for the size of proofs in tree-
like Q-Resolution by a Prover-Delayer game, which is inspired by a simi-
lar characterisation for the proof size in classical tree-like Resolution [10].
This gives the first successful transfer of one of the lower bound tech-
niques for classical proof systems to QBF proof systems. We confirm our
technique with two previously known hard examples. In particular, we
give a proof of the hardness of the formulas of Kleine Büning et al. [20]
for tree-like Q-Resolution.

1 Introduction

Proof complexity is a well established field that has rich connections to funda-
mental problems in computational complexity and logic [14, 21]. In addition to
these foundational contributions, proof complexity provides the main theoretical
approach towards an understanding of the performance of SAT solvers, which
have gained a wide range of applications for the efficient solution of practical in-
stances of NP-hard problems. As most modern SAT solvers employ CDCL-based
methods, they correspond to Resolution. Lower bounds to the size and space of
Resolution proofs therefore imply sharp bounds for running time and memory
consumption of SAT algorithms. Consequently, Resolution has received key at-
tention in proof complexity; and many ingenious techniques have been devised
to understand the complexity of Resolution proofs (cf. [13, 26] for surveys).

There has been growing interest and research activity to extend the success
of SAT solvers to the more expressive quantified boolean formulas (QBF). Due
to its PSPACE completeness, QBF is far more expressive than SAT and thus ap-
plies to further fields such as formal verification or planning [6, 25]. As for SAT
solvers, runs of QBF solvers produce witnesses (respectively proofs) of unsatis-
fiability, and there has been great interest in trying to understand which formal
system would correspond to the solvers. In particular, a number of Resolution-
based proof systems have been developed for QBF, most notably Q-Resolution,
introduced by Kleine Büning et al. [20], long-distance Q-Resolution [2], QU-
Resolution [27], and ∀Exp+Res [19]. Designing two further calculi IR-calc and
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IRM-calc, a unifying framework for most of these systems has recently been sug-
gested in [7].

Understanding the sizes of proofs in these systems is important as lower
bounds for proof size directly translate into lower bounds for running time of the
corresponding QBF-solvers. However, in contrast to classical proof complexity
we do not yet have many established methods that could be employed for this
task. Very recently, the paper [8] introduces a general proof technique for QBF
systems based on strategy extraction, that transfers circuit lower bounds to proof
size lower bounds. However, no technique for classical Resolution is known to be
effective for QBF systems. Except for recent results shown by the new strategy
extraction method [8] all present lower bounds for QBF proof systems are either
shown ad hoc (e.g. [18] or the lower bound for KBKF(t) in [8]) or are obtained
by directly lifting known classical lower bounds to QBF (e.g. [15]).

Our contribution in this paper is to transfer one of the main game methods
from classical proof complexity to QBF. Game techniques have a long tradition
in proof complexity, as they provide intuitive and simplified methods for lower
bounds in Resolution, e.g. for Haken’s exponential bound for the pigeonhole
principle in dag-like Resolution [23], or the optimal bound in tree-like Resolution
[9] , and even work for strong systems [4] and other measures such as proof space
[17] and width [1]. A unified game approach to hardness measures was recently
established in [12]. Building on the classic game of Pudlák and Impagliazzo [24]
for tree-like Resolution, the papers [9, 11] devise an asymmetric Prover-Delayer
game, which was shown in [10] to even characterise tree-like Resolution size.
Thus, in contrast to the classic symmetric Prover-Delayer game of [24], the
asymmetric game in principle allows to always obtain the optimal lower bounds,
which was demonstrated in [9] for the pigeonhole principle.

Inspired by these games, we develop here a Prover-Delayer game which tightly
characterises the proof size in tree-like Q-Resolution. The idea behind this game
is that a Delayer claims to know a satisfying assignment to a false formula, while
a Prover asks for values of variables until eventually finding a contradiction. In
the course of the game the Delayer scores points proportional to the progress
the Prover makes towards reaching a contradiction. By an information-theoretic
argument we show that the optimal Delayer will score exactly logarithmically
many points in the size of the smallest tree-like Q-Resolution proof of the for-
mula. Thus exhibiting clever Delayer strategies gives lower bounds to the proof
size, and in principle these bounds are guaranteed to be optimal. In comparison
to the game of [9–11], our formulation here needs a somewhat more powerful
Prover, who can forget information as well as freely set universal variables. This
is necessary as the Prover needs to simulate more complex Q-Resolution proofs
involving universal variables and ∀-reductions.

We illustrate this new technique with two examples. The first was used
by Janota and Marques-Silva [18] to separate Q-Resolution from the system
∀Exp+Res defined in [19]. We use these separating formulas as an easy first il-
lustration of our technique. Our Delayer strategy as well as the analysis here
are quite straightforward; in fact, a simple symmetric game in the spirit of [24]



would suffice to get the lower bound. Our second example are the well-known
KBKF(t)-formulas of Kleine Büning, Karpinski and Flögel [20]. In the same
work [20], where Q-Resolution was introduced, these formulas were suggested as
hard formulas for the system. Very recently, the formulas KBKF(t) were even
shown to be hard for IR-calc, a system stronger than Q-Resolution [8]. In fact, a
number of further separations of QBF proof systems builds on the hardness of
KBKF(t) [3,16] (cf. also [8]). Here we use our new technique to show that these
formulas require exponential-size proofs in tree-like Q-Resolution. In terms of
the lower bound, this result is weaker than the result obtained in [8]. However,
it provides an interesting example for our new game technique. In contrast to
the first example, both the Delayer strategy as well as the scoring analysis is
technically involved. Here we need the refined asymmetric game. The formulas
KBKF(t) have very unbalanced proofs, so we cannot use a symmetric Delayer,
as symmetric games only yield a lower bound according to the largest full binary
tree embeddable into the proof tree (cf. [10]).

The remaining part of this paper is organised as follows. We start in Section 2
with setting up notation and reviewing Q-Resolution. Section 3 contains our
characterisation of tree-like Q-Resolution in terms of the Prover-Delayer game.
The two mentioned examples for this lower bound technique follow in Sections 4
and 5, the latter of which contains the hardness proof for KBKF(t). We conclude
with some open directions for future research in Section 6.

2 Preliminaries

A literal is a Boolean variable or its negation; we say that the literal x is com-
plementary to the literal ¬x and vice versa. If l is a literal, ¬l denotes the
complementary literal, i.e. ¬¬x = x. A clause is a disjunction of zero or more
literals. The empty clause is denoted by ⊥, which is semantically equivalent to
false. A formula in conjunctive normal form (CNF) is a conjunction of clauses.
Whenever convenient, a clause is treated as a set of literals and a CNF formula
as a set of clauses. For a literal l = x or l = ¬x, we write var(l) for x and extend
this notation to var(C) for a clause C and var(ψ) for a CNF ψ.

Quantified Boolean Formulas (QBFs) extend propositional logic with quan-
tifiers with the standard semantics that ∀x. Ψ is satisfied by the same truth
assignments as Ψ [0/x] ∧ Ψ [1/x] and ∃x. Ψ as Ψ [0/x] ∨ Ψ [1/x]. Unless specified
otherwise, we assume that QBFs are in closed prenex form with a CNF matrix,
i.e., we consider the form Q1X1 . . .QkXk. φ, where Xi are pairwise disjoint sets
of variables; Qi ∈ {∃, ∀} and Qi 6= Qi+1. The formula φ is in CNF and is defined
only on variables X1 ∪ · · · ∪Xk. The propositional part φ of a QBF is called the
matrix and the rest the prefix. If a variable x is in the set Xi, we say that x is
at level i and write lev(x) = i; we write lev(l) for lev(var(l)). A closed QBF is
false (resp. true), iff it is semantically equivalent to the constant 0 (resp. 1).

Often it is useful to think of a QBF Q1X1 . . .QkXk. φ as a game between the
universal and the existential player. In the i-th step of the game, the player Qi

assigns values to the variables Xi. The existential player wins the game iff the



matrix φ evaluates to 1 under the assignment constructed in the game. The
universal player wins iff φ evaluates to 0. A QBF is false iff there is a winning
strategy for the universal player, i.e. if the universal player can win any game.

Q-Resolution, by Kleine Büning et al. [20], is a resolution-like calculus that
operates on QBFs in prenex form where the matrix is a CNF. The rules are given
in Figure 1. All proofs in Q-Resolution are refutations, deriving ∅. Q-Resolution
derivations can be associated with a graph where vertices are the clauses of the
proof and each resolution inference C D

E
gives rise to two directed edges (C,E)

and (D,E). Likewise a universal reduction C
D

yields an edge (C,D). We speak of
tree-like Q-Resolution if we only allow Q-Resolution proofs which have trees as
its associated graphs. This means that intermediate clauses cannot be used more
than once and have to be rederived otherwise. There are exponential separations
known between tree-like and dag-like Resolution in the classical case (cf. [26]),
that carry over between tree-like and dag-like Q-Resolution.

(Axiom)
C

C1 ∪ {x} C2 ∪ {¬x}
(Res)

C1 ∪ C2

C is a clause in the matrix. Variable x is existential. If z ∈ C1, then ¬z /∈ C2.

D ∪ {u}
(∀-Red)

D

Literal u is universal. For existential
x in clause D, lev(x) < lev(u).

Fig. 1. The rules of Q-Res [20]

3 Prover-Delayer Game

In this section, we present a two player game along with a scoring system. The
players will be called Prover and Delayer (referred by pronouns ‘she’ and ‘he’
respectively). The game is played on a QBF F . The Delayer tries to maximise
the score. The Prover tries to win the game by falsifying the formula (which
ends the game) and giving the Delayer as small a score as possible. The game
proceeds in rounds. Each round of the game has the following phases:

1. Setting universal variables: The Prover can assign values to any number of
universal variables of her choice that are not blocked, i.e., a universal variable
u can be assigned a value by the Prover if all the existential variables with
higher quantification level than u are currently unassigned.

2. Declare Phase: The Delayer can choose to assign values to any unassigned
existential variables of his choice. The Delayer does not score from this.

3. Query Phase: This phase has three stages:
(a) Prover queries any one existential variable x that is currently unassigned.
(b) Delayer replies with positive weights w0 and w1 such that w0 + w1 = 1.



(c) Prover assigns a value for x. If she assigns x = b for some b ∈ {0, 1}, the
Delayer scores lg( 1

pb
) points.

4. Forget Phase: The Prover can forget values of any of the assigned variables
of her choice. Any variable chosen in this phase will become unassigned.

The Prover wins the game if any clause in F is falsified. In every round, we check
if the Prover has won the game after each phase.

We will now show that our game characterizes tree like Q-Resolution.

Theorem 1. If φ has a tree-like Q-Resolution proof of size at most s, then there
exists a Prover strategy such that any Delayer scores at most lg⌈ s2⌉ points.

Proof. We take a similar approach as in [10]. Let Π be a tree-like Q-Resolution
refutation of φ. Informally, the Prover plays according to Π, starting at the
empty clause and following a path in the tree to one of the axioms. At a Res-
olution inference the Prover will query the resolved variable and at a universal
reduction she will set the universal variable. The Prover will keep the invariant
that at each moment in the game, the current assignment α assigns exactly all
literals from the current clause C on the path in Π, and moreover α falsifies
C. This invariant holds in the beginning at the empty clause, and in the end,
Prover wins by falsifying an axiom.

We will now elaborate and describe a randomized Prover strategy. Let the
Prover be at a node in Π labelled with clause C. We describe what she does in
the four stages.

Setting universal variables: If the current clause C was derived in the
proof Π by a ∀-reduction C∨z

C
, then Prover sets z = 0. This is possible as the

current assignment contains only variables from C and therefore z is not blocked.
Prover then moves to the clause C ∨ z. The Prover repeats this till arriving at a
clause derived by the Resolution rule (or winning the game).

Query phase: Prover is now at a clause in Π that was derived by a Reso-
lution step C1∨x C2∨¬x

C1∨C2
. If the Delayer already set the value of x in his Declare

phase, then Prover follows this choice and moves on in the proof tree, possibly
setting further universal variables. She does this until she reaches a clause de-
rived by Resolution, where resolved variable x is unassigned. She queries x. On
Delayer replying with weights w0 and w1, she chooses x = i with probability wi.

If x = 0, then Prover defines S to be the set of all variables not in C1 ∨ x
and proceeds down to the subtree rooted at that clause. Else, she defines S to
be all variables not in C2 ∨¬x and proceeds down to the corresponding subtree.

Forget Phase: The Prover forgets all variables in the set S.
For a fixed DelayerD, let qD,ℓ denote the probability (over all random choices

made within the game) that the game ends at leaf ℓ. Let πD be the corresponding
distribution induced on the leaves.

For the Prover strategy described above, we have the following claim:

Claim. If the game ends at a leaf ℓ, then the Delayer scores exactly αℓ =

lg
(

1
qD,ℓ

)

points.



Proof. Note that since Π is a tree-like Q-Resolution proof, there is exactly one
path from the root of Π to ℓ. Let p be the unique path that leads to the leaf
ℓ and let the number of random choices made along p be m. Then, we have
qD,ℓ =

∏m

i=1 qi where qi is the probability for the ith random choice made along
p. Since p is the unique path that leads to ℓ, the number of points αℓ scored
by the Delayer when the game ends at ℓ is exactly the number of points scored
when the game proceeds along the path p. The number of points scored by the

Delayer along p is given by: αℓ =
∑m

i=1 lg
(

1
qi

)

= lg
(

∏

i
1
qi

)

= lg
(

1
qD,ℓ

)

⊓⊔

The Prover strategy we described is randomized. The expected score over all
leaves ℓ is the following expression:

∑

leaves ℓ∈Π qD,ℓαℓ =
∑

leaves ℓ∈Π qD,ℓ lg
1

qD,ℓ
.

But this quantity is exactly the Shannon entropy H(πD). Since D is fixed,
this entropy will be maximum when πD is the uniform distribution; i.e., H(πD)
is maximum when, for all leaves ℓ, the probability that the game ends at ℓ is
the same. A tree like Q-Resolution proof of size s has at most ⌈s/2⌉ leaves. So
the support of the distribution πD has size at most ⌈s/2⌉ and hence H(qD,ℓ) ≤
lg⌈s/2⌉.

If the expected score with the randomised Prover is ≤ lg⌈s/2⌉, then there
is a deterministic Prover who restricts the scores to at most lg⌈s/2⌉. Now we
derandomise the Prover by just fixing her random choices accordingly. If the
Delayer is optimal she can pick arbitrarily if not she can pick to exploit this. ⊓⊔

To obtain the characterisation of Q-Resolution we also need to show the
opposite direction, exhibiting an optimal Delayer:

Theorem 2. Let φ be an unsatisfiable QBF formula and let s be the size of
a shortest tree-like Q-Resolution proof for φ. Then there exists a Delayer who
scores at least lg⌈s/2⌉ points against any Prover.

Proof. For any unsatisfiable QBF formula φ, let L(φ) denote the number of
leaves in the shortest tree-like Q-Resolution proof of φ. For a partial assignment
α to variables in φ, let φ|α denote φ restricted to the partial assignment α.

The Delayer starts with the empty assignment α and changes α throughout
the game. On receiving a query for an existential variable x, the Delayer does
the following:

1. Updates α to reflect any changes made by the Prover to any of the variables.
These changes include assignments made to both universal variables as well
as existential variables.

2. Computes the quantities ℓ0 = L(φ|α,x=0) and ℓ1 = L(φ|α,x=1).
3. Replies with weights w0 = ℓ0

ℓ0+ℓ1
and w1 = ℓ1

ℓ0+ℓ1
.

We show by induction on the number of existential variables n in φ that the
Delayer always scores at least lgL(φ) points: Base case n = 0, L(φ) = 0 and
the Delayer scores at least 0 points. Assume the statement is true for all n < k.
Now for n = k, consider the first query by the Prover, after she possibly made
some universal choices according to the partial assignment α. Let the queried



variable be x. If the Prover chose x = b where b ∈ {0, 1}, then the Delayer scores
lg 1

wb
for this step alone. After assigning x = b, the formula φ|α,x=b has k − 1

existential variables and hence we use induction hypothesis to conclude that the
remaining rounds in the game give the Delayer at least lgL(φ|α,x=b). Hence the
total score is evaluated as: lg (L(φ|α,x=0) + L(φ|α,x=1)) ≥ lgL(φ|α) ≥ lgL(φ).

The last inequality holds, because if φ|α is unsatisfiable, we can refute φ by
deriving a clause with no existential literals, just containing all variables in the
domain of α and then ∀-reduce. The theorem follows since for any binary tree
of size s, the number of leaves is ⌈s/2⌉. ⊓⊔

4 A First Example

We consider the following formulas studied by Janota and Marques-Silva [18]:

Fn = ∃e1∀u1∃c
1
1c

2
1 · · · ∃ei∀ui∃c

1
i c

2
i · · · ∃en∀un∃c

1
nc

2
n :

n
∧

i=1

(ei → c1i ) ∧ (ui → c1i ) ∧ (¬ei → c2i ) ∧ (¬ui → c2i ) ∧
n
∨

i=1

(¬c1i ∨ ¬c
2
i )

These formulas were used in [18] to show that ∀Exp+Res does not simulate
Q-Resolution, i.e., Fn requires exponential-size proofs in ∀Exp+Res, but has
polynomial-size Q-Resolution proofs. Janota and Marques-Silva [19] also show
that ∀Exp+Res p-simulates tree-like Q-resolution, and hence it follows that Fn is
also hard for the latter system. We reprove this result using our characterisation.

Let U = {u1, u2, . . . , un} be the set of all universal variables. In the following,
we show a Delayer strategy that scores at least n points against any Prover. For
the Declare phase, the Delayer executes Algorithm 1 till reaching a fixed point.
For any variable queried by Prover, Delayer responds with weights

(

1
2 ,

1
2

)

. For
i ∈ [n], let Ti = {ei, c

1
i , c

2
i }. Let C =

∨n

i=1(¬c
1
i ∨¬c

2
i ). Note that except for C, all

other clauses have only two literals.

Lemma 3. Algorithm 1 never falsifies a clause that has only two literals.

Lemma 4. If the Delayer uses the strategy outlined above, then for any winning
Prover strategy, the clause falsified is C.

Proof. Suppose the clause falsified was D. We will show that if D 6= C, then the
Delayer did not use our strategy. We consider the following cases:

Algorithm 1 Declare Routine

for all clauses (ℓ1 → ℓ2) in Fn do

if ℓ1 = 1 then Declare ℓ2 = 1.
if ℓ2 = 0 and var(ℓ1) /∈ U then Declare ℓ1 = 0.

end for



1. D involves variable ui for some i ∈ [n]:
Note that ui appears in clauses with either c1i or c2i . Since both c1i and c2i
block ui, it has to be the case that when ui was set by the Prover, the
variables c1i and c2i were unassigned. Now it is straightforward to see that if
the Delayer indeed used the declare routine described in Algorithm 1, then
all clauses involving ui become satisfied after ui is set by the Prover.

2. D is (ei → c1i ) or (¬ei → c2i ):
Suppose w.l.o.g. that D = (ei → c1i ). As a consequence of Lemma 3, it must
be the case that D was falsified because of the Prover choosing a value for
either ei or c

1
i . So we have two cases:

– Prover chose a value for ei to falsify D: So ei was unassigned just before
the query phase began. But if Algorithm 1 left ei unassigned, then this
means ci is unassigned or c1i 6= 0. Hence if the Delayer indeed used
Algorithm 1, D could not have been falsified.

– Prover chose a value for c1i to falsify D: Following an argument just like
the previous case, if the Delayer indeed used Algorithm 1, then ci would
be unassigned at the start of the query phase only if ei = 0 or unassigned.
In both these cases D cannot be falsified by choosing a value for c1i . ⊓⊔

Theorem 5. Delayer scores at least n points against any Prover strategy.

Proof. From Lemma 4, it is sufficient to show that any Prover strategy that
falsifies C will give the Delayer a score of at least n. C can be falsified only if
all variables c1i , c

2
i have been assigned to 1. We observe that for any i ∈ [n],

the Prover can get at most one of c1i or c2i to be declared for free by setting ui
appropriately. To assign the other ci to 1, the Prover can either query ci directly
and set it to 1 or query ei and set it appropriately. Both these ways give the
Delayer 1 point. Hence for every i ∈ [n], the Delayer scores at least 1 point. ⊓⊔

With Theorem 1 this reproves the hardness of Fn for tree-like Q-Resolution,
already implicitly established in [18,19]:

Corollary 6. Formulas Fn require tree-like Q-Resolution proofs of size Ω(2n).

This bound is tight as tree-like Q-Resolution refutations of size O(2n) exist.

5 Hardness of the Formulas of Kleine Büning et al.

In our second example we look at a family of formulas first defined by Kleine
Büning, Karpinski and Flögel [20]. The formulas are known to be hard for Q-
Resolution and indeed for the stronger system IR-calc [8]. Here we use our tech-
nique to give an independent proof of their hardness in tree-like Q-Resolution.

Definition 7 (Kleine Büning, Karpinski and Flögel [20]). Consider the
clauses

C− = {¬y0} C0 = {y0,¬y
0
1 ,¬y

1
1}

C0
i = {y0i , xi,¬y

0
i+1,¬y

1
i+1} C1

i = {y1i ,¬xi,¬y
0
i+1,¬y

1
i+1} i ∈ [t− 1]

C0
t = {y0t , xt,¬yt+1, . . . ,¬yt+t} C1

t = {y1t ,¬xt,¬yt+1, . . . ,¬yt+t}
C0

t+i = {xt, yt+i} C1
t+i = {¬xi, yt+i} i ∈ [t]



The KBKF(t) formulae are defined as the union of these clauses under the
quantifier prefix ∃y0, y

0
1 , y

1
1 ∀x1 ∃y

0
2 , y

1
2 ∀x2, . . . , ∀xt−1 ∃y

0
t , y

1
t ∀xt ∃yt+1 . . . ∃yt+t.

We now want to show an exponential lower bound on proof size for the
KBKF(t) formulas via our game. We will assume throughout that t > 2. We
start with an informal description of the Delayer strategy.

Delayer strategy – informal description

At any point of time during a run of the game, there is a partial assignment that
has been constructed by the Prover and Delayer. We define the following:

Definition 8. For any partial assignment α to the variables, we define zα to
be the index of the highest subscript such that an α assigns a 0 to one or more
existential variables with that subscript. If no such subscript exists, then z = 0.

For convenience, we will drop the subscript and just say z when the partial
assignment is clear from context. We usually mention the time during a run of
the game by referring to z instead of explicitly mentioning the induced partial
assignment. The idea behind the Delayer strategy is the following: We observe
that for all i < t− 2 and j ∈ {0, 1}, to falsify the clause Cj

i , it is necessary that

yji is set to 0 and both y0i+1 and y1i+1 are set to 1. The strategy we design will
not let the Prover win on clauses C−, C0, C

0
i , or C

1
i for any i < (t− 2). We do

this by declaring either y0i+1 or y1i+1 to 0 at a well chosen time. Furthermore, we
will show : (1) When the game ends, z ≥ t and (2) After any round in the game,
the Delayer has a score of at least O(z) It is easy to see that the lower bound of
Ω(t) for the score of the Delayer follows from statements (1) and (2).

Delayer strategy – details

Declare Phase: The Delayer sets y0 to 0 in the declare phase of the first round.
Let F be the set of all existential variables that were chosen to be forgotten

by the Prover in the forget phase of the previous round. The Delayer first does
the following “Reset Step”: For all variables y in F that had value 0 just before
the forget phase of the previous round, the Delayer declares y = 0. After the
reset step, the Delayer executes Algorithm 2 repeatedly until reaching a fixed
point. The notation y ← b means that the Delayer declares y = b if and only if
y is an unassigned variable. Also, we assume that z is updated automatically to
be the highest subscript for existential literals set to 0. We observe the following
about the reset step:

Observation 9 The reset step ensures that z always increases monotonically
(when z is measured at the beginning of each query phase).

Line 14 of Algorithm 2 gives us the following observation:

Observation 10 After the declare phase, for all i < z, the existential variables
y0i and y1i has been assigned a value.



Algorithm 2 Declare Routine

1: y0
z ← 1, y1

z ← 1, z′ := z
2: if yxz

z 6= 0 or xz unassigned then

3: for all i > z do y0
i ← 1; y1

i ← 1
4: end if

5: for i = t− 1 to 1 do

6: for j = 0 to 1 do

7: if Cj

i is not satisfied with only one literal l that is unassigned then Satisfy
Cj

i with that literal (if existential).
8: end for

9: end for

10: if z ≤ t− 2 and either y0
z+2 = 1 or y1

z+2 = 1 then y
1−xz+1

z+1 ← 0
11: if z 6= z′, xz assigned and yxz

z = 0 then

12: if xz+1 unassigned then y0
z+1 ← 0 else y1−xz

z+1 ← 0
13: end if

14: for all i < z do y0
i ← 0, y1

i ← 0

Observation 11 For all i > z, Algorithm 2 assigns all y0i and y1i to 1 before
assigning any of them to 0.

Query Phase:
Let the variable queried be ybi . From Observation 10, it is easy to see that i ≥ z.
We have the following cases:

– If i > t, then the Delayer replies with weights w0 = 2z−t−1 and w1 = 1−w0.
– Else z ≤ i ≤ t. We have two cases:
• If xi is unassigned, then the Delayer replies with weights w0 = 2z−i and
w1 = 1− w0.

• Else xi holds a value. Then we have the following cases:
∗ If b = ¬xi, then the Delayer replies with weights w0 = 2z−i and
w1 = 1− w0.
∗ Else b = xi and Delayer replies with weight w0 = 2z−j , where j is the
largest index such that ∀k : z < k ≤ j, xk is assigned and y1−xk

k = 1.
Weight w1 = 1− w0.

We now analyze the above strategy: We start with the following lemma:

Lemma 12. If the Delayer uses the strategy outlined above, then against any
Prover, at the end of the game on KBKF(t), z ≥ t (where z is defined as in
Definition 8).

Remark 13. If the Prover choses to assign 1 to a variable queried in the query
phase on turn k, then by the query phase on turn k+1, the value of z (index of
the rightmost zero) increments by at most 1. For the increase by 1 it is required
that yxz

z = 0 and that for all c ∈ {0, 1}, ycz+1 and ycz+2 are unassigned before the
query phase on turn k. If the Prover chose to assign 1 to the variable queried
and it results in a change of z, then it must cause any of y0z+1, y

1
z+1, y

0
z+2 or

y1z+2 to be set to 1, incrementing z be at most one.



For all i ∈ [t], and z < t−1, let sz(y
c
i ) denote the minimum (over all possible

Prover strategies) Delayer score when yci is assigned 1 by the Prover for the first
time starting from a partial assignment where the right most zero is in column
z and every variable to the right of column z is unassigned.

Combining Observation 9 with the fact that at the start of the game z = 0,
Lemma 12 implies that the Prover increases z by at least t in the process of
winning the game. We will now measure the scores that the Delayer accumulates.

Lemma 14. For all z < t − 1 and i < t, each of sz(y
0
i ) and sz(y

1
i ) is at least

2t−i lg 2t−z

2t−z−1 .

During a run of the game, z increases from 0 to t. Now we show that the Delayer
scores Ω(z) points during any run of the game on KBKF(t) for large enough t:

Lemma 15. There exists constants t0 > 0 and α > 0 such that for all t > t0,
at any point of time during a run of the game on KBKF(t), the Delayer has a
score of at least αz.

To show this lemma, we argue that the Delayer scores Ω(1) points for every
increment of z during the game. This immediately gives us the required claim.
Combining Lemma 12 and Lemma 15, we have:

Theorem 16. There exists a Delayer strategy that scores Ω(t) against any
Prover in the Prover-Delayer game on KBKF(t).

Corollary 17. KBKF(t) require tree-like Q-Resolution proofs of size 2Ω(t).

6 Conclusion

In this paper we have shown that lower bound techniques from classical proof
complexity can be transferred to the more complex setting of QBF. We have
demonstrated this with respect to prover-delayer games, even obtaining a char-
acterisation of tree-like size in Q-Resolution. Although tree-like (Q-)Resolution
is a weak system, it is an important one as it corresponds to runs of the plain
DLL algorithm, which serves as the basis of most SAT and QBF-solvers.

A very interesting question for further research is to understand how far
this transfer of techniques can be extended. In particular, it seems likely that
the very general game-theoretic approaches of [23] can also be utilised for QBF
systems. Two other seminal techniques that have found wide-spread applications
for classical Resolution are feasible interpolation [22], which also applies to many
further systems, and the size-width method of Ben-Sasson and Wigderson [5]. Is
it possible to use analogous methods for Q-Resolution and its extensions?
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