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A Clifford algebraic framework for Coxeter
group theoretic computations

Pierre-Philippe Dechant

Abstract Real physical systems with reflective and rotational symmetries such as

viruses, fullerenes and quasicrystals have recently been modeled successfully in

terms of three-dimensional (affine) Coxeter groups. Motivated by this progress, we

explore here the benefits of performing the relevant computations in a Geometric

Algebra framework, which is particularly suited to describing reflections. Starting

from the Coxeter generators of the reflections, we describe how the relevant chi-

ral (rotational), full (Coxeter) and binary polyhedral groups can be easily generated

and treated in a unified way in a versor formalism. In particular, this yields a sim-

ple construction of the binary polyhedral groups as discrete spinor groups. These

in turn are known to generate Lie and Coxeter groups in dimension four, notably

the exceptional groups D4, F4 and H4. A Clifford algebra approach thus reveals an

unexpected connection between Coxeter groups of ranks 3 and 4. We discuss how to

extend these considerations and computations to the Conformal Geometric Algebra

setup, in particular for the non-crystallographic groups, and construct root systems

and quasicrystalline point arrays. We finally show how a Clifford versor framework

sheds light on the geometry of the Coxeter element and the Coxeter plane for the

examples of the two-dimensional non-crystallographic Coxeter groups I2(n) and the

three-dimensional groups A3, B3, as well as the icosahedral group H3.
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1 Introduction

Physical systems have to obey the mathematical laws of geometry; in particular, if

they possess symmetry – such as invariance under reflections and rotations – this

symmetry is heavily constrained by purely geometric considerations. For instance,

many physical systems in biology (viruses), chemistry (fullerenes) and physics

(crystals and quasicrystals) have polyhedral symmetries. These polyhedral symme-

try groups are generated by reflections; via the Cartan-Dieudonné theorem an even

number of reflections amounts to a rotation (see e.g. [17] for an exposition in a

Clifford algebra context), and physical systems may be invariant only under this

rotational (chiral) part, or the full reflection group.

Coxeter group theory [5, 24] axiomatises reflections from an abstract mathemat-

ical point of view. Coxeter groups thus encompass the finite Euclidean reflection

groups, which include the symmetry groups of the Platonic solids – A3 for the tetra-

hedron, B3 for the dual pair octahedron and cube, and H3 for the dual pair icosahe-

dron and dodecahedron – as well as the Weyl groups of the simple Lie algebras. A

subset of these groups are non-crystallographic, i.e. they describe symmetries that

are not compatible with lattices in dimensions equal to their rank. They include the

two-dimensional family of symmetry groups I2(n) of the regular polygons, as well

as H2 (the symmetry group of the decagon), H3 (the symmetry group of the icosahe-

dron) and the largest non-crystallographic group H4 (the symmetry group of the hy-

pericosahedron or 600-cell in four dimensions), which are the only Coxeter groups

generating rotational symmetries of order 5. The full icosahedral group H3 and its

(chiral) rotational subgroup I are of particular practical importance, as H3 is the

largest discrete symmetry group of physical space. Thus, many 3-dimensional sys-

tems with ‘maximal symmetry’, like viruses in biology [49, 4, 51, 26, 52], fullerenes

in chemistry [37, 36, 50, 38], quasicrystals in physics [27, 46, 43, 41, 48] as well as

polytopes in mathematics [34, 35, 31], can be modeled using Coxeter groups.

Clifford’s Geometric Algebra [18, 15] is a complementary framework that fo-

cuses on the geometry of the physical space(-time) that we live in and its given Eu-

clidean/Lorentzian metric. This exposes more clearly the geometric nature of many

problems in mathematics and physics. In particular, Clifford’s Geometric Algebra

has a uniquely simple formula for performing reflections. Previous research appears

to have made exclusive use of one framework at the expense of the other. Here, we

combine both paradigms, which results in geometric insights from Geometric Alge-

bra that apparently have been overlooked in Coxeter theory thus far. This approach

also has computational and conceptual advantages over standard techniques, in par-

ticular through a spinorial or conformal point of view. Hestenes [20] has given a

thorough treatment of point and space groups in Geometric Algebra, and Hestenes

and Holt [21] have discussed the crystallographic point and space groups from a

conformal point of view. Here, we are interested in applying Geometric Algebra in

the Coxeter framework, in particular in the context of root systems, the Coxeter ele-

ment, non-crystallographic groups and quasicrystals, which to our knowledge have

not yet been treated at all.
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This paper is organised as follows. Section 2 introduces how systems are cur-

rently modeled in terms of Coxeter groups, and what kind of computations arise

in this context. In Section 3, we present a versor formalism in which the full, chi-

ral and binary polyhedral groups can all be easily generated and treated within the

same framework. In particular, this yields a construction of the binary polyhedral

groups (discrete subgroups of SU(2) that are the double covers of the chiral (rota-

tion) groups), which we will discuss further in Section 4. In Section 5, we briefly

outline how to extend this treatment to the conformal setup, in particular for the

non-crystallographic groups, and we demonstrate how to construct root systems

and quasicrystalline point sets in this framework. In Section 6, we discuss the two-

dimensional non-crystallographic Coxeter groups I2(n) as well as the icosahedral

group H3 and the other two three-dimensional groups A3 (tetrahedral) and B3 (octa-

hedral) in a versor formalism, which elucidates the relation with the Coxeter element

and the Coxeter plane. We conclude with a summary and possible further work in

Section 7.

2 Coxeter formulation

Coxeter groups are abstract groups describable in terms of mirror symmetries [5].

The elements of finite Coxeter groups can be visualised as reflections at planes

through the origin in a Euclidean vector space V . In particular, for v, α ∈V , then

v → rα v = v′ = v− 2α · v
α ·α α (1)

corresponds to a Euclidean reflection rα of the vector v at a hyperplane perpendicu-

lar to the so-called root vector α . The structure of the Coxeter group is thus encoded

in the collection of all such roots, which form a root system. A subset of the root

system, called the simple roots, is sufficient to express every root via a Z-linear com-

bination with coefficients of the same sign. The root system is therefore completely

characterised by this basis of simple roots, which in turn completely characterises

the Coxeter group. The number of simple roots is called the rank of the root sys-

tem, which essentially gives the dimension and therefore indexes the corresponding

Coxeter group and root system (e.g. H3 for the largest discrete symmetry group in

three dimensions).

Finite Coxeter groups describe the properties of physical structures, e.g. of a vi-

ral protein container or a carbon onion, at a given radial level, as the symmetry only

relates features at the same radial distance from the origin. In order to obtain infor-

mation on how structural properties at different radial levels could collectively be

constrained by symmetry, affine extensions of these groups need to be considered.

Affine extensions are constructed in the Coxeter framework by adding affine reflec-

tion planes not containing the origin [42]. A detailed account of this construction

is presented elsewhere [44, 10, 11], but essentially the affine extension amounts to

making the reflection group G topologically non-compact by adding a translation
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operator T . The structures of viruses follow several different extensions of the (chi-

ral) icosahedral group I by translation operators [28, 12, 29]. Thus, a wide range

of empirical observations in virology can be explained by affine Coxeter groups.

We now discuss 2D counterparts to the 3D point arrays that predict the architecture

of viruses and fullerenes, and explain in what sense the translation operators are

distinguished.

G

T

G

Fig. 1 The action of an affine Coxeter group on a pentagon. The translation operator T gener-

ates extended point arrays, whilst the compact part G makes the resulting point set rotationally

symmetric. Blueprints with degeneracies due to coinciding points correspond to non-trivial group

structures and can be used in the modeling of viruses.

For illustration purposes, let us consider a similar construction for a pentagon of

unit size, as shown in Fig. 1. The non-compact translation operator T , here chosen

to also be of unit length, creates a displaced version of the pentagon. The action of

the symmetry group G of the pentagon then generates further copies in such a way

that the final point array displays the same rotational symmetries.

The translation operator we have chosen for this example is distinguished be-

cause several of the generated points lie on more than one pentagon, for instance

the innermost points, or the midpoints of the edges of the large outer pentagon. Cer-

tain distinguished translations lead to such point sets with degenerate points, which

therefore have lower cardinality than those obtained by a random translation (here

15 points as opposed to 25). This degeneracy yields a non-trivial mathematical struc-

ture at the group level, and the corresponding blueprints in three dimensions can be

used to model icosahedral viruses.

Fig. 2 shows a similar example for a translation of length of the golden ratio

τ = 1
2
(1+

√
5)≈ 1.618. The resulting point set also has degenerate cardinality (now

20 points), and consists of an inner decagon and an outer pentagon. Affine symmetry

here means that the relative sizes of the decagon and pentagon are fixed by the group

structure. This is a powerful geometric tool for constraining real systems.

The computations necessary in this context are therefore translations, reflections

and rotations; one also needs to be able to check degeneracy of points. In the usual

vector space approach, these operations are implemented via matrices. We instead
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T

G

Fig. 2 Translation by the golden ratio results in a point set whose constituent polygons are simul-

taneously constrained by the affine symmetry.

develop here a versor implementation. This has some computational advantages, as

well as offering surprising geometric insights, as we shall see later. Whilst the com-

putational complexity for 3-dimensional applications is limited, equivalent compu-

tations in four dimensions, where H4 – the four-dimensional analogue of the icosa-

hedral group and symmetry group of the hypericosahedron (600-cell) – has order

14,400 and H4-symmetric polytopes have upwards of 120 and 600 vertices, are

rather more complex.

In the Coxeter setting, therefore, the reflections are fundamental; Geometric Al-

gebra is very efficient at encoding reflections algebraically, and at performing com-

putations with clear geometric content. However, the two frameworks do not appear

to have been combined previously. We therefore explore which benefits a Clifford

algebraic description might offer for Coxeter group theoretic considerations.

3 Versor framework

The geometric product xy= x ·y+x∧y of two vectors x and y (with x ·y denoting the

scalar product and x∧y the exterior product) of Geometric Algebra [18, 22, 19, 15]

provides a very compact and efficient way of handling reflections in any number

of dimensions, and thus by the Cartan-Dieudonné theorem also rotations [17]. For

a unit vector α , the two terms in the formula for a reflection of a vector v in the

hyperplane orthogonal to α from Eq. (1) simplify to the double-sided action of α
via the geometric product

v → rα v = v′ =−α vα . (2)
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This prescription for reflecting vectors in hyperplanes is remarkably compact, and

applies more generally to all multivectors. Even more importantly, from the Cartan-

Dieudonné theorem, rotations are the product of an even number of successive re-

flections. For instance, compounding the reflections in the hyperplanes defined by

the unit vectors αi and α j results in a rotation in the plane defined by αi ∧α j

v′′ = α jαivαiα j =: R̃vR, (3)

where we have defined the rotor R = αiα j and the tilde denotes the reversal of

the order of the constituent vectors of a versor, e.g. here R̃ = α jαi. Rotors satisfy

R̃R = RR̃ = 1 and themselves transform single-sidedly under further rotations. They

thus form a multiplicative group under the geometric product, called the rotor group,

which is essentially the Spin group, and thus a double-cover of the special orthogo-

nal group [18, 15, 45]. Objects in Geometric Algebra that transform single-sidedly

are called spinors, so that rotors are normalised spinors.

In fact, the above two cases are examples of a more general theorem on the

Geometric Algebra representation of orthogonal transformations. In analogy to the

vectors and rotors above, a versor is a multivector A = a1a2 . . .ak which is the prod-

uct of k non-null vectors ai (a2
i 6= 0). These versors also form a multiplicative group

under the geometric product, called the versor group. The Versor Theorem [19] then

states that every orthogonal transformation A of a vector v can be expressed via unit

versors in the canonical form

A : v → v′ = A(v) =±ÃvA, (4)

where the ±-sign defines the parity of the versor. Since both the versors A and −A

encode the same orthogonal transformation A, unit versors are double-valued repre-

sentations of the respective orthogonal transformation, giving a construction of the

Pin group Pin(p,q) [45], the double cover of the orthogonal group O(p,q). Even

versors form a double covering of the special orthogonal group SO(p,q), called

the Spin group Spin(p,q). The versor realisation of the orthogonal group is much

simpler than conventional matrix approaches. This is particularly useful in the Con-

formal Geometric Algebra setup, where one uses the fact that the conformal group

C(p,q) is homomorphic to O(p+ 1,q+ 1) to treat translations as well as rotations

in a unified versor framework (see Section 5), making it possible to use all of GA’s

versor machinery for the analysis of the conformal group.

We now consider which benefits such a versor approach can offer for Coxeter

computations, in particular in the context of applications to physical phenomena

in three dimensions. The isometry group of three-dimensional space is the orthog-

onal group O(3), of which the full polyhedral (Coxeter) groups are discrete sub-

groups. However, O(3) is globally SO(3)×Z2, where the special orthogonal group

SO(3) is the subgroup of pure rotations (or the chiral part). SO(3) is still not simply-

connected, but is doubly covered by the Spin group Spin(3) ≃ SU(2) (in fact, it is

SO(3)×Z2 locally, i.e. a fibre bundle). Thus, the chiral polyhedral groups are dis-

crete subgroups of SO(3), the full polyhedral groups (Coxeter) are their preimage
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in O(3), and the binary polyhedral groups are their preimage under the universal

covering in Spin(3).

Table 1 Versor framework for a unified treatment of the chiral, full and binary polyhedral groups.

Group Discrete subgroup Action Mechanism

SO(3) rotational (chiral) x → R̃xR

O(3) reflection (full) x →±ÃxA

Spin(3) binary spinors R under spinor multiplication (R1,R2)→ R1R2

We begin with the simple roots (vertex vectors) which completely charac-

terise a given Coxeter group, and consider their closure under mutual reflections

(the root system). We then compute the rotors derivable from all these root vec-

tors/reflections, which encode the rotational part of the respective polyhedral group

via the double-sided action in Eq. (3). The rotor group defined by single-sided ac-

tion can in fact be shown to realise the respective binary polyhedral group, which

is the double cover of the chiral polyhedral group under the universal covering ho-

momorphism between SO(3) and Spin(3). Finally, including the versors of the form

αiα jαk via double-sided action gives a realisation of the full polyhedral group (the

Coxeter group). The proofs are straightforward calculations in the Geometric Alge-

bra of three dimensions and more details are contained in [8, 9].

Theorem 3.1 (Reflections/Coxeter groups and polyhedra/root systems) Take the

three simple roots for the Coxeter groups A1 ×A1×A1 (respectively A3/B3/H3). Ge-

ometric Algebra reflections in the hyperplanes orthogonal to these vectors via Eq.

(2) generate further vectors pointing to the 6 (resp. 12/18/30) vertices of an octahe-

dron (resp. cuboctahedron/cuboctahedron with an octahedron/icosidodecahedron),

giving the full root system of the group.

For instance, the simple roots for A1 ×A1 ×A1 are α1 = e1, α2 = e2 and α3 = e3

for orthonormal basis vectors ei. Reflections amongst those then also generate −e1,

−e2 and −e3, which all together point to the vertices of an octahedron.

By the Cartan-Dieudonné theorem, combining two reflections yields a rotation,

and Eq. (3) gives a rotor realisation of these rotations in Geometric Algebra.

Theorem 3.2 (Spinors from reflections) The 6 (resp. 12/18/30) reflections in the

Coxeter group A1 ×A1 ×A1 (resp. A3/B3/H3) generate 8 (resp. 24/48/120) rotors.

For the A1 × A1 × A1 example above, the spinors thus generated are ±1, ±e1e2,

±e2e3 and ±e3e1. In fact, these groups of discrete spinors yield a novel construction

of the binary polyhedral groups.

Theorem 3.3 (Spinor groups and binary polyhedral groups) The discrete spinor

group in Theorem 3.2 is isomorphic to the quaternion group Q (resp. binary tetra-

hedral group 2T/binary octahedral group 2O/binary icosahedral group 2I).
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Through the versor theorem, we can therefore describe all three types of groups

in the same framework. Vectors are grade 1 versors, and rotors are grade 2 versors.

For instance, the 60 rotations of the chiral icosahedral group I are given by 120 ro-

tors acting as αiα jvα jαi. 60 operations of odd parity are defined by 120 grade 1 and

grade 3 versors (with vector and trivector parts) acting as −αiα jαkvαkα jαi. How-

ever, 30 of them are just the 15 true reflections given by pure vectors, leaving another

45 rotoinversions. Thus, the Coxeter group (the full icosahedral group H3 ⊂ O(3))
is expressed in accordance with the versor theorem. Alternatively, one can think of

60 rotations and 60 rotoinversions, making H3 = Ih = I×Z2 manifest. However, the

rotations operate double-sidedly on a vector, such that the versor formalism actually

provides a 2-valued representation of the rotation group SO(3), since the rotors R

and −R encode the same rotation. Since Spin(3) is the universal 2-cover of SO(3),
the rotors form a realisation of the preimage of the chiral icosahedral group I, i.e.

the binary icosahedral group 2I. Thus, in the versor approach, we can treat all these

different groups in a unified framework, whilst maintaining a clear conceptual sepa-

ration. In Table 1, we summarise how the three different types of polyhedral groups

are realised in the versor framework.

4 Construction of the binary polyhedral groups

In this section, we consider further the implications of our construction of the binary

polyhedral groups. Since Clifford algebra is well known to provide a simple con-

struction of the Spin groups, it is perhaps not surprising – from a Clifford algebra

point of view – to find that the discrete rotor groups realise the binary polyhedral

groups. However, this construction does not seem to be known, and from a Coxeter

group point of view, it leads to rather surprising consequences.

rank-3 group diagram binary rank-4 group diagram

A1 ×A1 ×A1 Q A1 ×A1 ×A1 ×A1

A3 2T D4

B3
4

2O F4
4

H3
5

2I H4
5

Table 2 Correspondence between the rank-3 and rank-4 Coxeter groups. The spinors generated

from the reflections contained in the respective rank-3 Coxeter group via the geometric product

are realisations of the binary polyhedral groups Q, 2T , 2O and 2I, which in turn generate (mostly

exceptional) rank-4 groups.

The Geometric Algebra construction of the binary polyhedral groups is via ro-

tors with (single-sided) rotor multiplication. It is then straightforward to check the

group axioms, multiplication table, conjugacy classes and the representation theory.
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However, it is also known that the binary polyhedral groups generate some Coxeter

groups of rank 4, for instance via quaternionic root systems [8]. In particular Q, 2T ,

2O and 2I generate A1 ×A1 ×A1 ×A1, D4, F4 and H4, respectively, as summarised

in Table 2. From a Coxeter perspective, this is surprising. However, in Geometric

Algebra, spinors ψ have a natural 4-dimensional Euclidean structure given by ψψ̃,

and can thus also be interpreted as vectors in a 4D Euclidean space. In fact, one can

show that these vertex vectors are again root systems [7, 9, 24], which generate the

respective rank-4 Coxeter groups. This demonstrates how in fact the rank-4 groups

can be derived from the rank-3 groups via the geometric product of Clifford’s Geo-

metric Algebra. This connection has so far been overlooked in Coxeter theory. This

‘induction’ of higher-dimensional root systems via spinors of lower-dimensional

root systems is complementary to the well-known top-down approaches of projec-

tion (for instance from E8 to H4 [47, 43, 33, 32, 11]), or of taking subgroups by

deleting nodes in Coxeter-Dynkin diagrams. It is particularly interesting that this

inductive construction relates the exceptional low-dimensional Coxeter groups H3,

D4, F4 and H4 to each other as well as to the series An, Bn and Dn in novel ways.

In particular, it is remarkable that the exceptional dimension-four phenomena D4

(triality), F4 (the largest crystallographic Coxeter group in 4D) and H4 (the largest

non-crystallographic Coxeter group) are seen to arise from three-dimensional geo-

metric considerations alone, and it is possible that their existence is due to the ‘acci-

dentalness’ of the spinor construction. This spinorial view could thus open up novel

applications in Coxeter and Lie group theory, as well as in polytopes (e.g. A4), string

theory and triality (D4), lattice theory (F4) and quasicrystals (H4). In particular, this

spinorial construction explains the symmetries of these root systems, which other-

wise appear rather mysterious [9]. The I2(n) are self-dual under the corresponding

two-dimensional spinor construction [7].

5 Conformal Geometric Algebra and Coxeter groups

The versor formalism is particularly powerful in the Conformal Geometric Alge-

bra approach [22, 15, 6]. The conformal group C(p,q) is 1− 2-homomorphic to

O(p+ 1,q+ 1) [1, 2], for which one can easily construct the Clifford algebra and

find rotor implementations of the conformal group action, including rotations and

translations. Thus, translations can also be handled multiplicatively as rotors, for

flat, spherical and hyperbolic space-times, making available the ‘sandwiching ma-

chinery’ of GA and simplifying considerably more traditional approaches and al-

lowing novel geometric insight. Hestenes [20, 21] has applied this framework to

point and space groups, which is fruitful for the crystallographic groups, as lattice

translations can be treated on the same footing as the rotations and reflections, and

this approach has helped visualise these space groups [23].

However, the non-crystallographic groups and the root system/Coxeter frame-

work have thus far been neglected in the conformal setup. We have argued ear-

lier and in the papers [44, 10, 11, 28, 12, 29] that in the affine extension frame-
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work translations are interesting even for the non-crystallographic groups, leading

to quasicrystal-like point arrays that give blueprints for viruses and other three-

dimensional physical phenomena. An extension of the conformal framework to

translations in the case of non-crystallographic Coxeter groups could therefore have

interesting consequences, including for quasilattice theory [27, 46], in particular

when quasicrystals are induced via projection from higher dimensions (e.g. via the

cut-and-project method) [43, 11, 25]. We therefore briefly outline the basics of such

a construction.

Let us consider the conformal space of signature (+,+,+,+,−) achieved by

adjoining two additional orthogonal unit vectors e and ē to the algebra of space

[22]. It is therefore spanned by the unit vectors

e1,e2,e3,e, ē, with e2
i = 1,e2 = 1, ē2 =−1. (5)

From these two unit vectors we can define the two null vectors

n ≡ e+ ē, n̄ ≡ e− ē. (6)

One can then map a 3D vector x into the space of null vectors in the conformal space

by defining

X ≡ F(x) := x2n+ 2λ x− λ 2n̄. (7)

X being null allows for a homogeneous (projective) representation of points, i.e.

they are represented by a ray in the conformal space, which tends to be more nu-

merically robust in applications, as for instance the origin is represented by n̄ rather

than the number 0, which is sensitive to the accumulation of numerical errors. Here,

λ is a fundamental length scale that is needed in order to make this expression di-

mensionally homogeneous, as we think of the position vector x as a dimensionful

quantity [39]. The equivalent notation in terms of the Amsterdam protocol would be

e = e+, ē = e−, n = n∞ and n̄ = n0. This notation is also consistent with the notion

that the above mapping is essentially an embedding into the projective null cone of

the embedding space. Originally due to Dirac [14], the idea is that the projective

null cone inherits the SO(4,1) invariance of the ambient space in which SO(4,1)
acts linearly, thereby endowing the projective null cone with a non-linearly realised

conformal structure.

The vectors e and ē and therefore also n and n̄ are orthogonal to x and hence anti-

commute with it, i.e. −x−1nx = n and −x−1n̄x = n̄. Thus, the CGA implementation

of a reflection y′ =−x−1yx is given by

− x−1F(y)x = F(y′) = F(−x−1yx). (8)

Given the simple roots, one can again generate the whole root system via successive

reflections as shown in Fig. 3 (left). We firstly notice that the conformal representa-

tion of a root vector F(α ) is now different from the implementation of the reflection

encoded by it via the versor α . These two roles were treated on an equal footing in

3D, as there α represents both the root vector and the versor encoding a reflection in
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the hyperplane perpendicular to the root, and it is debatable whether the conceptual

advantages of CGA outweigh this disadvantage.

Secondly, it is often argued that the implementation of rotations in CGA is given

by F(x′) = RF(x)R̃, since R only contains even blades and thus commutes with the

vectors n and n̄ such that RnR̃= n and Rn̄R̃= n̄. However, via the Cartan-Dieudonné

theorem, every rotation is given by an even number of successive reflections. Thus,

it can be seen that the rotor transformation law actually follows from the more fun-

damental reflection law in Eq. (8). From the previous sections, we know that the

spinors generated by the root vectors are important for the construction of the bi-

nary polyhedral groups and 4D polytopes. However, the 3D geometric product does

not straightforwardly extend to CGA, such that the spinors and other multivectors

are not treated in the same way as vectors. The operators encoding the conformal

rotations, however, are still given by the 3D rotors, so that little seems to be gained

by going to the conformal setup from the spinorial point of view.

α1

τα1 +α2

τ (α1 +α2)α1 + τα2

α2

Fig. 3 In the conformal setup, reflections generated by the simple roots (here e.g. α1 and α2 for

a simple two-dimensional example, H2) according to Eq. (8) again generate, for instance, the H2

non-crystallographic root system, the decagon (left). CGA rotor translations via Eq. (9) act multi-

plicatively, but yield quasicrystalline point sets consistent with the 3D approach; for instance, on

the right we show the effect of a translation with length the inverse of the golden ratio acting on a

pentagon, in analogy to Figs 1 and 2.

A very salient feature of Conformal Geometric Algebra is that a translation x →
x+ a by a vector a is given by a rotor

Ta = exp
( na

2λ

)

= 1+
na

2λ
. (9)

It is easily checked that this has the desired effect of TaF(x)T̃a = F(x + a), and

therefore does indeed represent a 3D translation as a rotor in Conformal Geometric

Algebra. One can thus treat reflections, rotations and translations multiplicatively

in a unified framework. This allows for a unified construction of the type of point

arrays considered earlier, and indeed the construction is entirely equivalent to the

lower-dimensional construction (as it must), and can be straightforwardly verified,
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for instance, for the non-crystallographic groups I2(n), H3 and H4. In Fig. 3, we

show an example consisting of both one such root system and one quasicrystal-like

point array derived entirely in the conformal setup, as a proof of principle. The

root system shown is that of H2, and the point array is obtained via the action of a

translation of length the inverse of the golden ratio on a pentagon.

The CGA approach is naturally more computationally intensive than the 3D ap-

proach; however, this could be compensated for by increased numerical stability, as

the origin is simply represented by scalar multiples of n̄, as opposed to the number 0,

where numerical errors can create artefacts near the origin. Treating both rotations

and translations on the same footing as multiplicative rotors is also a nice concep-

tual shift. However, there are also drawbacks to the conformal approach. Firstly, the

conformal representation of the root vectors F(α ) is different from their action as

generators of reflections α . The relationship between these two functions was more

transparent in the conventional approach in 3D, where α represented both. Sec-

ondly, the rotors encoding rotations are also the 3D spinors, rather than a conformal

representation of those. Thus, CGA affords a nice representation of GA vectors, but

not necessarily of the whole GA multivector structure.

Following [40], an interesting approach might be to work in a curved space,

for which only one extra dimension is necessary (e or ē), which should simplify

the computations somewhat. One may then finally take the zero curvature limit in

order to recover the Euclidean space results. For instance, for Minkowski space-

time, the conformal group C(1,3) is 15-dimensional. It has certain well-known

ten-dimensional groups as stabiliser subgroups, i.e. groups of transformations that

leave a given point (ray) y invariant. If y is spacelike, one gets an SO(2,3) stabiliser

subgroup, i.e. the Anti de Sitter group, corresponding to the homogeneous space-

time that is the solution of Einstein’s field equations with a negative cosmological

constant, Λ < 0. Likewise, for timelike y one obtains the de Sitter (Λ > 0) group

SO(1,4) as the stabiliser (here in the CGA setup, e and ē are distinguished choices

for such spacelike and timelike y). Lastly, when one chooses a null y (e.g. n), one

gets an ISO(1,3) subgroup, which is just the Poincaré group [45, 3]. Thus, taking

the zero curvature limit essentially corresponds at the group level to the Wigner-

Inönü contraction that yields the Poincaré group from the de Sitter and Anti de

Sitter groups (see e.g. [16]) and a flat space (which needs two vectors e and ē) limit

from a curved space (for which only one of e or ē is necessary).

6 I2(n) and H3 – the Coxeter element and spinors

In this section, we further analyse the two-dimensional family of non-crystallographic

Coxeter groups I2(n) (the symmetry groups of the regular polygons), as well as the

three-dimensional groups A3, B3 and the icosahedral group H3, describing the sym-

metries of the Platonic solids. A versor framework (not necessarily conformal) al-

lows a deeper understanding of the geometry, relating spinors to the Coxeter element
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and the Coxeter plane in a novel way, in particular highlighting what the complex

structure involved is.

A Coxeter element w= s1 . . .sn is the product of the reflections encoded by all the

simple roots αi of a finite Coxeter group W . The Coxeter number h is the order (i.e.

wh = 1) of such a Coxeter element. The sequence in which the simple reflections

are performed does matter, but all such elements are conjugate, and thus the Cox-

eter number h is the same (for instance for I2(n) one has h = n). For a given Coxeter

element w, there is a unique plane called the Coxeter plane on which w acts as a ro-

tation by 2π/h. At this point in the standard theory, there is a convoluted argument

about the need to complexify the situation and taking real sections of the complexi-

fication in order to find the complex eigenvalues exp(2πi/h) and exp(2πi(h−1)/h)
[24]. It will come as no surprise that in Geometric Algebra the complex structure

arises naturally, giving a geometric interpretation for the ‘complex eigenvalues’.

Projection of a root system onto the Coxeter plane is a way of visualising any

finite Coxeter group, for instance the well-known representation of E8 is such a

projection of the 240 vertices of the eight-dimensional Gosset root polytope onto

the Coxeter plane. Fig. 4 (a) shows such a projection of the root polytope of H3 (the

icosidodecahedron) onto the Coxeter plane.

(a) (b) (c)

Fig. 4 Illustration of the geometry of H3. (a) shows the projection of the root polytope (the icosido-

decahedron with 30 vertices) onto the Coxeter plane. Panel (b) illustrates the action of the Coxeter

element on a vector v = e1 denoted by the open circle in the Coxeter plane. w acts by 10-fold rota-

tion generating a decagon clockwise, whereas on a vector n normal to the Coxeter plane it acts by

reversal −n. Panel (c) displays both sets of vectors, which in turn happen to form the root system

of A1 ×H2.

Without loss of generality, in Geometric Algebra the simple roots for I2(n) can

be taken as α1 = e1 and α2 = −cos π
n

e1 + sin π
n

e2 (see the H2 root system in Fig. 3

for n = 5). The Cartan matrix Ai j = 2αi ·α j/α 2
i is then correctly given by

A(I2(n)) =

(

2 −2cos π
n

−2cos π
n

2

)

. (10)
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The Coxeter versor W describing the rotation encoded by the I2(n) Coxeter ele-

ment via the typical GA half-angle formula

v → wv = W̃ vW (11)

is therefore

W = α1α2 =−cos
π
n
+ sin

π
n

e1e2 =−cos
π
n
+ sin

π
n

I =−exp

(

−πI

n

)

(12)

for I = e1e2. In GA it is therefore immediately obvious that the action of the I2(n)
Coxeter element is described by a versor (here a rotor/spinor) that encodes rotations

in the e1e2-Coxeter-plane and yields h = n since trivially

W n = (−1)n+1 ⇒ wn = 1. (13)

More generally, the versors belonging to conjugate Coxeter elements could be W =
±exp

(

±πI
n

)

and one immediately finds that W n = ±1 as required for w to be of

order h = n.

Since I = e1e2 is the bivector defining the plane of e1 and e2, it anticommutes

with both e1 and e2. Thus, in the half-angle formula Eq. (11), one can take W through

to the left to write the complex eigenvector equation

v → wv = W̃vW = W̃ 2v = exp

(

±2πI

n

)

v, (14)

immediately yielding the standard result for the complex eigenvalues. However, in

GA it is now obvious that the complex structure is in fact given by the bivector de-

scribing the Coxeter plane (trivial for I2(n)), and that the standard complexification

is both unmotivated and unnecessary. The ‘complex eigenvalues’ are simply left and

right going spinors in the Coxeter rotation plane.

The Pin group/eigenblade description in GA therefore yields a wealth of novel

geometric insight and the general case will be the subject of a future publication.

However, for instance for the icosahedral group H3, standard theory has h = 10 and

complex eigenvalues exp(2πmi/h) with the exponents m = {1,5,9}. For simple

roots α1 = e2, −2α2 = (τ − 1)e1 + e2 + τe3 and α3 = e3, one finds the Coxeter

plane bivector BC = e1e2 + τe3e1. Under the action of the Coxeter element versor

2W = −τe2 − e3 +(τ − 1)I (here I = e1e2e3) it gets reversed −W̃BCW = −BC as

is expected for an invariant plane under an odd operation. For an ‘eigenvector’ in

the Coxeter plane, the two-dimensional argument from Eq. (14) applies and one

again finds eigenvalues exp
(

± 2πBC

h

)

, which corresponds to m = 1 and m = 9. In

fact, this holds true for a general Coxeter group: 1 and h− 1 are always exponents

and in Geometric Algebra they correspond to ‘eigenvectors’ being rotated in the

Coxeter plane via left and right going spinors. However, in Geometric Algebra it is

also obvious that in general more complicated geometry is at work, with different

complex structures corresponding to different eigenspaces. Going back to our H3
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example, for the vector bC = BCI =−τe2 − e3 orthogonal to the Coxeter plane, one

has −W̃bCW = −bC = exp
(

± 5·2πBC

h

)

bC, as is expected for the normal vector for

a plane that gets reversed. Thus, in GA this case straightforwardly corresponds to

m = 5, accounting for the remaining case.

Fig. 4 illustrates this H3 geometry. Panel (a) shows the projection of the root

system, the icosidodecahedron, onto the Coxeter plane. The vector v = e1 lies in

the Coxeter plane and the Coxeter element w acts on it by 10-fold rotation via the

Coxeter versor W . This is depicted in Panel (b), where v is denoted by the open

circle, and rotation via W occurs in the clockwise direction creating a decagon. The

Coxeter versor acts on the vector bC normal to the Coxeter plane simply by reversal,

as discussed above. Both sets of vectors (the decagon and± the normal) are depicted

in Panel (c). Curiously, these vectors form the root system of A1 ×H2 = A1 × I2(5).
The geometry for A3 and B3 is very similar. They have Coxeter numbers h = 4

and h = 6, respectively, and exponents m = {1,2,3} and m = {1,3,5}. The Coxeter

versor again inverts the Coxeter bivector, and the exponents 1 and h− 1 correspond

to left and right going rotations in the Coxeter plane on which the Coxeter element

acts by h-fold rotation, whilst the normal to the Coxeter plane gets simply inverted

as expected, corresponding to the cases h/2 (m = 2 and m = 3 for A3 and B3, re-

spectively). Again, the combinations of the vectors in the plane and orthogonal to it

form the root systems of A1 ×A1 ×A1 = A1 × I2(2) and A1 ×A2 = A1 × I2(3).

7 Conclusions

We have investigated what insight a Geometric Algebra description, which lends

itself to applications of reflections, can offer when applied to the Coxeter (reflec-

tion) group framework. The corresponding computations are conceptually reveal-

ing, both for applications to real systems and for purely mathematical consider-

ations. The implementation of orthogonal transformations as versors rather than

matrices offers some computational and conceptual advantages, in both the con-

ventional and the conformal approaches. The main benefit in a versor description

of the applications, for instance in virology, lies in the simple construction and im-

plementation of the chiral and full polyhedral groups. The Clifford approach then

also yields a simple construction of the binary polyhedral groups, and in fact all

three groups can be straightforwardly treated in the same framework. This seem-

ingly unknown construction of the binary polyhedral groups also sheds light on the

fact why they generate Coxeter groups of rank 4. The natural 4D Euclidean structure

of the spinors allows for an alternative interpretation as vectors (in fact, a root sys-

tem) in a 4D space, which generate Coxeter groups in four dimensions. Thus, one

can construct many four-dimensional (exceptional) Lie and Coxeter groups from

three-dimensional considerations alone. We have constructed non-crystallographic

root systems and groups, as well as quasicrystalline point arrays in the conformal

framework. This could be interesting for the latter quasicrystals, as translations (e.g.

arising from affine extensions of the Coxeter groups) are treated multiplicatively by
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versors in the same way as rotations and reflections. We have discussed the ver-

sor framework for the groups I2(n), A3, B3 and H3, in particular in relation to the

Coxeter element, the Coxeter plane and complex eigenvalues/exponents. The Ge-

ometric Algebra approach gives novel geometric insight, as the complex structure

is seen to arise from the Coxeter plane bivector, and the Coxeter element acts as a

spinor generating rotations in this Coxeter plane.

We are currently applying the more formal considerations of our recent work

to extending the existing paradigm for modeling virus and fullerene structure [12]

and to packing problems [30]. The chiral and binary polyhedral groups are attrac-

tive as discrete symmetry groups for flavour and neutrino model building in particle

physics, and we are currently working on an anomaly analysis (breaking of clas-

sical symmetries by quantum effects) for these groups [13]. The two-dimensional

groups I2(n) generate the symmetries of protein oligomers, which we are currently

investigating.
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33. M. Koca, N. O. Koca, and R. Koç. Quaternionic roots of E8 related Coxeter graphs and

quasicrystals. Turkish Journal of Physics, 22:421–436, May 1998.

34. Mehmet Koca, Mudhahir Al-Ajmi, and Ramazan Koç. Polyhedra obtained from Coxeter
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