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ABSTRACT  

This paper presents an experimental and analytical study to investigate the effect of 

masonry infill on the seismic performance of special Concentrically Braced Frames (CBFs). 

Cyclic lateral load tests are conducted on three half-scale specimens including two special 

CBFs with and without masonry infill and a moment resisting steel frame with masonry infill 

for comparison purposes. Companion analyses are performed to study the influence of masonry 

infill on the potential rupture of gusset plates and top-seat angle connections by using detailed 

FE models validated with experimental results. It is shown that the presence of masonry infill 

could increase the lateral stiffness and load carrying capacity of the special CBF by 33% and 

41%, respectively. However, the interaction between masonry infill and the frame significantly 

increased the strain demands and failure potential of the connections. The results of the 

experimental tests and analytical simulations indicate that ignoring the influence of masonry 

infill in the seismic design process of CBFs results in a premature fracture of the connection 

weld lines and a significant reduction in the deformation capacity and ductility of the frame. 

This can adversely influence the seismic performance of the structure under strong 

earthquakes. The results of this study compare well with the damage observations after the 

2003 earthquake in Bam, Iran.  

  

Keywords: Seismic performance; Masonry infill; Concentric braced frame, FE modelling; 

Nonlinear analysis 
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1-INTRODUCTION  

Concentrically braced frames (CBFs) are one of the most popular lateral-load resisting 

systems in seismic areas. CBFs are designed to have the strength and stiffness required to 

assure economy and serviceability during small, infrequent earthquakes. In large earthquakes, 

CBFs exhibit a nonlinear response which is mainly dominated by the tensile yielding and post 

buckling behaviour of the braces [1-2]. However, this inelastic deformation should be 

controlled to assure life safety and collapse prevention during strong seismic events.  

In CBFs, braces are typically connected to beam and column elements through gusset-

plate connections. Although the brace elements contribute the majority of the inelastic 

deformations to sustain the cyclic drift demands, the gusset-plate connections also play a vital 

role in the seismic performance of CBFs. The gusset plates are usually connected to both brace 

and frame elements by interface fillet welds. The impact of the weld size on the seismic 

performance of concentrically braced frames was studied by Johnson 2005 [3]. Gusset-plate 

connections must support the full tensile and compressive capacities of the brace, and should 

be able to tolerate large inelastic deformations and rotations when the brace exhibits buckling 

[4]. Premature failure or fracture of the connection, or the interface weld between the plate and 

the beam or column, affects the seismic performance of the system. To ensure yielding in the 

bracings, the current seismic design provisions [1] require that the axial capacity of gusset plate 

connections exceed the expected axial (tensile and compressive) capacity of the brace 

elements. Top-seat angle connection is one of the typical beam-column connections in CBFs 

that can be categorized as semi-rigid connections [2]. Pirmoz et al. [5] and Danesh et al. [6] 

studied the behaviour of bolted angle connections subjected to combined shear force and 

bending moment, and proposed an equation to determine the effect of shear force in reducing 

the initial stiffness of the connections.  

The study by Lehman et al. [7] concluded that the structural over-strength in CBFs, due 

to the end conditions of brace elements and material characteristics, can increase the strain 
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demands in beams and decrease them in columns. Uriz and Mahin [8] and Roeder et al. [9] 

showed that CBFs with connections designed based on ANSI/AISC 341-05 [1] criteria may 

exhibit a relatively poor seismic performance under strong earthquake events. Increasing the 

capacity and ductility of the connections can be an effective way to improve the seismic 

performance of CBFs. To increase the drift capacity of CBFs, a modified design concept has 

been proposed by Roeder et al. [9] that attempts to balance multiple secondary yield 

mechanisms (e.g. yielding of the gusset plates) with the primary yield mechanism (e.g. tensile 

yielding or buckling of the braces). Yoo et al. [10] studies showed that the gusset plate 

connections can induce significant plastic deformations in the beams and columns of CBFs. 

Therefore, welds joining gusset plates to the beam and column elements must be designed 

based on the plastic capacity of the gusset plates rather than the plastic capacity of the brace 

elements. Yoo et al. [11] concluded that the gusset plates should be designed to transfer the full 

load capacity of the brace, but should not be excessively large, as an overly stiff or strong 

connection concentrates the inelastic deformation into a short length at the centre of the brace 

that can cause an early brace fracture.The interaction between masonry infill and gusset plate 

connections in CBFs is not considered in any of the above mentioned studies. 

Several experimental and analytical studies showed that masonry infill can have a 

significant effect on the strength and stiffness of RC and steel moment resistant frames, and 

therefore, should not be ignored in the design process [12�15]. The contribution of the existing 

infill panels should also be included in the retrofitting design of existing buildings [16, 17]. 

The presence of the masonry infill can have a significant contribution to the energy dissipation 

capacity of the structural system [18]. Therefore, strengthening the masonry infill can be an 

effective method to improve the seismic performance of CBFs. Various techniques have been 

developed for strengthening of masonry infill such as using: shear connectors at the interface of 

frame and infill [19], concrete cover [20], exterior welded wire [21], horizontal reinforcement 

[12], polymer composites [22], and the use of an RC bond beam at the mid-height of the 
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masonry panel [17]. Tzamtzis and Asteris [23] proposed a three-dimensional microscopic finite 

element model to predict the nonlinear behaviour of masonry structures subjected to both static 

and dynamic loads. Moghadam et al. [24] developed an analytical approach for the evaluation 

of shear strength and cracking patterns of masonry infilled steel frames. Their method is based 

on the estimation of capacity by considering the cracking pattern and possible failure modes of 

masonry infill materials. Hashemi and Hassanzadeh [25] studied a semi-rigid steel braced 

building damaged in the 2003 Bam earthquake in Iran. Their study showed that FEMA-356 

[16] could provide a relatively good evaluation of the seismic performance of steel columns 

and infill panels. To obtain acceptable results, the effect of masonry infill should be considered 

in the calculation of the compressive capacity of the brace elements. Daryan et al. [26] 

investigated the effect of infill brick walls on the seismic behaviour of eccentrically braced 

frames using an explicit finite element method. This study showed that, in general, the 

presence of masonry wall increases the yield strength and the elastic range of the force-

displacement curves. This study was based on the superposition of two different experimental 

tests conducted on an eccentrically braced frame and a masonry wall, and therefore, could not 

capture the actual interaction between the masonry infill and the frame.  

Although CBF is a practical and economical structural system for seismic applications, 

there are very limited studies on the interaction between masonry infill and CBFs. Contribution 

of masonry infill to the lateral stiffness and strength of CBF is usually neglected in the seismic 

design of new buildings. However, during strong earthquakes, the interaction between masonry 

infill and CBF can induce additional loads to the connections that should be evaluated to 

prevent premature failure of the connections. Special CBFs are designed based on more 

elaborate design requirements (such as extra limits on the slenderness and strength of bracing 

elements) to meet higher serviceability and ultimate limit states criteria [1]. Therefore, they are 

currently one of the common lateral-load resisting systems to design new building structures in 

high seismic zones [11]. The seismic response of special CBFs is usually influenced by 
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nonlinear behaviour of the braces, and therefore, AISC seismic design provisions [1, 2] aim to 

ensure the brace sustains the required inelastic action. Special CBFs are more vulnerable to the 

adverse effects of masonry infill, as they have higher displacement and ductility demands 

compared to ordinary CBFs. The work presented in this paper attempts to address this issue by 

investigating experimentally and analytically the effects of infill panels on the seismic 

performance and failure modes of special CBFs. The damages to CBFs with masonry infill in 

2003 Bam Earthquake in Iran, are used to highlight the common problems with conventional 

design methods that ignore the effects of infill masonry in the structural analysis and design. 

2- FAILURE MODES OF CBFS WITH INFILL IN BAM EARTHQUAKE 

Structural damage and failure observed in the past major earthquakes can provide 

valuable lessons for engineers and useful information for development of seismic design 

standards. Bam earthquake in 2003 was a turning point for the engineering community in Iran 

as it caused extensive damage and loss of life in the region. The epicenter of the earthquake 

was located in Bam city (58.3° E latitude, 29° N longitude) with a surface wave magnitude Ms 

of 6.5 and focal depth of 8 km. The near-field effect of this earthquake caused a strong shaking 

in the vertical direction, perpendicular to the (east�west) fault [27]. 

CBF with masonry infill (CBFI) is one of the common structural systems in Iran that was 

widely used in Bam (see Fig. 1 (a)). In practise, CBFI is built up in two stages. First a normal 

CBF is constructed and then the masonry infill is placed on both sides of the braces (usually 

channel sections because of their easy construction) to integrate them with the surrounding 

frame. The brace elements and the mid-height gusset plate are inboard the masonry infill. The 

typical failure modes of CBFs in the Bam earthquake were buckling of brace elements that 

resulted in a separation of braces and infill panel (Fig 1 (b)), and the fracture of gusset plate 

connection weld lines (Fig 1 (c)). The main reason for poor performance and failure of the 

CBFs were improper welding practice and workmanship; poor material quality; and ignoring 
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the contribution of masonry infill in the seismic design of the buildings. Hashemi and 

Hassanzadeh [25] studied the seismic behaviour of CBFs with semi-rigid connections in Bam 

earthquake. The results of their study show that, in this structural system, most of the 

earthquake's energy is absorbed by infill panels. It was observed in the Bam earthquake that 

masonry infill panels can play a significant role in preventing structural collapse. In CBFs, the 

masonry infill also can provide limited support for out-of-plane buckling of the brace elements. 

This effect can increase the compression capacity of the diagonal brace elements that should be 

taken into account in the design of gusset plate connections. 

   

Fig 1: (a) A typical CBF with infill in Iran; (b) Buckling of chevron braces of a CBF in Bam 

earthquake; (c) Fracture of horizontal re-entrant corner of gusset plate weld line and spalling of 

masonry infill in Bam earthquake  

3- DESCRIPTION OF THE EXPERIMENTAL PROGRAMME   

To investigate the influences of masonry infill on the seismic behaviour of special CBFs, 

three quasi-static cyclic lateral load tests were conducted on half-scale single-bay frames. The 

test specimens consisted of two special CBFs with and without masonry infill and a moment 

resisting frame with masonry infill and semi-rigid connections (hereinafter referred to as CBFI, 

CBF and MRFI, respectively). The moment resisting frame was used to investigate the effects 

of infill on beam-to-column connections and failure modes compared to other test specimens. 

IPB (wide flange I-section), IPE (medium flange I-section) and UNP (U-Channel) sections, 

according to DIN-1025 [28], were chosen for columns, beams and bracings, respectively. The 
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connections were double seat angles, which do not require any continuity plates (or stiffeners) 

according to AISC code [1]. This type of construction is typical in many developing countries 

such as Iran. Fig 2 (a) shows the test set-up including the reaction frame and out-of-plane 

buckling supports. A 500 kN hydraulic actuator (stroke up to ±150 mm) was used to apply the 

cyclic loads to the corner of the frames as shown. Experimental tests were conducted under 

displacement control using a predetermined cyclic displacement similar to that specified by 

ATC 24 [29] for cyclic load tests (Fig. 2 (b)). This general loading protocol is suitable for the 

systems with different structural systems and materials.  

 

 

 

 

 

 

 

Fig 2: (a) Experimental test setup; (b) Applied cyclic loading [29] 
 

The experimental program was conducted at IIEES (International Institute of Earthquake 

Engineering and Seismology, Tehran, Iran). Fig. 3 shows the schematic view of the test 

specimens. Out-of-plane buckling supports for the column tips consisted of two parallel 

IPE140 beams at two sides of the column as shown in Fig. 3. The half scale frame specimens 

were 250cm long and 167cm high, and they were fabricated using IPE270 and IPE120 sections 

as beam and column elements, respectively. Brace elements were UNP 60 with slenderness 

ratios Ȝx= KxL/rx=56 and Ȝy= KyL/ry=34; and b/t ratio of 5. Infill panels consisted of 

219×110×66 mm solid clay bricks (with no voids) placed in a running bond with 22 courses 

within the surrounding steel frame. The thickness of the infill panel was 110 mm.  
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Double angle connections with L section (L100x100x10 mm) were used for beam-to-

column connections. The mid-height and corner gusset plate connections consisted of 

250×250×12 mm and 280×280×8 mm plates, respectively. The brace elements and gusset plate 

connections in this study were designed to meet the requirements of Special CBFs in 

ANSI/AISC 341-05 [1]. By using pushover analysis, the connection design force was 

calculated based on the maximum force that can be transferred to the connections. However, 

there is no specific detailing for mid-height X brace connections in the AISC design codes. 

Brace-to-gusset plate offset is one the important design parameters in CBFs that is defined as 

the distance from the end of the brace to the gusset plate yield line (perpendicular to the main 

axis of the brace). In this study, the gusset plate connections were designed to provide a good 

balance between the potential braces failure and gusset plate weld line fracture (balanced 

design). To achieve this, the gusset plates were designed using an elliptical offset of 8 times the 

plate thickness (8tp) based on the studies of Yoo et al. [10, 11] (see Fig. 3). Their studies 

showed that the elliptical clearance leads to a smaller gusset plate size while keeping 

performance equal to or better than that achieved with the 2tp linear clearance defined by 

AISC-seismic provisions [1].  

Steel columns were braced at both ends in the out of plane directions but they were free 

to rotate in the plane of the frame. A rigid element was pinned to the steel columns to simulate 

the rigidity that is normally provided by a ceiling system (section A-A in Fig. 3). All 

specimens were whitewashed with a fine layer of plaster to help with the visual monitoring of 

the tests as shown in Fig.2 (a). To improve the bond strength at the brick-mortar interface, 

bricks were pre-soaked to decrease the water absorption from the mortar joints [30]. All brick 

panels had full bed and head joints. The compressive strength of the masonry brick was 12.6 

MPa based on the average of five brick samples. A full mortar joint was placed between the 

masonry panel and the steel frame to provide direct contact with the boundary frame.  
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Fig 3: Schematic view of test specimens CBF, CBFI and MRFI 
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To evaluate the compressive strength of the masonry infill, fifteen 3-course masonry 

prisms (couplet specimens) were tested based on ASTM C-1314 [31]. The average prism 

compressive strength was 7.53 MPa that is less than the average compressive strength of the 

bricks and mortar. This is attributed to the premature failure mechanism of masonry prisms in 

which vertical splitting of the bricks occurred prior to the crushing of the mortar. The lateral 

biaxial tension in the brick elements in this case reduces their crushing strength and increases 

the tendency for vertical splitting [32, 33].  

Gusset plates and top-seat angle connections were welded with a continuous fillet weld 

line using an E7018 welding electrode. E7018 welding electrode can produce a weld that has a 

specified Charpy V notch impact toughness of 70 J at −30 
ƕ
C [34]. The material properties of 

the steel elements and weld metal are summarized in Table 1. 

Table1: Section and material properties  

                                     

                                    
Section yF (MPa) 

UF (MPa) 
u

y

F

F  
Elongation 

Beam web                   IPE 270 325 458 0.71 26 

Beam flange               IPE 270 348 485 0.72 23 

Column web               IPB 120 318 445 0.71 26 

Column flanges       IPB 120 340 473 0.72 24 

Brace section                  UNP 60 333 462 0.72 26 

Welds (7018,φ 4,mm electrode ) 540 627 0.86 16 

 

All of the test specimens were equipped with two horizontal displacement transducers 

(LVDT) installed on the columns at the mid-height and at the beam height levels, and one 

vertical displacement transducer at the mid-span of the beam (No. 1 to 3 in Fig. 3). Another 

LVDT displacement transducer was installed on the geometric centre of the infill panel 

(perpendicular to the frame plane) to measure the out of plane deflection of masonry infill (No. 

4 in Fig. 3). This LVDT was mainly used to control the excessive out-of-plane displacement of 

the infill panel to prevent damage to the lab equipment. To study the buckling behaviour of 

braces, however, the maximum out-of-plane displacement was measured at the end of each 

experimental test. Four bi-axial strain gauges were installed on the steel column webs, in the 
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proximity of the base connections, designated as C1 to C4 in Fig. 3. Bi-axial strain gauges 

allow strain measurements in two orthogonal directions, which can be used to calculate the 

principle stresses in the connection areas. Four uni-axial strain gauges were installed on the 

brace elements of the test specimens CBF and CBFI to measure strains parallel to the main 

axes of the braces (B1 to B4 in Fig. 3). The strain gauges on brace elements can measure both 

axial and out-of-plane bending strains. However, the strains  measured before buckling were 

mainly axial strains. Four horizontal (H1 to H4) and four vertical (V1 to V4) uniaxial strain 

gauges were installed on the vertical and horizontal re-entrant corners of the gusset plate 

connections (close to the fillet weld lines) as shown in Fig. 3. The main aim of using strain 

gauges on gusset plate connections was to measure the strain values close to the critical points 

on the fillet weld lines, and to study the effects of infill panel on the strain distribution in the 

connections. 

4- ANALYTICAL MODELLING 

The nonlinear cyclic behaviour of the test specimens is studied using detailed FE models 

that are validated with the experimental results. Elastic and inelastic analyses were performed 

using ANSYS [35]. For example, the FE model of the test specimen CBF is shown in Fig. 4. 

Steel elements and fillet welds were modelled using a 3D solid element (SOLID45). The 

material properties used in the analyses were based on the measured stress�strain relationships 

obtained from the experimental programme (coupon tests). Similar to the experimental tests, 

the cyclic loading protocol shown in Fig 2 (b) was used for analytical studies. 

Seat angle connections in the FE models were connected to the beam and column flange 

by using contact elements (CONTA174). Large displacement element formulations (see the 

ANSYS software manual [35] for more information) were used to simulate buckling of the 

brace elements and the local deformation of top-seat angle connections. Nonlinear buckling 

behaviour was included in the analysis by taking into account the initial imperfections 
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consistent with the first buckling mode shape of the braces. The location of the initial 

imperfection was obtained from the buckling behaviour observed in the experiments. The small 

initial imperfection value was considered to be 0.000001 of the measured buckling 

displacement. Contact pair elements (CONTA174-TARGE170) were used to model the 

interaction between steel and adjacent brick elements. To calculate the frictional forces 

between masonry bricks and steel surfaces, Coulomb�s coefficient ( µ ) was considered to be 

0.45 as suggested by Shaikh [36]. The Coulomb�s coefficient ( µ ) is the ratio of the friction 

force between two bodies to the force pressing them together. 

 

Fig. 4: (a) FE model of test specimen CBF; (b) Critical points on top gusset plate fillet welds; (c) 

Critical points of bottom gusset plate fillet welds; (d) Critical points on top angle connection weld line. 

 

Mortar and masonry units were modelled with the 3D smeared crack element SOLID65 

(concrete solid element). The material properties of masonry infill were obtained from a test 

programme performed parallel with these experiments using the same masonry infill material 
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and construction conditions [37-38]. Masonry elements assumed to have a non-linear elastic 

behaviour with Young modulus (E) and Poisson's ratio (υ ) equal to 2500 MPa and 0.25, 

respectively. To represent the non-linear behaviour of masonry material, the Drucker�Prager 

yield criterion (with no strengthening hardening effect) is employed in the FE models. This 

pressure-dependent yield model can take into account materials with different tensile and 

compressive yield strengths, and therefore, is suitable for the modelling of masonry infill 

elements [35, 37]. The cohesion factor c , angle of internal frictionϕ , and dilatancy angle 

η of masonry material are given in Table 2. Both cracking and crushing failure modes of 

masonry infill were taken into account by using William and Warnke constitutive model [38] 

through a smeared model. The parameters corresponding to this failure criterion are calculated 

based on the average prism compressive strength of the masonry infill and are given in Table 2. 

In this table, 
tf  and

cf  are uni-axial tensile and compressive strength of masonry material, 

respectively. The shear transfer coefficient β  is introduced (depending on the crack status: 

open tβ or re-closed
cβ ) to represent shear strength reduction across the crack face. It should 

be mentioned that the behaviour of masonry material can be considered to be similar to 

concrete, as they are both strong in compression and weak in tension. Therefore, the masonry 

material can be adequately modelled using the concrete solid element (SOLID65) with Willam 

and Warnke failure surface [39].  

The von-Mises stress (or equivalent plastic stress) can be used to predict yielding of 

ductile materials (such as steel) under different loading conditions [11]: 

5.0222222 )])(6)()()[(
2

1
( zxyzxyxzzyyxeff

σσσσσσσσσσ +++−+−+−=
        

(1) 

where xσ , yσ , zσ , xyσ , yzσ and zxσ are different stress components. The von-Mises stress 

( effσ ) distribution in the analytical models is used to predict the location, initiation and 

spreading of yield lines and areas of stress concentration in steel elements and fillet welds. 
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Table 2. Yield criterion and constitutive model parameters  

Yield Drucker-Parcker criterion [37]    William and Wrankle model 

c  0.88 2/ cmkg  cf  40 2/ cmkg  

η  °15  tf  1 2/ cmkg  

ϕ  °38  tβ  0.75 

  
cβ  0.15 

5- EXPERIMENTAL INVESTIGATION 

The results of the cyclic tests on CBF, CBFI and MRFI test specimens are explained and 

discussed in this section. 

5-1-Special concentrically braced frame without masonry infill (CBF) 

Fig. 5 (a) shows the test specimen CBF under cyclic loading tests. The first yielding in 

the CBF specimen was observed in the bracing elements at the 14
th

 cycle of the applied loading 

(storey drift angle of 0.008 rad). Subsequently, diagonal yield lines were appeared on the 

gusset plates at the 16
th

 cycle (storey drift angle of 0.008 rad). The onset of brace yielding was 

axial yielding initiated between the mid-height and corner gusset plate connections. Out-of-

plane buckling of braces occurred at storey drift angle of 0.012 rad that was followed by a 

significant flexural yielding in the brace elements as shown in Figs. 5 (b) and (c). The local 

buckling and yielding of the brace elements can be recognized by flaking off the white washed 

area on the brace elements [9-10]. Fig. 5 (d) shows the out-of-plane displacement of brace 

elements in the analytical model that compare well with the white washed areas as shown in 

Fig. 5 (b). This indicates that the analytical model could predict the buckling mode of the 

braces with a good accuracy.  

By increasing the imposed displacement, the CBF specimen exhibited noticeable 

inelastic behaviour. The brace elements exhibited about 13.5 cm out-of-plane buckling at the 

48th cycle (storey drift angle of 0.025 rad). At this stage, the experimental test was terminated 

to prevent damage to laboratory equipment (such as LVDT transducer). The maximum out-of-
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plane displacement in the analytical model at the same load level was 13.1 cm that is in good 

agreement with the experimental observations. 

 

Fig 5: (a, b) Front view of test specimen CBF showing the out-of-plane buckling of the brace elements; 

(c) Von-Mises stress distribution in the analytical model of CBF test specimen; (d) Out-of-plane 

displacement of braces in the analytical model 

Fig. 6 (a) presents the cyclic hysteretic behaviour of the test specimen CBF. The results 

show stiffness degradation and pinching during the cyclic tests that was mainly due to the 

buckling of the brace elements. Strength degradation at each storey drift angle was calculated 

based on the lateral strength at the end of load cycles to the initial strength. The peak and the 

ultimate load strength of the test specimen CBF were 282 kN and 258 kN, respectively. The 

strength degradation of CBF specimen was almost 9% at the storey drift angle of 0.025 rad 

where the test was terminated.  

 100kg/cm
2
 ≈  1kN/cm

2
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Fig. 6: Plot of analytical and experimental load-displacement response of (a): Braced frame without 

infill; (b): Braced frame with infill; (c): Moment resisting frame with infill 

Fig. 7(a) shows the flaking off the whitewashed area on the gusset plate connections at 

the end of the experimental test. The measured strains on bracing members (B1 to B4) and the 

gusset plate connections indicated that the yielding of the brace elements initiated almost 

16 

 

http://dx.doi.org/10.1016/j.jcsr.2013.05.009
http://dx.doi.org/10.1016/j.jcsr.2013.05.009


Jazany RA, Farshchi H & Hajirasouliha I (2013) Influence of masonry infill on the seismic performance of 

concentrically braced frames. Journal of Constructional Steel Research, 88, 150-163. 

coincident with the yielding of the gusset plates (see Figs. 5 and 7). This confirms the 

efficiency of the design procedure suggested by Yoo et al. [10, 11] to have a controlled 

yielding mechanism in brace elements and gusset plate connections. 

 

Fig 7: (a) Flaking off the whitewashed area on the gusset plate connection of test specimen CBF; (b) 

Von-Mises stress (equivalent plastic stress) distribution of the gusset plate connection 

 

5-2-Special concentrically braced frame with masonry infill (CBFI) 

Fig. 8 (a) shows the front view of the test specimen CBFI. Unlike the CBF, steel yielding 

in this specimen occurred first in the columns, and followed by the yielding of the brace 

elements and gusset plates at the 18
th

 cycle of the loading (storey drift angle of 0.01 rad). This 

behaviour can be mainly attributed to the interaction between the masonry infill and the 

surrounding frame, which increased the strain demands in columns and gusset plate 

connections. At this stage some inclined cracks were appeared at the top and bottom corners of 

the masonry infill panel close to the gusset plates, and a large part of the whitewashed infill 

flaked off in the vicinity of the brace elements and mid-connection gusset plate (see Figs. 8 (a) 

and (b)). Subsequently, the brace elements exhibited local buckling at 22
nd

 cycle of the loading 

(storey drift angle of 0.012), which resulted in an out-of-plane separation between the masonry 

infill and the braces as shown in Figs 8 (a) and (b). The local buckling of the brace elements 

occurred between the mid-height and end gusset plate connections, and was mainly observed in 

the flange. At this stage, vertical and stair-stepped cracks were developed in the infill panel 
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from the mid-connection gusset plate towards the corner gusset plate connections. Some 

inclined stair-stepped cracks were also appeared along the brace elements and eventually 

penetrated into the rear side of the infill panel as shown in Fig. 8 (a). At storey drift angle of 

0.015 rad, horizontal sliding cracks developed along the bed joints of the masonry infill panel. 

This was followed by yielding and buckling of the braces (see Figs. 8 (a) and (b)) and fracture 

of the fillet welds at horizontal re-entrant corner of the gusset plate connections (see Figs. 8 (c) 

and (d)). This behaviour almost coincided with the fracture of the welded top-seat angle beam-

column connection, and the test was terminated at this point. The brace elements exhibited 

about 5.2cm out-of-plane buckling at the end of the experiment, which is in good agreement 

with 4cm out-of-plane displacement in the analytical model. 

The hysteretic behaviour of the test specimen CBFI is shown in Fig. 6 (b). The peak load 

and the ultimate load capacity of the test specimen CBFI were 398 kN and 405 kN, 

respectively. Based on the results presented in Fig. 6 (b), the strength degradation for this 

specimen was calculated 22% at the storey drift angle of 0.015 rad where the test was 

terminated. The experimental observations showed that the masonry infill could not prevent 

out of plane buckling of the brace elements. This is in agreement with the structural damage 

observed in the Bam earthquake [40].  

5-3- Moment resisting frame with masonry infill (MRFI) 

The test specimen MRFI exhibited elastic behaviour in the first eight cycles of the 

applied loading. At storey drift angle of 0.008 rad, two off-diagonal hairline cracks were 

formed in the infill panel at approximately 45° in the top compression corners, which means 

that diagonal compression strut mechanism was fully developed. These cracks then joined the 

horizontal sliding cracks near the mid-height of the masonry infill panel. The first crushing 

appeared in the corners of masonry panel at 49
th

 cycle of the loading corresponding to storey 

drift angle of 0.025 rad. This was followed by a separation between masonry infill and the 

surrounding beam and column members, which was widened as the amplitude of the imposed 
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displacement increased. The strain measurements (C1 to C4 in Fig. 3) showed that yielding at 

column base started at storey drift angle of 0.017 rad. However, permanent deformations just 

became visible at the story drift angle of 0.035 rad. Fig 9 shows the separation of plaster from 

the masonry infill in the test specimen MRFI and the failure pattern in the masonry panel.  

 

Fig 8: (a, b) Front view of the test specimen CBFI showing the local buckling of the brace elements and 

separation between masonry infill and braces; (c, d) Fracture of the fillet weld at re-entrant corner of the 

gusset plate (rear side); (e) Out-of-plane displacement of braces ;(f) Von-Mises stress distribution 

Rare Side 

Front Side 

Fillet Weld Rupture  
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Fig 9: (a, b, c) Crushing of the masonry infill at the corners of test specimen MRFI and separation 

between plaster and masonry infill; (d) Von-Mises stress distribution in the analytical model 

 

The peak lateral load applied to the MRFI specimen was 272 kN at 14
th

 load cycle (drift 

angle of 0.018 rad). At this point, crushing of infill initiated at the top left and top right corners 

of the panel and propagated along the beam and column elements. Subsequently, successive 

horizontal and vertical cracks appeared all over the infill panel. Most of the cracks were 

through the bed and head joints, while few cracks were through bricks. These brick cracks 

formed two new off diagonal struts after occurrence of corner crushing in the masonry infill 

(see Fig 9 (a)). The infill panel exhibited further cracking at the subsequent displacement 

amplitudes. Severe corner crushing occurred at storey drift angle of 0.043 rad, and afterwards 

the load gradually dropped to 139 kN. The test was stopped at this point due to the fracture of 

the weld lines of top angle beam-column connections as shown in Figs 10 (a) and (b).  
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In general, the crack pattern observed in the MRFI test specimen shows that the stressed 

part of the infill (i.e. equivalent diagonal strut) has a non-prismatic cross section with a large 

width in the centre of the infill panel. The cyclic hysteretic behaviour of the test specimens 

MRFI is shown in Fig 6 (c). The results indicate that the strength degradation of this specimen 

was around 29% at the storey drift angle of 0.043 rad. 

 

Fig 10: (a) Deformed shape of top-seat angle connection for test specimen MRFI; (b) Flaking off the 

white washed area of the top-seat angle connection and fracture of the welded top angle; (c) and (d) 

Von-Mises stress distribution of top seat-angle connection 

5-4- Discussion of Test Results 

As it was discussed in the previous sections, fracture of the fillet welds at re-entrant 

corners of gusset plate connections (in CBFI specimen) and failure of the top-seat angle 

connections (in CBFI and MRFI specimens) were two dominant failure modes in the test 

Fracture of 

the weld line 
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specimens with masonry infill. These undesirable failure modes could be due to the interaction 

between masonry infill and the frame that resulted in an increase in the load transferred 

through the gusset plate and top-seat angle connections.  

Fig. 11 shows the measured strain demands of the brace elements, and horizontal and 

vertical re-entrant corners of gusset plate connections of the test specimens CBF and CBFI. 

The results shown in Fig 11 (a) indicate that the maximum measured horizontal strains at 

vertical re-entrant corners of the gusset plate connections are around 35% higher in the CBF 

specimen compared to the CBFI, mainly due to its higher lateral deformation capacity as 

mentioned before. However, for the same storey drift angle, the maximum measured horizontal 

strain in the CBFI specimen is, on average, 30% greater than the corresponding value in the 

test specimen CBF. It is shown in Fig. 11 (b) that, for the same storey drift angle, the presence 

of masonry infill significantly increased the vertical strain at the gusset plates connections. The 

maximum vertical uniaxial strain at horizontal re-entrant corners of gusset plates reached 3150 

and 4920 microstrain in the test specimens CBF and CBFI, respectively. This indicates that, at 

the failure point, the composite action of the frame-infill system can considerably increase the 

strain demands in the vicinity of horizontal re-entrant corners of gusset plate connections. This 

can explain the reason for the undesirable failure mode (i.e. failure of gusset plate connections) 

in the specimens with masonry infill.  

Fig. 11 (c) compares the measured strain at brace elements (B1 to B4 in Fig. 3). It is 

shown that the maximum strain measured in the brace elements of CBF and CBFI specimens 

were 12324 and 4260 microstrain, respectively. This indicates that, at the failure point, the 

brace elements of the CBF specimen (without masonry infill) experienced almost 3 times more 

accumulated nonlinear strain (axial and flexural) compared to the CFI specimen (with masonry 

infill). This difference can be attributed to the higher out-of-plane displacements in the CBF 

specimen at the failure point. It is shown in Fig. 11 (c) that, for the same storey drift angle, the 

measured strain in the braces of the CBFI specimen was always 50% to 70% less than the 
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corresponding value in the test specimen CBF. This conclusion is valid even for very small 

storey drift angles, where no out-of-plane deflection was observed. The results, in general, 

show that the contribution of the brace elements to the lateral strength and stiffness of the 

concentrically braced frame was significantly reduced after using masonry infill panel. 

Fig. 12 (a) shows the upward beam mid-span deflection of CBF, CBFI and MRFI test 

specimens (LVDT No. 3 in Fig. 3) at different storey drift angles. These measurements are 

used to study the interaction between masonry infill and the surrounding frame. It is shown that 

the test specimen CBFI experienced maximum upward deflection at the mid-span of the steel 

beam compared to the other specimens. This behaviour demonstrates the effects of masonry 

infill on the lateral load distribution pattern of the CBF, which results in additional shear loads 

on the connections. Fig. 12 (b) compares the energy dissipation in different test specimens 

versus number of load cycles. The results indicate that, for similar load cycle (or storey drift 

angle), CBFI and MRFI test specimens absorbed the maximum and the minimum energy, 

respectively, compared to other test specimens. 

The secant stiffness of different test specimens are calculated by dividing the lateral load 

value at each storey drift angel by the corresponding lateral frame displacement as given in 

Table 3. The results indicate that CBFI and MRFI specimens had the largest and the smallest 

lateral stiffness at all storey drift angles, respectively. Table 3 shows that the difference 

between lateral stiffness of the test specimens CBFI and CBF (i.e. the influence of masonry 

wall) was significantly increased after buckling of the braces. The results shown in Fig. 6 

indicate that the maximum lateral load capacity of the CBFI specimen was also 41% more than 

the similar frame without masonry infill (CBF specimen). However, the deformation capacity 

of the CBFI was considerably less (almost 40% less) than the CBF due to the premature failure 

in the connections. This unfavourable behaviour is due to the fracture in gusset-plate and top-

seat angle connection welds, and it is especially important when frame exhibits large lateral 

deflections under strong earthquakes. Although the MRFI specimen experienced the maximum 
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lateral deflection at the failure point, it exhibited the lowest energy dissipation capacity 

compared to the other specimens. It is in agreement with the results presented in Fig. 12 (b). 
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Fig. 11: Measured strain at: (a) Horizontal re-entrant corners of gusset plate connections; (b) Vertical 

re-entrant corners of gusset plate connections; (c) Brace elements (test specimens CBF and CBFI)  
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Fig. 12: (a) Measured upward mid-span deflection of the top beam; (b) Energy dissipation of different 

test specimens 

 

Table 3: Lateral stiffness of CBF, CBFI and MRFI test specimens at different load 

Cycle 

CBF CBFI MRFI 

Lateral 

force 

(kN) 

Lateral 

Stiffness 

(kN/m) 

Lateral  

force 

(kN) 

Lateral 

Stiffness 

(kN/m) 

Lateral 

 force  

(kN) 

Lateral 

 Stiffness 

(kN/m) 

6
th
  30 26270 35 29208 28 22122 

12
th
 64 23333 70 26309 45 18108 

18
th
 138 18550 173 22401 130 12414 

22
nd

 190 13734 230 18113 223 8920 

24
th
 242 11225 376 16635 195 7217 

26
th
 250 9800 --- --- 180 6123 

28
th
 267 7813 --- --- 170 4925 

30
th
 271 5912 --- --- 160 3918 

32
nd

 --- --- --- --- 136 2613 

34
nd

 -- --- ---- ---- 118 1535 

 

The response reduction factor (or force modification factor) R reflects the capacity of a 

structure to dissipate energy through inelastic behaviour. The R factor includes the effects of 

over-strength, ductility and redundancy of the structure, and can be calculated as the ratio of 

elastic strength demand to the design strength [16]. In this study, the back bone curve (lateral 

load-displacement envelope) was obtained for each test specimen based on FEMA-356 [16], 

and used to calculate elastic strength demand, design strength and yield displacement. The 

response reduction factor, R, for CBF, CBFI and MRFI test specimens was 6.4, 3.6 and 4.4, 

respectively. A higher R factor is usually indicative of a structural system that can 
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accommodate more inelastic deformation and ductility. It implies that the CBFI specimen is 

expected to exhibit lower ductility compared to the MRFI specimen. The results indicate that 

the presence of masonry infill can significantly reduce (up to 40%) the response reduction 

factor (and ductility) of CBFs, and can lead to a non-ductile behaviour if it is not taken into 

account in the design process. This is further studied in the next section by using analytical 

models of the test specimens. 

6- ANALYTICAL STUDY 

The FE models defined in section 4 are used to simulate the cyclic inelastic response of 

the test specimens at both global level (e.g., lateral displacement of the frame) and local level 

(e.g., strain demands of gusset plate and top-seat angle connections). The hysteretic behaviours 

obtained from analytical models and experimental tests are compared in Fig. 6. The results 

show a good agreement between the measured and simulated responses for all test specimens. 

It is shown that the FE models accurately predicted the inelastic lateral drift of the tested 

frames at different load levels (with less than 6% error).  

The out-of-plane buckling of brace elements observed in the experimental tests (Figs. 

5(b) and 8(b)) in general compare well with the analytical results shown in Figs. 5(d) and 8(e). 

Maximum out-of-plane displacement of braces in the test specimens CBF and CBFI were 

measured to be 13.5 and 5.2 cm, respectively. For the same load levels, the corresponding 

analytical results were 13.1 and 4 cm, which can demonstrate the capability of the analytical 

models to simulate out-of-plane buckling behaviour of braces. 

It is shown in Fig. 10 that the von-Mises stress distribution of top angle connection 

compares well with flaking off the white washed area and fracture of the fillet welds. Similarly, 

Figs. 8 and 9 show that the distribution of von-Mises stress in the infill panel in the analytical 

models was comparable to the crack pattern and crushing zones observed in CBFI and MRFI 

specimens. For instance, corner crushing of the masonry infill observed in the test specimen 
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MRFI (Figs. 9 (b) and (c)) is in good agreement with the higher von-Misses stress in the same 

area in the analytical model (Fig. 9 (d)).  

It is shown in Fig. 7 that the distribution of von-Mises stress in the gusset plate 

connections compares fairly well with the flaking off the whitewashed area and the observed 

yield lines. The difference between the results may be due to the approximation associated with 

the material yield criterion used in the analytical models (i.e. von-Mises yield criterion), which 

cannot always capture the real behaviour of steel martial.  

7- ASSESSING THE RUPTURE POTENTIAL OF CONNECTIONS 

The crack propagation in steel elements was not modelled explicitly in this study. 

However, in parallel with the test observations, the rupture index (RI) was used to predict and 

monitor crack initiation in the connections of the test specimens [41-43]: 
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      (3) 

where
pl

yε ,
pl

xε , 
pl

xyγ  etc. are the appropriate components of the plastic strain and
/υ is the 

effective Poisson's ratio. Since the loading protocol used for experimental and analytical 

studies was cyclic, the gusset plates were imposed by both tension and compression. In this 

study, the larger value of RI in compression and tension was considered as the rupture index 

for each load cycle (or storey drift angle).  In general, locations with higher values of RI have a 

greater potential for fracture and failure [41-43].  
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The ratio of the hydrostatic stress to the von-Mises stress (i.e. 
effm σσ / ), which appears 

in the denominator of Eq. (2), is called the triaxiality ratio (TR). It has been reported by El-

Tawil et al. [43] that TR values less than −1.5 can cause brittle fracture, whereas values 

between −0.75 and −1.5 can cause large reductions in the rupture strain of metals.  

The fracture of gusset plate welds is an undesirable failure mode for CBFs, which can 

decrease their seismic performance as a lateral resisting system. To study the influence of 

masonry infill on the rupture potential of CBFs, the rupture index (RI), triaxiality ratio (TR) 

and equivalent plastic strain ( pl

eqvε ) were calculated at the critical points of the test specimens. 

These critical points (see Fig. 4) were identified on the gusset plate and top angle connection 

weld lines of CBF and CBFI specimens based on experimental test observations and high 

stress demand regions in FE models. b1, b2, b3 and b4 in Fig. 4 are critical points on the 

horizontal re-entrant corner of gusset plate connections of the CBF specimen. Similar points on 

the CBFI specimen are named b1i, b2i, b3i and b4i. Similarly, c1, c2, c3, c4 and c1i, c2i, c3i, c4i are 

critical points on the gusset plate connection weld lines of the CBF and CBFI specimens, 

respectively. It should be emphasised that the locations of the strain gauges in the test 

specimens were on the gusset plates close to the fillet welds (shown in Fig. 3), whereas the 

locations of the critical points in the analytical models were on the fillet weld lines . 

The equivalent plastic strain ( pl

eqvε ), triaxiality ratio (TR), and rupture index (RI) of the 

critical points are presented in Fig. 13 as a function of storey-drift angle. Figs 13 (a) and (d) 

show that the equivalent plastic strain of horizontal and vertical re-entrant corners of gusset 

plate connections significantly increased in the CBFI specimen. This increment was 

particularly noticeable for horizontal re-entrant corners, and can explain the change in the 

failure mode from excessive out of plane buckling of braces in the CBF specimen (without 

masonry infill) to fracture of the fillet welds at horizontal re-entrant corner of the gusset plate 

connections in the CBFI specimen (with masonry infill) as discussed in previous sections. 
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Comparison between Figs. 13 (a) and (d) indicates that horizontal re-entrant corner of gusset 

plate connections of both CBF and CBFI specimens were, in general, under higher plastic 

strain demands compared with the vertical re-entrant corners. The equivalent plastic strain 

( pl

eqvε ) at b3 and b4 was 0.008 and 0.015, respectively, at the failure point of the CFB test 

specimen (storey drift angle of 0.025 rad). Corresponding points at CBFI specimen (b3i and b4i) 

exhibited equivalent plastic strain ( pl

eqvε ) of 0.024 and 0.033, respectively, at storey drift angle 

of 0.015 rad where the experimental test was terminated. This implies that the CBFI specimen 

(with masonry infill) experienced 40% less lateral displacement, but almost two times more 

equivalent plastic strain in the horizontal re-entrant corner of gusset plate connections. This is 

in agreement with the experimental results discussed in previous sections. 

Figs. 13 (b) and (e) compare the triaxiality ratio (TR) index of the critical points of the 

gusset plate connections in CBF and CBFI specimens. It is shown that the TR indices of both 

specimens were initially decreased up to storey drift angles around 0.004. This indicates a 

faster increment in the hydrostatic stress compared to the von-Mises stress before yielding 

initiates in the gusset plate connections. The results shown in Figs. 13 (b) and (e) indicate that 

the triaxiality ratio (TR) in both horizontal and vertical re-entrant corners of gusset plate 

connections were slightly less (i.e. more critical) in the CBF without masonry infill. The TR 

index of both CBF and CBFI specimens at failure points lies between −0.75 and −1.5, which 

results in a reduction in the rupture strain of the connections [43]. 

In general, there was a good agreement between the rupture indices calculated from the 

FE models and the failure of gusset plate connections observed in the experimental tests. It is 

shown in Figs. 13 (f) and (c) that the rupture index (RI) for horizontal and vertical re-entrant 

corners of gusset plate connections in the CBFI was considerably higher (up to 5 times) than 

the corresponding value in the CBF specimen. This indicates that the interaction between 

masonry infill and concentrically braced frame significantly increased the potential for crack 
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initiation at gusset plate connection weld lines. The maximum rupture index (RI) in the gusset 

plate connections of the CBFI specimen was calculated at b3i and b4i locations on horizontal re-

entrant corner of the bottom gusset plate weld line (see Fig. 4). This is in complete agreement 

with the damage observed in the experimental tests as shown in Figs. 8(c) and (d). 

Overall, the results discussed above show that the interaction of masonry infill and 

braced frame results in a considerable increase in the strain demands and the rupture index of 

gusset plate connections, which significantly increase the potential for weld fracture and 

premature failure of the connections.  
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Fig. 13: Response indices of the critical points on the horizontal and vertical re-entrant corners of gusset 

plates. 
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As it was explained before, the fracture of top angle connection welds was another failure 

mode that occurred in CBFI and MRFI specimens (test specimens with masonry infill) at 

storey drift angle of 0.015 and 0.043 rad, respectively. To study this failure mode, the Rupture 

Index (RI) was calculated for the most critical points on the top-seat angle connection weld 

lines (S1 and S2 in Fig. 4 (b)). Fig. 14 compares the maximum value of RI in S1 and S2 locations 

for CBF, CBFI and MRFI test specimens versus storey drift angle. It is shown that the CBFI 

specimen had the highest potential to experience rupture in the weld line of top angle 

connections, which is in complete agreement with the experimental results of this study. Fig. 

14 shows that, for similar storey drift angle, the concentrically braced frame with masonry 

infill (i.e. CBFI specimen) exhibited up to 8 times higher RI compared to the similar frame 

without masonry infill (i.e. CBF specimen). This implies that the presence of masonry infill 

can significantly increases the rupture potential of top-seat angle connection weld lines in 

special CBFs. As it was discussed in the previous sections, the interaction between masonry 

infill and surrounding frame applies an up-ward pressure on the top beam, which increases the 

vertical load (shear force) in the top-seat angle connections. This additional shear force can 

result in a premature fracture of the connection welds, and can explain the reason this rupture 

mode was only observed in the frames with masonry infill (i.e. CBFI and MRFI specimens). 
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Fig. 14: Plot of Rupture index versus storey drift angle 
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The existence of masonry infill is usually ignored in the design process of CBFs in 

practice. However, the results of this study show that the infill panel can considerably increase 

the maximum strain demand and the failure potential of gusset-plate and top-seat angle 

connection welds. Therefore, ignoring the influence of masonry infill in the design process 

may result in a premature failure of the connections and a significant reduction in the 

deformation capacity and ductility (or response reduction factor) of the frame, which can 

adversely influence the seismic performance of the whole structural system under strong 

earthquakes.  

8- SUMMARY AND CONCLUSIONS 

The effects of masonry infill on the seismic performance of CBFs are experimentally and 

analytically investigated. Cyclic lateral load tests were conducted on three half-scale specimens 

including a special CBF without masonry infill, a special CBF with masonry infill, and a 

moment resisting frame with masonry infill for comparison purposes. Nonlinear cyclic 

analyses were performed to study the influence of masonry infill on rupture indices of gusset 

plates and top-seat angle connections using detailed FE models validated with experimental 

results. The following conclusions can be drawn from the experimental tests and analytical 

simulations: 

1- Experimental results indicate that the presence of masonry infill increased the lateral 

stiffness and strength of the CBF by 33% and 41%, respectively. However, it reduced the 

deformation capacity and ductility of the frame by almost 40%. 

2- It is shown that the interaction between masonry infill and CBF considerably decreased the 

load-carrying contribution of brace elements, while it increased the strain demands of 

gusset plate connections by more than 50%.  

3- By using masonry infill, the failure mode of the frame changed from excessive out of 

plane buckling of braces to the fillet weld fracture in gusset plates and top-seat angle 
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connections. This is in agreement with the damage observations in the 2003 Bam 

earthquake in Iran. 

4- The results of the detailed FE models compared well with the experimental results of the 

three test specimens. It is shown that the analytical models can predict the non-linear 

cyclic behavior of the test specimens at both global and local levels.  

5- Analytical simulations showed that, compared to the bare frame, the CBF with masonry 

infill exhibited almost two times more equivalent plastic strain ( pl

eqvε ) and up to 5 times 

more rupture index (RI) at the weld lines of gusset-plates and top angle connections. This 

implies that ignoring the influence of masonry infill in the design process of special CBFs 

may result in a premature brittle failure of the connections and a lower seismic 

performance under strong earthquakes.  
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