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ABSTRACT

Advances in structural biology, such as cryo-electron microscopy (cryo-EM) have allowed for a number of sophisticated pro-

tein complexes to be characterized. However, often only a static snapshot of a protein complex is visualized despite the fact

that conformational change is frequently inherent to biological function, as is the case for molecular motors. Computer sim-

ulations provide valuable insights into the different conformations available to a particular system that are not accessible

using conventional structural techniques. For larger proteins and protein complexes, where a fully atomistic description

would be computationally prohibitive, coarse-grained simulation techniques such as Elastic Network Modeling (ENM) are

often employed, whereby each atom or group of atoms is linked by a set of springs whose properties can be customized

according to the system of interest. Here we compare ENM with a recently proposed continuum model known as Fluctuat-

ing Finite Element Analysis (FFEA), which represents the biomolecule as a viscoelastic solid subject to thermal fluctuations.

These two complementary computational techniques are used to answer a critical question in the rotary ATPase family;

implicit within these motors is the need for a rotor axle and proton pump to rotate freely of the motor domain and stator

structures. However, current single particle cryo-EM reconstructions have shown an apparent connection between the stators

and rotor axle or pump region, hindering rotation. Both modeling approaches show a possible role for this connection and

how it would significantly constrain the mobility of the rotary ATPase family.
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INTRODUCTION

The rotary ATPase family are highly efficient membrane

bound energy conversion machines which can either uti-

lize a proton gradient to produce ATP or, conversely, use

ATP to generate a proton gradient.1 This is achieved

through the coupling of two distinct motors; an ATP

binding domain, and a membrane bound proton pump.

There are three distinct members of the rotary ATPase

family. The F1Fo-ATPases (F-ATPase) are primarily respon-

sible for ATP synthesis, whilst the vacuolar H1-ATPases

(V-ATPase) use ATP hydrolysis to drive proton transport

across the membrane [Fig. 1(A)]. In contrast to the

mono-directionality in the V-ATPase, the archaeal

A-ATPase [Fig. 1(B)] can work in a bi-directional manner

by being capable of both proton transport and ATP syn-

thesis depending on the membrane potential. All these

systems make use of a rotational mechanism for either

proton pumping or ATP synthesis.2,3
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For the V-ATPase and A-ATPase (working in proton

pumping mode) the soluble A1/V1 domain is responsible

for ATP turnover. The three catalytic AB dimers function

cooperatively and cycle between open (no nucleotide

bound), loose (ADP 1 Pi bound) and tight (ATP hydro-

lyzing) states.4 This cycling of the three step motor gen-

erates changes in the conformation of the AB dimers,

delivering torque to the central rotor, which in turn

drives rotation of the c-ring.5,6 Implicit within these

motors is the need to fix the ATP hydrolyzing AB

domains and the membrane bound a-subunit relative to

the central rotor axle and proton translocating c-ring.

This is achieved through a complex stator network that

connects the two motors, formed by either two (A-

ATPase) or three (V-ATPase) potentially elastic coiled-

coil stalk structures (Fig. 1). The F1Fo ATPase has just

one stator connection linking the ATP hydrolyzing F1

domain and proton translocating Fo domain.

Although significant structure and sequence conserva-

tion is seen between many of the comparative subunits

in the V- and A-ATPase there are a number of important

differences associated with subtle changes in function.

An important aspect of the rotary ATP family is the

presence of variously sized proton translocating c-rings,

which are thought to be an adaptation of different pre-

vailing membrane potentials.7,8 Since the c-ring com-

monly does not contain a multiple of 3, this variation in

size results in a symmetry mismatch with the three

stroke ATP hydrolyzing/synthesizing domain.9–11 Since

ATP is likely to be limiting within the cellular environ-

ment, this symmetry mismatch cannot be overcome by

applying constant torque to the central rotor to generate

continuous rotation of the c-ring. Instead, it has been

hypothesized that an elastic linkage between the ATP

driven motor and proton translocating pump can act as

an energy buffering device.12–16 This elasticity may exist

either in the central rotor axle, the stator network or

both. According to this model, the free energy cost of

the ATP induced conformational changes are minimized

by the inherent elasticity in the system which in turn

increases motor efficiency.17 This flexibility has been

reported within crystal structures and electron

Figure 1
Subunit fitting for the V-ATPase (A) and A-ATPase (B) complex with those subunits involved in the ATPase motor domain (A/B), stator (E/G/C/
H), rotor (D/F/d/a) and c-ring labeled. Single particle cryo-EM reconstruction of the T. thermophilus A-ATPase (C) M. sexta (D) and yeast (E) V-

ATPase and contoured at the recommended level in the EMDB (left) and at a level where the apparent link between stator and rotor axle is
removed (right).
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microscopy data.18–20 Moreover, the use of Normal

Mode Analysis on the coiled-coil dimeric protein that

forms the A-ATPase stator stalk has shown flexing in a

radial direction.21 More recently we have shown using

both electron microscopy and an Elastic Network Model

(ENM) approach that both the Saccharomyces cerevisiae

(S. cerevisiae) and Manduca sexta (M. sexta) V-ATPases

are capable of flexion of the long axis of the complex

such that the V1 domain is displaced up to 10� relative

to the Vo domain.22 Despite the implicit need for the

stator connections to fix the V1/A1/F1 motor domain and

the a-subunit relative to the rotating central axle and

c-ring, there is an apparent second rotor/stator connec-

tion evident in all the structures of the complete A- and

V-ATPases. This connection will link the EG stator to

either the c-ring or d subunit of the central axle. This

linkage removes the ability of the c-ring to rotate freely

against subunit a, during ATP hydrolysis [Fig. 1(C–E)].

Elastic Network models (ENMs) are a widely used

class of structure-based coarse-grained models for pro-

teins considering the native structure of the protein as a

simple elastic body comprised of a set of nodes con-

nected by springs.23 In ENMs the coarse-graining step

consists of mapping the nodes onto protein structural

elements. On the basis of residue-based coarse-graining,

there is one bead/node corresponding to each alpha car-

bon atom. Cut-off distances are usually employed to set

interacting nodes. Along with high-resolution X-ray

structures, low-resolution structural data from cryo-

electron microscopy have been combined with ENMs to

investigate biomolecular dynamics.24,25 Finite Element

Analysis (FEA) is used ubiquitously at the macroscopic

level for computer aided design within structural engi-

neering applications. Fluctuating Finite Element Analysis

(FFEA) is a generalization of FEA to objects which are

sufficiently small that thermal fluctuations are non-

negligible in magnitude, as described in detail by Oliver

et al.26 FFEA represents proteins as viscoelastic materials

that deform due to thermal noise. The general equation

of motion describing the continuum model is:

q
Du

Dt
5r � r1f1r � p

where q is the density, r is the continuum stress, f are

additional forces arising from any electrostatic or van der

Waals interactions present in the system; and p is the

stress due to thermal noise. FFEA requires a three-

dimensional representation of the shape of the protein as

input to the calculations, which may be available either

from X-ray crystallography, or low-resolution experimen-

tal methods such as small angle X-ray scattering (SAXS)

or electron microscopy (EM). In FFEA, the complex

shape of the protein is represented by a three-

dimensional mesh of elements; the most convenient ele-

ment shape being the tetrahedron. This mesh can then

be parameterized locally with a bulk modulus, shear

modulus, bulk viscosity, shear viscosity, and density.

These parameters conceptually describe the cumulative

effect at the continuum level of all the local atomic inter-

actions. Once these parameters have been defined, the

trajectory describing the changing shape of the protein

due to thermal fluctuations can be calculated by itera-

tively integrating Newton’s equations of motion over

short time steps and moving each node of the mesh

accordingly. The calculation is analogous to conventional

molecular dynamics (MD), but the forces on each node

within the mesh are derived from continuum mechanics

equations rather than a pairwise particle based forcefield.

FFEA can use low-resolution experimental data as

input to the calculations, which is particularly useful for

proteins whose atomistic structure is still unknown. Since

it operates in the continuum limit, it has no upper

length scale, and is sufficiently coarse-grained to enable

simulations of very large protein structures to be per-

formed for long (e.g. ms) timescales. FFEA contains a dis-

sipative viscous term in addition to elastic stresses, which

enables the stochastic nature of the solvent environment

to be represented. FFEA can be readily generalized to

include any intermolecular forces relevant to biomolecu-

lar dynamics, such as van der Waals and electrostatics

interactions, so long as the necessary force-field parame-

ters can be obtained. In the current work, the FFEA

model used contains a homogeneous elastic term to

model the energy penalty associated with deviations

from the EM derived structure, and a viscosity describing

dissipation in the interior of the protein.

FFEA produces a dynamical trajectory which represents

the motion of the protein. The model is parameterized by

continuum parameters such as modulus and viscosity. In

contrast, in their most common implementation elastic

network models are parameterized by spring constants

and cut-off distances which affect the connectivity of

nodes. They are usually “solved” using normal mode anal-

ysis, which does not yield an explicit dynamical trajectory,

but rather the eigenmodes of the protein displacement. In

principle, it would be possible to add dissipation to the

harmonic spring interactions within an ENM scheme to

mimic viscosity, and then use Langevin dynamics to simu-

late a protein trajectory. Likewise, a typical set of displace-

ments (without dynamics) of an FFEA model could be

obtained by Monte Carlo sampling, and normal mode

analysis may also be possible (though FFEA is, by con-

struction, weakly non-linear). In the present work we use

and compare the published implementation of FFEA26

and normal mode analysis of an ENM model. We use

both ENM and FFEA to provide insight into the flexibility

and dynamics of the rotary ATPase family in the presence

and absence of the apparent linkage. For this particular

system, to which both ENM and FFEA are applicable, we

have the opportunity to investigate whether the new con-

tinuum simulation method (FFEA) correlates well with
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3300 PROTEINS



the more common ENM approach. We subsequently show

how the linkage observed in cryo-EM density maps has a

significant impact on the inherent modes of flexibility

available to the system.

METHODS

The M. sexta V-ATPase (EMD-1590 at 17 Å resolu-

tion), S. cerevisiae V-ATPase (EMD-5476 at 11 Å resolu-

tion), and the T. thermophilus A-ATPase (EMD-5335 at

9.7 Å resolution) maps were downloaded from the

EMDB database. Using the isolevels recommended by the

authors in each case, finite element meshes were con-

structed using NETGEN,27 as shown in Figure 2.

We performed Fluctuating Finite Element (FFEA)

analysis simulations for each of these structures for 4 ms,

using the simulation parameters listed in Table I.

The choice of Young’s modulus was taken from the

lower end of the experimentally determined range for

lysozyme28 in order to accentuate flexibility. The viscous

parameters were taken to be the same as for water. The

density parameter was chosen to be the average density

of biomolecules.29,30 The choice of viscous parameters

and density affect the time scale of the simulation, and

the manner in which the model explores conformational

space, but they do not affect the range of configurations

available to the protein in the model (i.e. the modes).

Modifying the Young’s modulus will alter the amplitude

of the modes, but not the resultant eigenvectors them-

selves (except where the deformation is large and non-

linear). Test simulations with a 20% difference in Young’s

modulus were run showing the eigenvectors to be largely

unchanged; the Poisson ratio also has only a weak effect

on the modes. As with ENM, it is the shape and topol-

ogy of the protein that determines the modes of motion

in FFEA.

The apparent connections between the stator and rotor

were then severed, and the simulations repeated. This

stator/rotor disconnection was produced by removing a

small amount of matter from the connecting area, thus

producing a new topology for each motor in which this

connection is completely severed.

Figure 2
The single particle cryo-EM map (left) versus FFEA models (centre and
right) for the M. sexta V-ATPase (row A), the T. thermophilus A-ATPase

(row B), and the S. cerevisiae V-ATPase (row C). The location of the
apparent connection between the stator network and rotor axle is indi-

cated on each FFEA representation via an arrow.

Table I
Simulation Parameters for FFEA Calculations

Density 1500 kg m23

Young's modulus 338.8 MPa
Poisson's ratio 0.41
Shear viscosity 1 mPa s
Bulk viscosity 1 mPa s
Time step 5 fs
Temperature 290 K

Figure 3
Continuum model showing the FE mesh (left) and embedding the

ENM pseudo-particle structure (red) inside the FFEA continuum

mesh (grey) represented here by the nodes of the finite elements
(right).
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For the ENM normal-mode analysis calculations,

the M. sexta V-ATPase and T. thermophilus A-ATPase

have been coarse-grained into a total of 250 beads

using a topology-preserving algorithm31 to capture

the overall shape and topology of the complexes. For

the S. cerevisiae V-ATPase coarse-graining carried out

for individual subunits resulted in a 256-bead repre-

sentation. The beads were connected by springs with

spring constant as described by Stember and Wrig-

gers.32 The Hessian matrix and corresponding eigen-

vectors were calculated using the Python-based script

MODEHUNTER.32

The quasi-harmonic normal modes were extracted

from the FFEA trajectories using Principal Component

Analysis.33 The first six trivial modes, which describe the

overall translation and rotation of the system, were

removed prior to the PCA. To compare FFEA with ENM,

the ENM structure was aligned within the finite element

mesh by minimizing the square of the total pair-pair sep-

aration distance between all ENM pseudo-particles and

FFEA nodes. This minimization was achieved by sam-

pling many random translations and rotations of the

ENM structure. The probability of accepting a new con-

figuration was given by the Boltzmann probability

Figure 4
First three modes of the FFEA model for the M. sexta V-ATPase (row A), the T. thermophilus A-ATPase (row B), and the Saccharomyces V-ATPase
(row C). Colors represent time range of motion, with red indicating the start of the motion and blue indicating the end.
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P 5 exp(2dE/kT) where dE represents the change in the

“energy penalty” of the configuration (the total pair-pair

distance squared) resulting from that step, and T is a

scaling energy analogous to thermal energy in a real sys-

tem. The purpose of this artificial “temperature” is to

allow the structure to sample the whole configurational

space and find the global minimum. The temperature

was slowly reduced, allowing the system to settle with

the optimum alignment of the ENM structure within the

FFEA structure.

Once the alignment was converged, each pseudo parti-

cle of the ENM structure was assigned to its local (con-

taining) element in the continuum mesh, as shown in

Figure 3. The barycentric coordinates of the particle

within that local tetrahedron were calculated, and could

then be used to map the new position of the particle in

all subsequent frames. In this way the motions of the

FFEA derived modes were mapped onto the ENM struc-

ture, allowing a direct comparison to be made between

the two models.

FFEA was also used to investigate the effect of severing

the rotor-axle (D from d, in Fig. 1) on the modes of the

S. Cerevisiae. The disconnection was done as previously,

but the interface at the cut was now simulated as two

interacting van der Waals (vdW) surfaces. The vdW

interaction was modeled as the integral of the Lennard-

Figure 5
First three modes of the ENM model for the M. sexta V-ATPase (row A), the T. thermophilus A-ATPase (row B), and the S. cerevisiae V-ATPase

(row C). Colors represent time range of motion, with red indicating the start of the motion and blue indicating the end.
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Jones (LJ) force over all interacting faces in the mesh.

Three simulations of the rotor-axle disconnection were

then run, with the vdW surface interaction energy set to

1012 Jm24
, 1013 Jm24, and 1014 Jm24

. For comparison,

consider that an interaction energy of 1013 Jm24 with an

interacting surface area of 10 nm2 corresponds to a total

interaction energy of order kBT energy. The LJ equilib-

rium separation distance was chosen to be 5 Å, as this

was the size of the gap after severing.

Similarly, the S. Cerevisiae was severed along the inter-

face of its Vo (c, a and d) and V1 (motor domain, D, H,

and stators) domains, and the C subunit. These three parts

were then allowed to interact via a vdW surface interac-

tion, until dissociation. As the Vo domain is embedded in

the membrane, its lower half has been pinned in place by

immobilizing the corresponding nodes. The exterior sol-

vent viscosity was chosen to be 1026 Pa s (this is 1000

times smaller than that of water to increase the rate of

exploration of conformational space). The LJ equilibrium

separation distance was again taken to be 5 Å, and the sur-

face interaction energy to be 1015 Jm24
. The separation

distance between the centres of mass of the Vo and V1

domains with time was then calculated.

RESULTS

Comparison of FFEA and ENM dynamics

We performed 4 ms FFEA simulations for the M. sexta

and S. cerevisiae V-ATPases and the T. thermophilus

Figure 6
The mobility of four sections of the FFEA representation of M. sexta

V-ATPase, divided by motor domain (green), rotor (blue), c-ring
(red) and the remainder of the C, H and a subunits (orange), for the

first three modes (A, B, and C, respectively). The white arrow shows
the normalized rotational velocity vector of that section, and the

black arrow shows the motion of the centre of mass during the
motion.

Figure 7
The mobility of four sections of the ENM representation of M. sexta
V-ATPase, divided by motor domain (green), rotor (blue), c-ring

(red) and the remainder of the C, H and a subunits (orange), for the
first three modes (A, B, and C, respectively). The white arrow shows

the normalized rotational velocity vector of that section, and the

black arrow shows the motion of the centre of mass during the
motion.
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A-ATPase, with and without the apparent connection

between the stator and rotor axle, and extracted the

major modes of flexibility from the trajectories using

PCA. For the trajectories obtained with both stator con-

nections intact, we compared the motions obtained

from FFEA with those calculated with a conventional

ENM. The PCA showed that the first two most signifi-

cant non-trivial modes for the connected mesh corre-

sponded to twisting and bending in both the FFEA and

ENM (see Figs. 4 and 5 and Supporting Information

Movies S1–S4).

A quantitative comparison of the ENM and FFEA

model was obtained by calculating the dot products of

each eigenvector obtained from the ENM with each

eigenvector extracted from the FFEA trajectories using

PCA, as shown in Figure 9. The differences in shape of

the ATPase models in Figures 4 and 5 are due to the

fact that the FFEA mesh contained more nodes than the

number of pseudo-particles in the ENM, and this is

accounted for by our alignment procedure (see Meth-

ods). Nevertheless, Figure 9 shows that there is a cluster-

ing of high correlation between modes close to the

diagonal, indicating that similar modes of flexibility of

the ATPases are predicted by both the ENM and FFEA

calculations. Although the agreement between the two

modeling methods is reduced for the higher order

modes in each of the three ATPases, these modes have

far smaller amplitudes (Fig. 10) and so we conclude that

the major modes of flexibility captured by the two com-

plementary methods are comparable. Subtle differences

in the ordering of these modes are due to the contrast-

ing treatment of local elasticity by ENM and FFEA. The

characteristic “springs” of the ENM are one-dimensional

objects and, in isolation, exhibit little torsional resist-

ance, whereas the volume elements of FFEA strongly

resist torsion as well as extension. This is particularly

evident in the central stalk region of the simulations,

which contain only a few elements or springs; in this

region the FFEA simulations are more resistant to tor-

sion than the corresponding ENM simulation. As a

result, in the M. sexta V-ATPase, the bending mode

dominates in the FFEA, whereas the twisting motion

dominates in the ENM.

Further insight into the agreement between FFEA and

ENM models of the ATPase protein complex can be

obtained by considering the relative motions of the dif-

ferent subunits of the motor. Figures 6 and 7 show the

bulk mobility of four separate domains of the M. sexta

V-ATPase motor, in terms of the rotational velocity vec-

tor, and the centre of mass velocity vector, for the first

three modes in the FFEA and ENM representations. Fig-

ure 8 shows a quantitative comparison of the agreement

in mobility between the four sections in the two repre-

sentations, and demonstrates that, in agreement with the

dot products presented in Figure 9, the major modes of

flexibility of the ATPase are conserved between the ENM

and FFEA.

Comparison of the FFEA dynamics in the
M. sexta and the S. cerevisiae V-ATPases and the
T. thermophilus A-ATPase

The eigenvalue spectrum obtained for the six FFEA

models is shown in Figure 10. Since larger eigenvalues

are obtained for the T. thermophilus A-ATPase, we con-

clude that this is the most flexible of the three motors.

The S. cerevisiae V-ATPase is marginally more flexible

than that from M. sexta during FFEA. The differences

between the two V-ATPase reconstructions may be attrib-

uted to species variation and/or differences in resolution

(11 Å rather than 17 Å) with a decreased volume associ-

ated with more detailed structural information permit-

ting larger amplitude thermal fluctuations to occur

within the FFEA model. Significant topological changes

can affect the output of the simulations therefore it is

important to verify the effect of changes in resolution.

Figure 8
A comparison of the agreement in mobility profile of the four motor sections (as shown in Figs. 6 and 7) for the first two FFEA modes and first
three ENM modes of M. sexta V-ATPase. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 13 shows the mode comparison between the high

resolution EMD-5335 structure (9.7 Å resolution) and

the low resolution EMD-1888 structure34 (16 Å resolu-

tion). This is a rather substantial change in resolution,

but as expected the low order modes appear broadly

unchanged. It is clear that the first three modes of the

T. thermophilus A-ATPase are resilient to changes in reso-

lution. Both simulations appear to agree on a fourth

mode, although not on the ordering (fourth for the

EMD-1888, fifth for the EMD-5335).

The cumulative proportion of the eigenvalues of the

first five modes relative to the total for all modes is given

in Figure 12. This shows that the lower modes in the

flexible topologies (those with a severed stator-rotor con-

nection) represent a significantly larger proportion of

their total dynamics than the more rigid, uncut

topologies.

Dot-product matrices comparing the eigenvectors of

the M. sexta and S. cerevisiae V-ATPases [Fig. 13] show

that the major modes of flexibility of the two structures

are almost identical. Comparing the eigenvectors of the

M. sexta and S. cerevisiae V-ATPases with the T. thermo-

philus A-ATPase [Fig. 13, respectively] shows that the

twisting mode is promoted in the A-ATPase relative to

the two V-ATPases, presumably because the former

Figure 9
Comparison of the ENM modes with the FFEA modes for the M. sexta
V-ATPase, T. thermophilus A-ATPase and S. cerevisiae V-ATPase. [Color

figure can be viewed in the online issue, which is available at wileyonli-

nelibrary.com.]

Figure 10
Eigenvalues for the first 20 PCA modes in the three “cut” and three
“uncut” simulations.

Figure 11
Comparison of the FFEA modes for the T. thermophilus A-ATPase at 16

Å resolution (EMD-1888) and 9.7 Å resolution (EMD-5335). [Color

figure can be viewed in the online issue, which is available at wileyonli-
nelibrary.com.]
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contains only two stator filaments as opposed to three in

the V-type complex. This result indicates the importance

of connectivity within the structure of the rotary ATPases

to the dynamics of these molecular motors.

Changes in rotary ATPase FFEA dynamics
with stator-rotor connectivity

We then used FFEA simulations to explore the effect of

disconnecting stator filament 1 [Supporting Information

S1 in Fig. 1(A)] from the rotor (as indicated in Fig. 2)

on the dynamics of the three rotary motors. A quantita-

tive comparison of FFEA simulations with and without

the connection was obtained by performing PCA on the

FFEA trajectories. Comparing the eigenvalue spectrums

obtained (see Fig. 10) shows that all three motors have

enhanced flexibility when this connection is severed. Tak-

ing dot products between the eigenvectors extracted by

PCA, Figure 13 shows that for M. sexta the original twist

[Fig. 4(A), mode 2] and x-y bend [Fig. 4(A), mode 3]

motions become mixed when the connection is severed,

but that the most important dynamic mode (bending in

the y-z plane) persists. For the T. thermophilus A-ATPase,

all of the top three modes of flexibility are preserved

when the connection is severed, as shown in Figure 13

(see Supporting Information movies S5 and S6). Since

this motor has only two stator connections as opposed to

three, its stiffness is dominated by the central rotor axle.

Consequently, changes to stator connectivity have a negli-

gible effect on the dynamics. However, for the S. cerevi-

siae V-ATPase, the major modes of flexibility are more

severely affected by severing the stator-rotor connection.

In all three of the principal modes, the flexibility is domi-

nated by motion of the unconnected stator local to the

point of severance. In the first mode, this motion appears

to be coupled to a rotation of the c-ring, the second

mode is similar to the y-z plane bending mode dominant

in the connected system and the third involves a twist of

the motor around the central rotor axle. However, since

the large flexibility of the stator local to the severance

point dominates in all of these modes, the magnitude of

the correlations quantified by the dot-product matrices is

reduced [see Fig. 13]. In the higher resolution S. cerevi-

siae V-ATPase in which the stator elements of the struc-

ture are better defined, stator 1 becomes sufficiently

flexible when it is disconnected from the central axle that

its independent motion dominates the dynamics of the

motor, and the collectiveness of the dynamics across all

three of the top modes is reduced. Nevertheless, the prin-

cipal modes of the disconnected S. cerevisiae V-ATPase do

still retain aspects of the bending and twisting modes

present in all other systems investigated.

FFEA also allows the investigation of the effect of the

rotor-axle connection on the modes of the system. Figure

14 shows the effect on the “P. bend” mode of the rotor

dissociating from the axle for different dissociation ener-

gies. Interestingly, the first two modes (bend and twist)

are unaffected by the energy of interaction between the

D and d subunits (as labeled on Fig. 1).

In order to further test the FFEA model for its wider

application, we investigated how well it could model the

V-ATPase dissociation mechanism. Finally, Figure 15

shows the results of the FFEA simulation of Vo, V1 and

the C subunit dissociating. The separation distance

between the centres of mass of Vo and V1 fluctuates as

the two domains detach and reattach. The C subunit

breaks away first, weakening the cohesion of the struc-

ture which finally dissociates completely.

DISCUSSION

A common method for visualizing low frequency

motions of large proteins is Elastic Network Modeling,

in which each pseudo-atom is linked to its neighboring

particle by a “spring” with a defined elasticity. A new

but complementary method for looking at intrinsic flexi-

bility in biomolecules is Fluctuating Finite Element Anal-

ysis (FFEA), in which the macromolecule is described by

a thermally driven viscoelastic continuum with a local

elasticity dependant on known biochemical parameters.

In order to test how well these two approaches can be

used to elucidate intrinsic flexibility within the rotary

ATPase family of protein complexes we have calculated

the dynamics of two species variable V-ATPases and one

A-ATPase using both ENM and a continuum model, and

compared the resulting eigenvectors quantitatively by

taking dot products. The two modeling methods agree

strongly, and show that bending and twisting of the

motor dominates the dynamics in both cases (Figs. 4–6).

The single particle cryo-EM reconstructions for the V

and A-ATPase have revealed an intricate network of

Figure 12
Proportion of the total dynamics represented by the first five modes of
each simulation trajectory.
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subunits that contribute to the stator of each motor,

which allow for the efficient power transfer between the

two motor domains.35–37 However, implicit within

these motors is the need for the central rotor axle and

c-ring to be able to rotate relative to the V1/A1 motor

domain and stator network. Importantly, in addition to

the a/c interface that is proposed to be the site of pro-

ton transport, there is a clearly visible connection

between stator 1 in both the A-and V-ATPase and either

the central rotor axle or the c-ring (Fig. 1). The inter-

face between the a/c subunits is still poorly defined due

to the lack of structural data on subunit a, however, the

role of this interface within the family of rotary ATPases

in proton transport makes it likely to be a transient

interface whereby the c-ring can rotate against the a

subunit. The second interface which is seen in the

reconstructions involves a connection between stator 1

and the c-ring or rotor axle and its role is unknown.

This connection can be seen in both the cryo-EM and

negative stain reconstructions and is found in a region

Figure 13
Left: comparison of the FFEA modes for the M. sexta V-ATPase with those of S. cerevisiae V-ATPase (A), M. sexta V-ATPase with T. thermophilus

A-ATPase (B), and S. cervisiae with T. Thermophilus (C). Right: comparison of the FFEA modes for the M. sexta V-ATPase (D), the T. thermo-
philus A-ATPase (E), and the S. cerevisiae V-ATPase (F) with and without the stator connection. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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away from the detergent which covers the membrane

bound regions. In order to see how this connection

may influence the inherent flexibility within the com-

plex and the ability of these large complex macro-

molecular motors to function we used a continuum

modeling approach to calculate how the major modes

of flexibility are affected by severance of this connec-

tion. While disconnecting stator 1 from the central axle

increases the flexibility of all three motors, for the

higher resolution S. cerevisiae structure the major

modes of flexibility become dominated by the local

motion of the stator, and the collective nature of the

dynamics is lost.

The reasons for the linkage between the stator network

and the central rotor axle or rotor ring are yet to be

determined but there are a number of possible roles that

this may play. The first possible role is to maintain the a

subunit c-ring interface during rotation. The nature of

this interface means it must allow for the c-ring to rotate

against subunit a, but not permit proton leakage, espe-

cially if operating close to equilibrium (free energy of

ATP hydrolysis approximately the same as the energy of

established pH gradient), where a back flow of protons

could occur. Moreover, the generation of a pH gradient

results in an increased backward rotation pressure on the

V-ATPase and a fall in the ATP/ADP ratio equilibrium

can result in the proton motive force exceeding the free

energy of ATP hydrolysis. The ability of an inactive

V-ATPase to still maintain a high proton gradient means

that the c-ring/a-subunit interface must not allow for the

back flow of protons when there is a fall in the ATP/

ADP ratio. This resistance to backwards rotation occurs

through an as yet undetermined process, however the

presence of this linkage may act as a “ratchet mecha-

nism,” permitting rotation in pump mode but stopping

rotation in synthesis mode, allowing for the build up of

a proton gradient. The apparent flexibility inherent

within the V-ATPase system22 during catalysis can move

the stator connection away from the c-ring/rotor axle

and would permit proton translocation. Upon the lower-

ing of the cellular ATP/ADP ratio, the stator would

adopt the position seen in the apparent “low energy/low

ATP” ground state (Fig. 1), which would stop proton

leakage through reverse rotation of the c-ring.

The V-ATPase has been shown to be regulated through

a process which involves the dissociation of V1 from

Vo.38,39 Electron microscopy studies on the V-ATPase

and tomographic studies on the A-ATPase which has

been primed for dissociation through changes in pH and

temperature have shown a large 30� angular tilt. The

linkage present between stator 1 and the central rotor

axle/c-ring may play a role in this process in tethering V1

to Vo. Alternatively it may play a role in re-association of

the V-ATPase complex, a process which is currently

poorly understood. FFEA can provide insight into this

process through simulation of the dissociation of the Vo

and V1 domains and the C subunit. Figure 15 shows an

example trajectory of such a system. Interestingly, the

model predicts the departure of subunit C from the

complex before full dissociation occurs, which is consist-

ent with subunit C being implicitly involved in this pro-

cess as it is predicted to, in response to cellular signals,

be removed from the complex causing dissociation.

Moreover the stator elements show apparent rigidity in

the dissociated complex as shown in the cryo-EM recon-

struction of the isolated V1 domain.40,41 This demon-

strates the capabilities of FFEA in the simulation of large

biomolecular non-covalent complexes. Further biochemi-

cal studies will be required to test each of the discussed

hypotheses and reveal the role of the apparent stator

rotor axle/c-ring connection.

Figure 14
Strength of S. cerevisiae V-ATPase perpendicular bend mode with increasing
dissociation energy between rotor and axle. The first, second and third

modes are represented by the red, green and blue lines respectively.

Figure 15
The separation of the Vo and V1 domains of the S. cerevisiae with simu-

lation time during dissociation. Simulation snapshots to illustrate the
configuration of the Vo, V1 and C subunit during the simulation.
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CONCLUSION

Here we have shown how both ENM and continuum

FFEA simulations can be used to simulate the intrinsic

flexibility within the ATPase family of rotary motors.

Moreover, we have shown that the apparent connectivity

between the stator network and the central rotor axle of

c-ring acts to both restrict rotation and limit the avail-

able flexibility within the system. The additional flexing

seen upon the breakage of this connection may be used

to accommodate the cycling between the different ATP

bound states of the A1/V1 motor, in particular that of

the open state which adopts a lower position. Further

biochemical studies are currently underway, guided by

the information obtained from the simulations which

will further characterize the linkage between the stator

network and the axle and rotor ring and test that this is

not an artifact of the electron microscopy experiment.
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