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We present the first fully self-consistent three-dimensional model of a neutron star’s magnetic field,
generated by electric currents in the star’s crust via the Hall effect. We find that the global-scale
field converges to a dipolar Hall-attractor state, as seen in recent axisymmetric models, but that
small-scale features in the magnetic field survive even on much longer timescales. These small-scale
features propagate toward the dipole equator, where the crustal electric currents organize themselves
into a strong equatorial jet. By calculating the distribution of magnetic stresses in the crust, we
predict that neutron stars with fields stronger than 1014G can still be subject to starquakes more
than 105 yr after their formation.

I. INTRODUCTION

Neutron stars are of interest not only for the exotic
states of matter they contain, but also for their magnetic
fields, which are the strongest in the universe. In the
case of pulsars, the rotation of the magnetic field pro-
duces beams of non-thermal radiation that can be de-
tected thousands of light-years away. The field can also
affect the dynamics of the star itself, through the mag-
netic stress it exerts on the star’s solid outer layer, or
“crust”. In neutron stars with especially strong magnetic
fields (known as magnetars) the magnetic stress can be
strong enough to fracture the crust, producing a star-
quake [1]. This is believed to be the mechanism behind
the gamma-ray flares and X-ray outbursts detected in
these objects [2].
The magnetic fields of pulsars, inferred from spindown

measurements, can be anywhere in the range 108–1015G.
However, the spindown rate depends only on the large-
scale component of the field at the magnetic poles, so
these measurements may underestimate the actual field
strength in the star. This could explain why some neu-
tron stars produce magnetar-like emissions yet have slow
spin-down rates [3–5]. There is also evidence that at least
some neutron stars have stronger magnetic features on
smaller scales [6–9]. To interpret these observations it is
necessary to develop a self-consistent, three-dimensional
(3D) model of neutron star magnetic fields.
The external field of a neutron star is generated by

electric currents flowing within its crust and core. The
ions in the crust form a rigid lattice, and the currents
there arise purely through the flow of electrons, whose
dynamics depend primarily on the Hall effect [10]; this
situation is commonly referred to as electron magneto-
hydrodynamics (EMHD). Recently there have been nu-
merous studies of EMHD in neutron star crusts [11–19].
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However, because of difficulties solving the EMHD equa-
tions computationally in 3D, in all of these studies the
magnetic field was assumed to be axisymmetric. Al-
though there have been 3D studies of EMHD in simpli-
fied periodic-box geometry [20–22], the results cannot be
used to predict the global-scale field morphology in a real
neutron star. Currently, the only predictions regarding
the global-scale field come from axisymmetric models.
Using one such axisymmetric model, Gourgouliatos

and Cumming [18] found that an initially dipolar mag-
netic field evolves towards a quasi-steady configuration
that they called a “Hall attractor”. After ∼ 105 yr the
electric currents in the crust are concentrated in a narrow
jet around the dipole equator, producing a strong belt of
poloidal field. However, it is unknown whether this ax-
isymmetric attractor would be stable to 3D perturbations
in a real neutron star.
Here, we present for the first time global 3D numerical

simulations of the magnetic field in a neutron star crust.
We use a pseudo-spectral code that allows us to perform
simulations that are not only fully 3D, but also higher
resolution than any of those previously presented even in
2D. We describe how the Hall attractor is modified in 3D,
and discuss the magnitude and distribution of magnetic
stresses within the crust.

II. THE MODEL

We work in a reference frame that corotates with the
neutron star’s crust. Because the ions are fixed within
the crust, in this frame the electric current, J, depends
only on the electron fluid velocity, v. The current is also
directly related to the magnetic field, B, via Ampère’s
Law, and we have (in Gaussian cgs units)

J = −env =
c

4π
∇×B, (1)

where n is the electron number density, e is the elemen-
tary charge, and c is the speed of light. If the crust is
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either sufficiently cool, or close to isothermal, then the
magnetic field is frozen to the electron fluid [10], and
evolves according to the equation

∂B

∂t
= ∇×

(

cB

4πen
× (∇×B)

)

−∇× (η∇×B), (2)

where η is the magnetic diffusivity. The two terms on the
right-hand side of Equation (2) represent the Hall effect
and Ohmic dissipation, respectively.
In this study we approximate the structure of the crust

as fixed and spherically symmetric, and so the electron
density n and magnetic diffusivity η are fixed functions
of radius r. We do not therefore take account of any
deformations in the crust arising from magnetic stresses.
However, we can use our results to calculate the magnetic
stress and determine whether it would be large enough
to induce fractures in the crust. We take the top and
bottom of the crust to be the spherical surfaces r = R
and r = 0.9R respectively, where R = 10km is the radius
of a typical neutron star. For n(r) and η(r) we adopt
the same analytical profiles used by Gourgouliatos and
Cumming [23]. Specifically,

n = n0

(

1 +
1− r/R

0.0463

)4

and η = η0

(

1 +
1− r/R

0.0463

)

−8/3

,

where n0 = 2.5× 1034 cm−3 and η0 = 4.0× 10−4 cm2s−1

are the values at r = R. These profiles are only rough
approximations to the (highly uncertain) profiles in real
neutron stars, but fortunately our results are not sensi-
tive to the specific profiles used.
Finally, we must impose boundary conditions on the

magnetic field at the top and bottom boundaries of the
crust. At the top we impose vacuum boundary condi-
tions, i.e., we match to a current-free field outside the
star. At the bottom we impose either the idealized
boundary conditions used by Gourgouliatos and Cum-
ming [23], which are Br = 0 and Jr = 0, or the more
realistic boundary conditions used by Hollerbach and
Rüdiger [12], which model the star’s core as a type-I su-
perconductor. From here on we refer to these two sets
of conditions as GC and HR respectively. In order to
implement the HR boundary conditions, it is convenient
to make a small modification to the electron density pro-
file n(r), as described by Hollerbach and Rüdiger [12], to
make 1/n vanish at the bottom of the crust. We there-
fore use a slightly modified density profile ñ(r), defined
as 1/ñ(r) = 1/n(r)− 1/n(0.9R).
The relative importance of the Hall effect and Ohmic

dissipation terms in Equation (2) depends on the
strength of the magnetic field, B0 say, and is quantified
by the Hall parameter, H ≡ cB0/(4πen0η0). In a typical
magnetar, with B0 = 1014G, we have H ≃ 50, implying
that the Hall effect dominates the dynamics of the mag-
netic field. In that case we expect the field to evolve on
the Hall timescale,

tHall ≡
4πen0R

2

cB0

≃ 1.6Myr, (3)

where we have assumed that the characteristic length-
scale for the magnetic field is R = 10km. If the field has
strong, small-scale features, then these will evolve on a
shorter timescale.
To solve the EMHD equation (2) we have adapted the

3D MHD code PARODY, developed by Dormy et al. [24]
and Aubert et al. [25]. The code is pseudo-spectral, and
uses spherical harmonic expansions in latitude and lon-
gitude, and a discrete grid in radius, making it perfectly
suited to solving problems in spherical-shell geometry.
The results that we present here have a resolution of 128
grid-points in radius, and spherical harmonics up to de-
gree l = 100. We have benchmarked the code against
previously published axisymmetric results [12, 23, 26] and
find excellent agreement in all cases.

III. RESULTS

A. Robustness of the Hall attractor

To determine whether the “Hall attractor” seen in ear-
lier axisymmetric simulations is robust against 3D per-
turbations, we have repeated one simulation of Gourgou-
liatos and Cumming [23], using the same boundary con-
ditions and dipolar “Ohmic eigenmode” initial condition
for the axisymmetric component of the magnetic field. To
this initial axisymmetric poloidal field we add a low am-
plitude, small-scale 3D perturbation with both poloidal
and toroidal components, comprising spherical harmon-
ics of degree 20 6 l 6 40. As shown in Figure 1, the mag-
netic field evolves towards a state broadly similar to the
axisymmetric Hall attractor. However, significant non-
axisymmetric features persist in the simulation even on
long timescales (comparable to the global Hall timescale
tHall). These features would rapidly decay by the action
of Ohmic dissipation alone, so their longevity can be at-
tributed to the Hall effect. In fact it has previously been
shown that, in the presence of a strong density gradient,
the Hall effect can sustain or even amplify small-scale fea-
tures in the magnetic field [27]. The length-scale of the
longest-lived non-axisymmetric features is comparable to
the largest scales present in the initial 3D perturbations
(degree l = 20), suggesting that they form by an up-scale
transfer of magnetic energy.
The convergence of the global-scale magnetic field to

the attractor state occurs on the Hall timescale (3), after
which the evolution proceeds on the slower timescale of
Ohmic diffusion. This is in agreement with results from
axisymmetric simulations [12, 18]. (In the simulations of
Marchant et al. [19], by contrast, the field was initialized
already in a Hall equilibrium state, and therefore evolved
on the Ohmic timescale throughout.) The poloidal mag-
netic flux becomes concentrated into a “belt” around the
equator of the magnetic dipole, implying a strong equa-
torial jet of electrons within the crust. The angular ve-
locity in this jet is approximately constant along each
poloidal field line (see Figure 1). We do not find that the



3

0.0

0.2

0.4

0.6

0.8

1.0

1.2
t = 0.01Myr

0.0

0.2

0.4

0.6

0.8

1.0

1.2
t = 0.54Myr

0.0

0.2

0.4

0.6

0.8

1.0

1.2
t = 1.77Myr

  
-0.6
-0.4

-0.2

-0.0

0.2

0.4
0.6

t = 0.11Myr Br/1014G

  
-0.15
-0.10

-0.05

-0.00

0.05

0.10
0.15

t = 1.10Myr Br/1014G

(a) (b)

FIG. 1. (a) Lines of the azimuthally averaged poloidal field and electron angular velocity at successive times, illustrating
convergence to the Hall attractor. The dashed lines indicate the boundaries of the crust. (b) The radial component of the
magnetic field at the surface at early and late times in the same simulation.

Hall effect enhances the diffusion of the magnetic field, as
originally suggested by Goldreich and Reisenegger [10].
However, by concentrating the poloidal flux around the
equator, the Hall effect does lead to a more rapid decline
in the strength of the radial field at the poles.

The magnetic field is primarily poloidal, with a weaker
toroidal component in the inner crust. However, the GC
boundary conditions used in this simulation impose zero
toroidal field both at the top and bottom of the crust.
In a real neutron star, currents can flow between the
crust and core, generating significant toroidal fields. We
have therefore repeated this simulation using the more
realistic HR boundary conditions, which allow for finite
toroidal field at the lower boundary. Figure 2 compares
the azimuthally averaged magnetic field at the same time
in both simulations, revealing that although the mor-
phology of the poloidal field is modified, a similar Hall
attractor state still exists. The toroidal field in the sec-
ond simulation is much stronger, as expected, but re-
mains weaker than the poloidal field. This toroidal field
is associated with a meridional flow of electrons that is
equatorward at the star’s surface, and drags the poloidal
magnetic field lines. As a result, the equatorial belt of
poloidal flux, and the corresponding electron jet, is even
stronger in the simulation with HR boundary conditions,
and is pushed slightly deeper into the crust. Figure 3
illustrates the development of the equatorial belt, which
manifests as bands of positive and negative Br on either
side of the equator at the star’s surface.

B. The effect of field strength

Spin-down measurements of neutron stars tell us only
the strength of the large-scale magnetic field near the
poles. However, it is clear from Figure 3 that the field
strength elsewhere in the crust can greatly exceed this
observed value. At the time plotted in Figure 2b, for ex-
ample, the strength of the surface magnetic field varies
between ≃ 5× 1012G at the dipole axis and ≃ 3× 1013G
near the equator. Near the bottom of the crust, the field
is stronger by a further order of magnitude than at the
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FIG. 2. Poloidal fieldlines and contours of toroidal field at
t = 1.2Myr. The left and right panels show the cases with
GC and HR boundary conditions, respectively.

surface. The Hall effect may therefore be even more sig-
nificant in neutron stars than previously thought, and so
we have repeated the same simulation shown in Figure 3
with a stronger initial magnetic field (i.e., a larger Hall
parameter H). Because the evolution of the global-scale
magnetic field occurs on the Hall timescale (3), we expect
that a stronger field will converge more rapidly to the
Hall attractor, before the small-scale magnetic features
have been dissipated by resistivity. This is confirmed in
Figure 4, which shows the surface radial field in three
simulations with increasing magnetic field strengths. In
each case the field is plotted at time t = 0.6 tHall, which
corresponds to t ≃ 1, 0.5, and 0.25Myr respectively, and
an equatorial jet of electrons has already formed. In the
case with the strongest magnetic field, the jet is broader
and more spatially disordered; at later times in the same
simulation, the jet becomes increasingly laminar, but re-
mains broader than in the other simulations.

C. The crustal magnetic stress

If the magnetic shear stress within the crust exceeds
the breaking stress of the ionic lattice then it will induce
a crustal fracture. Molecular dynamics models indicate
that the breaking stress is approximately 5 × 10−3 of
the electron pressure, Pe [28]. At each point within the
crust, the strongest magnetic shear stress is exerted on
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FIG. 3. Evolution of the magnetic field in the simulation with HR boundary conditions. Top row: Br at r = R. Bottom row:
Bφ at r = 0.9R. Colorbars are adjusted to the maximum values in each plot, and use a linear scale.
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FIG. 4. The surface radial field in three simulations with B0 = 1014G, 2× 1014G, 4× 1014G (i.e., H = 50, 100, 200).

a surface that makes an angle of 45◦ to the local mag-
netic field direction, and this stress is exactly equal to
the magnetic pressure, Pm. The condition for fracturing
is therefore Pm & 5 × 10−3Pe, where Pm = |B|2/(8π)
and Pe ≃ (3π2n)4/3ℏc/(12π2). Fractures are most likely
near the surface of the crust, where the density and pres-
sure are lowest, and the energy released in a near-surface
fracture can directly power flares and outbursts. In Fig-
ure 5 we plot the ratio of magnetic pressure to breaking
stress at the surface of the crust in the same simulation
shown in the last panel of Figure 4, revealing that patches
around the dipole equator are susceptible to crustal frac-
turing. These patches are localized in both latitude and
longitude, as a consequence of the three-dimensionality
of the magnetic field. They persist on long timescales, of
order tHall, and propagate azimuthally in the direction of
the electron jet.

IV. DISCUSSION

Our results indicate that neutron starquakes are most
common in the vicinity of the electron jet within the
crust, which typically forms a ring around the dipole axis.
This jet forms on the Hall timescale, which is dependent
on the overall strength of the magnetic field. At earlier
times the structure of the magnetic field is dependent on
the initial conditions for the proto-neutron star, which
unfortunately are not well known. The surface field is
strongest in localized patches around the magnetic equa-
tor, where the local field strength typically exceeds that
at the poles by an order of magnitude.
In our simulations, surface magnetic features migrate
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FIG. 5. Lines of the magnetic field generated by currents
in the crust. The coloring indicates the ratio of magnetic
pressure to breaking stress at the surface of the crust. A
portion of the surface has been cut away to show fieldlines
inside the crust, whose lower boundary is the gray sphere.

equatorward as a result of the toroidal magnetic field in
the crust and the associated meridional flow of electrons.
This migration could potentially be reversed if a strong
toroidal field of the opposite sign were present, corre-
sponding to a poleward flow of electrons at the star’s
surface [29]. There is no obvious process that can gen-
erate such a strong toroidal field within the crust, but
it could be a remnant from the star’s formation [30] or
the result of toroidal flux expulsion from the core [31].
To fully describe the processes that can impart a strong
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toroidal field to the crust, it will be necessary to couple
our crust model to a model of the superconducting core.
The flow of heat from a cooling neutron star is inhib-

ited across magnetic field lines, so the strong concentra-
tion of poloidal magnetic flux in the equatorial belt could
trap heat within the electron jet [32]. The breaking stress
is very sensitive to temperature [28], and so the equato-
rial region of the crust may be even more susceptible to
fracturing than we have found here. We are currently
extending our model to describe the thermal–magnetic
evolution of the crust, and its coupling to the core.
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