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Abstract—Sparse wideband array design for sensor location
optimisation is highly nonlinear and it is traditionally solved by
genetic algorithms (GAs) or other similar optimization methods.
This is an extremely time-consuming process and an optimum
solution is not always guaranteed. In this work, this problem is
studied from the viewpoint of compressive sensing (CS). Although
there have been CS-based methods proposed for the design
of sparse narrowband arrays, its extension to the wideband
case is not straightforward, as there are multiple coefficients
associated with each sensor and they have to be simultaneously
minimised in order to discard the corresponding sensor locations.
At first, sensor location optimisation for both general wideband
beamforming and frequency invariant beamforming is consid-
ered. Then, sparsity in the tapped delay-line (TDL) coefficients
associated with each sensor is considered in order to reduce
the implementation complexity of each TDL. Finally, design of
robust wideband arrays against norm-bounded steering vector
errors is addressed. Design examples are provided to verify the
effectiveness of the proposed methods, with comparisons drawn
with a GA-based design method.

Index Terms—Sparse array, frequency invariant beamform-
ing, wideband beamforming, robust beamforming, compressive
sensing, implementation complexity.

I. INTRODUCTION

Wideband beamforming has been studied extensively in

the past [1], [2], [3], [4], [5], [6]. It is well-known that in

order to avoid the spatial aliasing problem for uniform linear

arrays (ULAs), the adjacent sensor spacing has to be less than

half of the minimum operating wavelength corresponding to

the highest frequency of the signal of interest. This can be

problematic when considering arrays with a large aperture size,

due to the cost associated with the number of sensors required.

As a result, sparse arrays, which allow adjacent sensor sep-

arations greater than half a wavelength while still avoiding

grating lobes due to the randomness of sensor locations, are a

desirable alternative [7]. Moreover, even with the same number

of sensors and a similar aperture size, the nonuniform nature

of a sparse array also provides more degrees of freedom to

achieve a better beam response.

However, the unpredictable sidelobe behaviour associated

with sparse arrays means some optimisation of sensor loca-

tions is required to reach an acceptable performance level. Var-

ious nonlinear methods have been used to achieve this required

optimisation. For example, Genetic Algorithms (GAs) [8], [9],

[10], [11], [12], [13], Simulated Annealing (SA) [14], [15]. In

Copyright (c) 2014 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

particular, in [16], the wideband sparse array design problem

is studied using an SA-based approach which can result to

either a frequency invariant response or a maximum directivity

one while controlling the sidelobe level and without the need

of setting a desired response in advance. The disadvantage

of these types of methods are the potentially extremely long

computation times and the possibility of convergence to a non-

optimal solution.

Recently, the area of compressive sensing (CS) has been

explored [17], and CS-based methods have been proposed

in the design of narrowband sparse arrays [18], [19], [20],

[21], [22], [23], [24], [25]. CS theory tells us that if certain

conditions are met it is possible to recover some signals from

fewer measurements than are used by traditional methods.

This can then form the basis of sparse array design methods

by trying to attain an exact, or almost exact, match to a

desired response while using as few sensors as possible. This

is achieved by minimising the l1 norm of the weight coeffi-

cients, subject to the error between the desired and designed

responses being below a predefined level. Further work has

also shown that it is possible to improve the sparseness of a

solution by considering a reweighted l1 minimisation problem

[26], [27], [28]. The aim of these methods is to bring the

minimisation of the l1 norm of the weight coefficients closer

to that of the minimisation of the l0 norm, by solving a series

of reweighted l1 minimisations, where locations with small

weight coefficients are more heavily penalised than locations

with large weight coefficients.

It is not straightforward to extend the design to the wideband

case, as there are tapped delay-lines (TDLs) or FIR/IIR filters

associated with each received wideband signal, and for a

wideband array to be sparse all coefficients along the TDL

associated with an individual sensor have to be equal or very

close to zero. Therefore, it is not sufficient to simply minimize

the l1 norm of the weight coefficients. Instead all the weight

coefficients along a TDL have to be simultaneously minimized.

In order to achieve this, a method similar to the technique

employed in complex-valued l1 norm minimization [29], is

proposed in this paper, which is a further expansion of the

idea presented in [30] by the same authors. As in the case

with the reweighted l1 minimisation method for narrowband

array design, it is possible to use a reweighted scheme for the

wideband method as well. This involves the reweighting terms

being applied to the weight coefficients in the reformulated

wideband problem.

A further contribution in this work is the design of sparse

frequency invariant beamformers (FIBs) using the CS-based

approach. FIB design has been studied in the areas of fixed

[31], [32], [33], [34], and adaptive [35], beamforming. Both

use the idea of response variation (RV) to account for the

difference in response at each frequency to that at the reference

frequency in the design process. In this work the RV will

be added as a constraint to the reformulated wideband CS

problem in an attempt to obtain a sparse FIB.

Another problem of interest is the reduction in complexity

of the TDLs or FIR/IIR filters associated with each sensor

location. In other words, it is desirable to have as few non-

zero coefficients along the TDLs as possible. Similar problems
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have been studied in the FIR filter design area [36], [37], [38].

In this work we propose looking at this problem from the view

point of CS and to combine it with the traditional problem of

finding the minimum number of active sensor locations, with

two methods being proposed. Firstly, a fixed set of sensor

locations can be found using one of our proposed wideband

CS methods. The final coefficients for these fixed locations

can then be found by solving a second l1 minimisation of the

weight coefficients. Alternatively, the sparsity in locations and

in coefficients along a TDL can be simultaneously maximised.

To do this the cost function at the start of the wideband CS

reformulation has to be altered. In both cases a reweighted

scheme can be derived.

Moreover, one practical issue in the design of wideband ar-

rays is the steering vector error caused by model perturbations

such as sensor location errors and individual sensor response

discrepancies. Many methods have been proposed for robust

design of such arrays, such as constraining the white noise

gain [39], [40], using worst-case performance optimisation

[41] or considering the probability density functions of the

sensor characteristics [16]. In this work we use an extra

constraint to limit the effect of norm-bounded steering vector

errors [23], [42], which ensures the maximum possible change

in array response remains below a predetermined acceptable

level, therefore allowing a robust response.

The remainder of this paper is structured as follows. Sec.

II gives details of the proposed CS-based design methods for

location sparsity, which includes the array model in II-A, the

proposed standard CS method in II-B, and derivation of the

frequency invariant (FI) constraint for CS in II-C, with II-D

showing how the problem can be altered to a reweighted

CS problem. Details of two design methods for a lower

complexity TDL are shown in Sec. III, with Sec. IV giving

details of a constraint that ensure robustness to steering vector

errors. Finally, design examples are provided in Sec. V and

conclusions drawn in Sec. VI.

II. PROPOSED WIDEBAND ARRAY DESIGNS FOR

LOCATION SPARSITY

A. Wideband Array Model

A general linear array structure for wideband beamforming

with a TDL length J is shown in Fig. 1, where Ts is the

sampling period or temporal delay between adjacent signal

samples [2]. We assume that all of the sensors are omnidirec-

tional with the same response, and the signals impinge upon

the array from the far field. The beamformer output y[n] is

a linear combination of differently delayed versions of the

received array signals xm[n], m = 0, · · · ,M−1. The distance

from the zeroth sensor to the subsequent sensor is denoted by

dm for m = 0, · · · ,M − 1, with d0 = 0. Fig. 1 also shows an

incident signal arriving at an angle θ.

The steering vector of the array as a function of the

normalized frequency Ω = ωTs and the arrival angle θ is

s(Ω, θ) = [1, · · · , e−jΩ(J−1), e−jΩµ1 cos(θ),

e−jΩ(µ1 cos(θ)+1), · · · , e−jΩ(µ1 cos(θ)+(J−1)),

· · · , e−jΩ(µM−1 cos(θ)+(J−1))]T , (1)

[n]

s Ts
w0,0 w0,1 w0,J−1

Ts Ts

x0[n]

M−1d

w w wM−1,1 M−1,J−1

y[n]
θ

θ

M−1,0

xM−1

T

Fig. 1. A general wideband beamforming structure with a TDL length J .

where µm = dm

cTs

for m = 0, 1, · · · ,M −1 and {·}T indicates

transpose operation.

The response of the array is then given by

P (Ω, θ) = wHs(Ω, θ), (2)

where wH is the Hermitian transpose of the weight vector of

the array, given by

w = [wT
0 wT

1 ... wT
M−1]

T (3)

wm = [wm,0 wm,1 ... wm,J−1]
T . (4)

B. Sparse Wideband Array Design via Compressive Sensing

CS has been employed in the design of sparse narrow-

band arrays by trying to match the array’s response to a

desired/reference one, Pr(Ω, θ). Extending the design to the

wideband case, we first consider Fig. 1 as being a grid of

potential active sensor locations. In this instance, dM−1 is

the maximum aperture of the array and the values of dm, for

m = 1, 2, . . . ,M−2, are selected to give a uniform grid, with

M being a large enough number to cover all potential locations

of the sensors. Sparseness is then introduced by selecting the

set of weight coefficients to give as few active locations as

possible, while still giving a designed response that is close

to the desired one.

In the first instance, this problem could be formulated as

min ||w||0 subject to ||pr − wHS||2 ≤ α , (5)

where ||w||0 is the number of nonzero coefficients in w, pr

is the vector holding the desired beam response at sampled

frequency points Ωk and angle θl, k = 0, · · · ,K − 1, l =
0, · · · , L−1, S is the matrix composed of the steering vectors

at the corresponding frequency Ωk and angle θl, α places a

limit on the allowed difference between desired and designed

responses, and ||.||2 denotes the l2 norm.

In detail, pr and S are respectively given by

pr = [Pr(Ω0, θ0), · · · , Pr(Ω0, θL−1), Pr(Ω1, θ0),

· · · , Pr(Ω1, θL−1), · · · , Pr(ΩK−1, θL−1)] (6)

and

S = [s(Ω0, θ0), · · · , s(Ω0, θL−1), s(Ω1, θ0),

· · · , s(Ω1, θL−1), · · · , s(ΩK−1, θL−1)] . (7)

Here the desired response Pr(Ω, θ) can be obtained from that

of a traditional uniform linear array, or simply assumed to be
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an ideal response (i.e. one at the mainlobe area and zero for

the sidelobe area) and this is adopted in what follows.

In practice, the cost function in (5) will be replaced by the

l1 norm,

min ||w||1 subject to ||pr − wHS||2 ≤ α . (8)

The above formulation is effective in the design of narrowband

arrays, where the TDL length J = 1 and the number of

nonzero coefficients will be the same as the number of active

sensors. In other words, any coefficient with a zero value will

mean that the associated sensor is inactive. However, in the

wideband case, solving (8) will not guarantee a sparse solution

due to there being a TDL length of J > 1, with multiple

weight coefficients associated with each sensor location. The

minimization in (8) only looks to have as few nonzero weight

coefficients as possible without considering which TDL they

are on.

For a sparse solution, the weight coefficients along a TDL

have to be simultaneously minimized. When all coefficients

along a TDL are zero-valued, we can then consider the cor-

responding location to be inactive and sparsity is introduced.

To achieve this, we minimize a modified l1 norm as follows,

min t ϵ R
+

subject to ||pr − wHS||2 ≤ α and |⟨w⟩|1 ≤ t , (9)

where

|⟨w⟩|1 =
M−1
∑

m=0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣







wm,0

...

wm,J−1
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. (10)

Now we decompose t to t =
∑M−1

m=0 tm, tmϵ R
+. In vector

form, we have

t = [1, · · · , 1]







t0
...

tM−1






= 1T t. (11)

Then (9) can be rewritten as

min
t

1T t

subject to ||pr − wHS||2 ≤ α
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≤ tm, m = 0, · · · ,M − 1.

(12)

Now define

ŵ = [t0, w0,0, · · · , w0,J−1, t1, · · · , wM−1,J−1]
T , (13)

ĉ = [1, 0J , 1, 0J , · · · , 0J ]
T (14)

and

ŝ(Ω, θ) = [0, 1, · · · , e−jΩ(J−1),

0, e−jΩµ1 cos(θ), e−jΩ(µ1 cos(θ)+1), · · · ,

e−jΩ(µ1 cos(θ)+(J−1)),

· · · , e−jΩ(µM−1 cos(θ)+(J−1))]T , (15)

where 0J is an all-zero 1× J row vector. A matrix Ŝ similar

to (7) can be created from ŝ, given by

Ŝ = [̂s(Ω0, θ0), · · · , ŝ(Ω0, θL−1),

ŝ(Ω1, θ0), · · · , ŝ(Ω1, θL−1), · · · , ŝ(ΩK−1, θL−1)].

Finally we arrive at the final formulation for the sparse

wideband sensor array design problem

min
ŵ

ĉ
T

ŵ

subject to ||pr − ŵ
H

Ŝ||2 ≤ α
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∣

∣

2

≤ tm, m = 0, · · · ,M − 1.

(16)

C. CS-based Design with Frequency Invariant Constraint

In [33], [34], [35], RV is used as a measure of how close

the response at each sampled frequency point is to that at a

reference frequency Ωr. The RV is defined as follows

RV =
∑

ΩI

∑

ΘFI

|ŵH
ŝ(Ω, θ)− ŵ

H
ŝ(Ωr, θ)|

2

= ŵ
H

Qŵ (17)

where

Q =
∑

ΩI

∑

ΘFI

(ŝ(Ω, θ)− ŝ(Ωr, θ))(ŝ(Ω, θ)− ŝ(Ωr, θ))
H , (18)

ΘFI is the angular range over which RV is calculated, and

the normalised frequency range of interest, ΩI , is sampled K

times. If RV = 0, it implies that the responses at each sampled

frequency point are the same.

To obtain an FI solution, we first limit the value of RV to

a small value σ2 as follows

RV ≤ σ2 . (19)

This can be simplified to

RV = ||LT ŵ||22 ≤ σ2 , (20)

where L = VU1/2, U is a diagonal matrix containing the

eigenvalues of Q, and V the corresponding eigenvectors. With

this added as an extra constraint, (16) changes to

min
ŵ

ĉ
T

ŵ

subject to ||pr − ŵ
H

Ŝ||2 ≤ α
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∣







wm,0

...

wm,J−1







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ tm, m = 0, · · · ,M − 1

||LT ŵ||2 ≤ σ. (21)

However, if ΘFI is set as [0◦, 180◦], i.e., we want to achieve

a frequency invariant response over the whole angle range of

the array, then it is not necessary to match the response at each

sampled frequency to the ideal response in the formulation, as

the response at each frequency should be the same as, or very
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similar to, the response at the reference frequency. As a result,

only the reference frequency has to be matched to the ideal

response, reducing the complexity of the problem. Thus, when

ΘFI = [0◦, 180◦] we can define pr and Ŝ as

pr = [Pr(Ωr, θ0), · · · , Pr(Ωr, θL−1)]

Ŝ = [̂s(Ωr, θ0), · · · , ŝ(Ωr, θL−1)].

D. Sparse Array Design via Reweighted Compressive Sensing

In our previous formulations, we have replaced the l0 norm

by the l1 norm in the cost function. However, we need to

note that the l0 norm would uniformly penalise all non-zero

valued coefficients, while the l1 norm penalises larger non-zero

values more heavily than those smaller non-zero values. As a

result, we want to alter the original minimisation problem in

order to get closer to the uniform penalisation of the original

l0 minimisation. To achieve this, we can introduce a larger

weighting term to those coefficients with smaller non-zero

values and a smaller weighting term to those coefficients

with larger non-zero values. This weighting term will change

according to the resultant coefficients at each iteration. This

idea then leads to the reweighted l1 minimization [26].

The reweighted l1 minimisation has been employed in the

design of sparse narrowband arrays [27], [28]. In such a

design, the standard l1 minimisation in (8) is altered to

min
M−1
∑

m=0

aim|wi
m| subject to ||pr − wHS||2 ≤ α , (22)

where aim = (|wi−1
m | + ε)−1 is the reweighting term and i

is the iteration index. The value ϵ > 0 is required to provide

numerical stability and it is chosen to be slightly less than

the minimum weight coefficient that will be implemented

in the final design. Clearly, the way aim is found means a

large coefficient gives a small reweighting term, implying the

coefficient will remain non-zero valued in the next iteration.

However a small non-zero valued coefficient will lead to

a large reweighting term. As a result, it is likely that the

coefficient will be zero-valued in the next iteration. Therefore,

the problem penalise all non-zero valued coefficients in a more

uniform manner, leading to a better approximation to l0 norm

minimisation.

Although we can not apply this scheme directly to our

modified l1 minimisation problem, we can borrow the idea

and alter the reweighting parameter in order to achieve the

same goal. This leads to (21) being altered to

min
ŵ

ĉ
T

ŵ

subject to ||pr − ŵ
H

Ŝ||2 ≤ α

aim

∣

∣
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∣







wi
m,0
...

wi
m,J−1
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∣

∣

∣

∣

∣

∣

∣

2

≤ tim,

m = 0, · · · ,M − 1

||LT ŵ||2 ≤ σ (23)

where

ŵ = [ti0, w
i
0,0, · · · , w

i
0,J−1, t

i
1, · · · , w

i
M−1,J−1]

T , (24)

ĉ = [ai0, 0J , a
i
1, 0J , · · · , 0J ]

T (25)

and the reweighting term aim is modified as follows based on

the overall contribution of the coefficients along each TDL

aim =

(
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣







wi−1
m,0
...

wi−1
m,J−1







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

+ ϵ

)−1

. (26)

Here ϵ is chosen to be slightly less than the overall sensor

location contribution threshold that is used to decide whether

the location should be considered active or not in the final

solution.

The reweighted problem in (23) is iteratively solved as

detailed in the steps given below.

1) Set i = 1 and obtain an initial estimate of the weight

coefficients by solving (21).

2) i = i+ 1, and find the reweighting terms aim for all m.

3) Solve (23).

4) Repeat steps 2 to 3 until the number of active sensor

locations has remained constant for three iterations of

the algorithm. We can choose a value larger than three

to make sure the iterative process has reached a stable

state. However, this would be at the expense of a larger

computation time.

As with the narrowband case this method would be expected

to give a better sparsity in terms of sensor locations compared

to the the non-reweighted method. However, both should

successfully introduce some level of the desired sparsity, with

the iterative nature of the reweighted minimisation problem

causing an increase in the computation time.

III. SPARSE TDL DESIGNS FOR FURTHER REDUCED

COMPLEXITY

The next problem to consider is the reduction in complexity

of the TDL, i.e., we also introduce sparsity along the TDL

of active sensor locations, so that a smaller number of non-

zero coefficients are needed for implementing each TDL. Two

methods of achieving this are presented below. Firstly, using a

fixed set of sensor locations derived from the earlier methods,

it is possible to find the coefficients with the minimum number

of non-zero values via a second l1 minimisation. Secondly, the

problem of TDL sparsity can be combined into a reformulated

problem so that both location sparsity and TDL sparsity are

simultaneously maximised.

A. TDL Sparsity for Fixed Sparse Sensor Locations

From solving either (21) or (23), a set of fixed sensor loca-

tions and a first estimate of their associated weight coefficients

can be found. The problem now is to consider the introduction

of sparsity along the TDL associated with each active sensor

location. In other words, we want to find the overall set of

weight coefficients with the minimum number of non-zero

values. This will give us the lowest possible complexity in

terms of the TDLs or FIR/IIR filters associated with each

active sensor location.
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In the first instance, this problem can be formulated as

min ||w||1

subject to ||pr − wHS||2 ≤ α & ||LT w||2 ≤ σ. (27)

Here the values of α and σ are found by evaluating ||pr −
wHS||2 and ||LT w||2, for the obtained fixed sensor locations

and their associated first estimate of the weight coefficients w.

This can then be reformulated as a reweighted l1 minimi-

sation problem as follows

min

M
∑

m=1

aim|wi
m|

subject to ||pr − wHS||2 ≤ α & ||LT w||2 ≤ σ ,(28)

where aim = (|wi−1
m |+ ϵ)−1, with ϵ being the minimum value

of weight coefficient that will be implemented. This is then

iteratively solved using the steps as detailed in Sec. II-D to

find the final set of weight coefficients for the fixed sensor

locations.

Now the whole proposed method involves two l1 minimisa-

tions: the first is to obtain the active sensor locations via (21)

or (23) and the second is to obtain the sparse TDLs via (28).

On the other hand, in some situations it may be advantageous

to simultaneously consider the sparsity in sensor locations and

along TDLs, removing the need for this extra l1 minimisation.

One method of doing this is detailed below.

B. Simultaneously Maximising Location and TDL Sparsities

To simultaneously consider both sparsity in sensor locations

and sparsity along the TDLs, as a starting point we transform

(9) back into

min |⟨w⟩|1 subject to ||pr − wHS||2 ≤ α . (29)

To reduce the number of non-zero valued coefficients as well

as the number of active sensor locations, we alter the cost

function in (29) into the following form

min β|⟨w⟩|1 + (1− β)||w||1

subject to ||pr − wHS||2 ≤ α , (30)

where β is a weighting function that determines the relative

importance of the two terms in the cost function of (30). It

is worth noting that it is the addition of the second term,

||w||1, that introduces the TDL sparsity to the solution. This is

because it looks to minimise the overall number of non-zero

valued coefficients without considering which TDL they are

on. As a result we can have zero valued coefficients on TDLs

which have not been made inactive via the minimisation of

the modified l1 norm.

Equation (30) can then be written as

min t ϵ R
+

subject to ||pr − wHS||2 ≤ α

β|⟨w⟩|1 + (1− β)||w||1 ≤ t. (31)

By using the previous definitions of ŵ, ĉ, ŝ and the decompo-

sition of t, this can be rewritten as

min
ŵ

ĉ
T

ŵ

subject to ||pr − ŵ
H

Ŝ||2 ≤ α

β||wm||2 + (1− β)||wm||1 ≤ tm,

m = 0, · · · ,M − 1

||LT ŵ||2 ≤ σ, (32)

where the FI constraint has again been added in an attempt to

ensure an FI response is achieved.

Again, this can be reformulated as a reweighted problem

which can then be iteratively solved using the steps detailed

in Sec. II-D. This gives

min
ŵ

ĉ
T

ŵ

subject to ||pr − ŵ
H

Ŝ||2 ≤ α

aim(β||wm||2 + (1− β)||wm||1 ≤ tm),

m = 0, · · · ,M − 1

||LT ŵ||2 ≤ σ, (33)

where

ŵ = [ti0, w
i
0,0, · · · , w

i
0,J−1, t

i
1, · · · , w

i
M−1,J−1]

T (34)

ĉ = [ai0, 0J , a
i
1, 0J , · · · , 0J ]

T , (35)

wm = [wi
m,0, · · · , w

i
m,J−1]

T (36)

aim = (β||wi−1
m ||2 + (1− β)||wi−1

m ||1 + ϵ)−1 (37)

with ϵ being a small value as before.

It is worth noting that here the reweighting scheme is only

expected to help with location sparsity and not sparsity along

the TDLs, because there is no individual reweighting term for

each coefficient along a TDL, and a smaller coefficients will

not receive the extra penalty as in [26].

It is reasonable to assume that decreasing β increases the

importance of reducing the TDL complexity compared to

location sparsity. However, it is hard to exactly predict what

the effect will be, as reducing the number of active locations

also removes weight coefficients, therefore also contributes to

the second term in the reformulated constraint. Similar can be

said for removing more coefficients potentially leading to a

sensor location becoming inactive.

IV. ROBUSTNESS TO STEERING VECTOR ERROR

CONSTRAINT

So far we have assumed a perfectly known array model. In

this section, we develop a robust design method against norm-

bounded steering vector errors by adding an extra constraint

to the existing formulations.

Suppose the actual steering vector is given by

s̃ = s + e, (38)

where s̃ is the actual steering vector, s is the designed steering

vector and e is the corresponding error vector, which is

assumed to be norm-bounded, i.e.,

||e||2 ≤ ε . (39)
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With this we can find the maximum possible change in array

response due to the error as follows

|wH s̃ − wHs| = |wHe| ≤ ε||w||2 . (40)

This change in response can be kept below a predetermined

acceptable value, i.e.

ε||w||2 ≤ γ (41)

where γ is the limit on the allowed change.

Adding (41) to the reweighted problem in (23) we obtain

min
ŵ

ĉ
T

ŵ

subject to ||pr − ŵ
H

Ŝ||2 ≤ α

aim

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣







wi
m,0
...

wi
m,J−1







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ tim,

m = 0, · · · ,M − 1

||LT ŵ||2 ≤ σ , ε||w||2 ≤ γ . (42)

The solution to (42) will give a set of locations and TDL

coefficients to implement a robust FIB.

Based on the set of robust sensor locations obtained before,

to find a set of temporally sparse coefficients we consider the

following problem

min
w

||w||1

subject to ||pr − wHS||2 ≤ α

||LT w||2 ≤ σ , ε||w||2 ≤ γ. (43)

where the FI constraint is applied over ΘFI = [0◦, 180◦], and

pr = [Pr(Ωr, θ0), · · · , Pr(Ωr, θL−1)] (44)

S = [s(Ωr, θ0), · · · , s(Ωr, θL−1)] . (45)

Here the values of α, σ and γ can be found by evaluating

||pr −wHS||2, ||L
T w||2 and ε||w||2 from the solution to (42).

V. DESIGN EXAMPLES

In this section broadside and off-broadside design examples

will be presented, which were all implemented on a computer

with an Intel Core Duo CPU E6750 (2.66GHz) and 4GB of

RAM. This was done using cvx, a package for specifying and

solving convex programs [43], [44].

For all design examples, sensor locations with negligible

contributions to the overall response were discarded and active

locations on directly adjacent grid locations were merged to

their midpoint. As a result, the final weight coefficients may no

longer be optimal for the final sensor locations. However, when

sparsity along a TDL is not being considered, the locations will

allow the effective design of an FIB using the constrained least

squares (CLS) formulation as detailed in [34], with a value

βCLS = 0.01 selected, as briefed in the following.

The CLS design minimises a cost function JCLS , subject

to a given constraint

min
w

JCLS = wHQCLSw subject to CHw = f , (46)

where

QCLS =
K−1
∑

k=0

L−1
∑

l=0

(s(Ωk, θl)− s(Ωr, θl))

(s(Ωk, θl)− s(Ωr, θl))
H + βCLS

∑

θl∈Θs

S(Ωr, θl) ,

(47)

C = s(Ωr, θm), f = 1, S(Ωr, θl) = s(Ωr, θl)s(Ωr, θl)
H , Θs is

the sidelobe region and θm is the mainlobe. Its solution is

wCLS = Q−1
CLSC(CHQ−1

CLSC)−1f . (48)

However, for the robust design case, the CLS design is not

applicable and the following formulation is employed instead

min
w

||pr − wHS||2

subject to ||LT w||2 ≤ σ & ε||w||2 ≤ γ . (49)

The values of σ and γ are found by evaluating the values of

||LT ŵ||2 and ε||w||2 from the solution to (42), respectively.

When sparsity along a TDL is considered, such a redesign

is not possible. As a result, more care has to be given to

the selection of the threshold value below which locations

will be considered inactive and individual coefficients will be

discarded.

Comparisons will be drawn with a GA-based design

method, which optimises the locations given a fixed number

of sensors. For each potential sensor location solution in the

population, the weight coefficients can be found using the CLS

formulation, which are then used to find the value of the cost

function JCLS and the fitness value is assigned as J−1
CLS . The

initial population of the GA consists of 30 individuals creating

27 offspring in each generation. A mutation rate of 0.25 and a

maximum of 30 generations were also used. When making the

performance comparison, the following were considered: mean

adjacent sensor separations, |JCLS | and computation time.

In what follows, we only show the design examples from

the reweighted CS-based methods, as from our experience

with different design examples, the reweighted methods con-

sistently gave a solution with fewer active sensor locations. In

addition to this, the desirability of the resulting array response

was as good as or even better than for the arrays found using

the non-reweighting design methods. However, this was at the

cost of an increased computation time due to the iterative

nature of the reweighted scheme.

For all examples the value of λ is the wavelength associated

with a normalized frequency Ω = π. For speech signals and

microphones, this is equivalent to a 10 KHz signal (with a

sampling frequency of 20 KHz) giving a wavelength of 3.4
cm at a speed of 340 m/s.

A. Broadside Design Example with Location Sparsity Only

For this example, the reference pattern was that of an ideal

array with the mainlobe at θm = 90◦ and sidelobe regions of

Θs = [0◦, 80◦]
∪

[100◦, 180◦], which were sampled every 1◦.

The frequency range of interest ΩI = [0.5π, π] was sampled

every 0.05π, with the reference frequency Ωr = π. A grid of

100 potential sensor locations was spread uniformly over an
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TABLE I
SENSOR LOCATIONS FOR THE REWEIGHTED BROADSIDE DESIGN

EXAMPLE.

n dn/λ n dn/λ n dn/λ n dn/λ
0 1.92 3 3.74 6 5.66 9 7.17
1 2.83 4 4.34 7 6.26 10 8.08
2 3.33 5 5.00 8 6.67
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Fig. 2. Responses for reweighted broadside design example.

aperture of 10λ. The values α = 0.9, σ = 0.01, ϵ = 9× 10−4

and a TDL length J = 25 were used.

The resulting array was made up of 11 active sensor loca-

tions as given in Tab. I, with its beam response shown in Fig.

2. It can be seen that the mainlobe is at the desired location

for each normalised frequency and sufficient attenuation has

been achieved in sidelobe regions. The response also shows a

good level of performance in terms of the FI property.

This was then compared to an array designed using the GA-

based method. To allow a fair comparison, the GA was set

to optimise 11 sensor locations over an aperture of 6.16λ, the

same as the example given in Tab. I. Fig. 3 shows the resulting

array response and Tab. II gives the locations of each sensor.

All these show a good performance in terms of both sidelobe

attenuation and the FI property.

Tab. III summarises the different performance measures

for each design method. The main disadvantage of the GA

design method is clearly shown, i.e. the computation time is

significantly longer. This would be even more apparent if a

larger population size was used or if more generations were

allowed. It is also worth noting that there are more parameters

to fine tune with the GA method, for example the mutation rate

employed. The mean adjacent sensor spacings are the same in

both cases and larger than the spacing of an equivalent ULA,

suggesting some sparsity has been achieved. Finally, the value

of |JCLS | is slightly lower for reweighted CS design, with the

difference largely being the FI property in the extremes of the

TABLE II
SENSOR LOCATIONS FOR THE GA BROADSIDE DESIGN EXAMPLE.

n dn/λ n dn/λ n dn/λ n dn/λ
0 0 3 1.63 6 3.48 9 5.53
1 0.27 4 2.16 7 4.12 10 6.16
2 1.12 5 2.80 8 4.77
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Fig. 3. Responses for the GA broadside design example.

TABLE III
BROADSIDE PERFORMANCE COMPARISON.

Method Reweighted GA

Mean Spacing/λ 0.62 0.62

JCLS 0.0372 0.0376

Computation Time (minutes) 130 436

sidelobe regions. This will not be guaranteed to be the case

all the time.

B. Off-Broadside Example with Location Sparsity Only

For this example, the reference pattern was that of an ideal

array with the mainlobe at θm = 125◦ and sidelobe regions

of Θs = [0◦, 115◦]
∪

[135◦, 180◦], which were sampled every

1◦. The frequency range ΩI = [0.4π, 0.9π] and was sampled

every 0.05π, with Ωr = 0.9π being the reference frequency.

A grid of 100 potential sensor locations was spread uniformly

over an aperture of 10λ. The values α = 0.82, σ = 0.075,

ϵ = 9× 10−4 and J = 25 were used.

The resulting array consists of 16 active sensor locations

over the full aperture of 10λ. The locations are given in Tab.

IV and Fig. 4 shows the resulting array response, with its

mainlobe at the desired direction and sufficient attenuation in

the sidelobe regions. There is also a good level of performance

in terms of the FI property.

As with the broadside example, this was compared to an

array designed using a GA and result consists of 16 active

sensors over an aperture of 10λ as detailed in Tab. V. Fig.

5 shows the corresponding array response, with a satisfactory

performance achieved.

Tab. VI summarises the different performance measures

for the two arrays. As with the broadside example, the GA

design example has taken considerably longer to complete. It

TABLE IV
SENSOR LOCATIONS FOR THE REWEIGHTED OFF-BROADSIDE DESIGN

EXAMPLE.

n dn/λ n dn/λ n dn/λ n dn/λ
0 0 4 3.03 8 5.25 12 7.58
1 0.51 5 3.54 9 5.86 13 8.08
2 1.92 6 4.14 10 6.46 14 9.49
3 2.42 7 4.75 11 6.97 15 10
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Fig. 4. Responses for the reweighted off-broadside design example.

TABLE V
SENSOR LOCATIONS FOR THE GA OFF-BROADSIDE DESIGN EXAMPLE.

n dn/λ n dn/λ n dn/λ n dn/λ
0 0 4 3.16 8 5.08 12 7.23
1 0.78 5 3.37 9 5.84 13 7.78
2 2.27 6 4.16 10 6.31 14 9.16
3 2.63 7 4.75 11 6.77 15 10

is also worth noting that the increase in sensor numbers in

this example has led to the computation time being longer

than that for the broadside GA design example. Both design

methods have given solution arrays with a mean adjacent

sensor separation greater than 0.5λ. Unlike for the broadside

example, in this case the value of |JCLS | is lower for the

GA designed array, suggesting the response is closer to what

was desired. This illustrates the fact that although similar

performance can be achieved by both design methods, it is

hard to predict which will give the best result.
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Fig. 5. Responses for the GA off-broadside design example.

TABLE VI
OFF-BROADSIDE PERFORMANCE COMPARISON.

Method Reweighted GA

Mean Spacing/λ 0.67 0.66

JCLS 0.0073 0.0062

Computation Time (minutes) 146 944

TABLE VII
BROADSIDE PERFORMANCE COMPARISON FOR TDL SPARSITY.

Method CLS Two-Step Combined

Number of Sensors 11 11 17

Aperture/λ 6.16 6.16 8.38

Mean Spacing/λ 0.62 0.62 0.52

Mean ||w||0 per TDL 25 14.8 18.5

||pr − wHS||2 0.900 0.900 0.904

||LT w||2 0.031 0.031 0.098

C. Design Examples Including Sparsity Along the TDLs

Now the performance of the two methods that introduce

sparsity along the TDLs will be considered and compared

in terms of the number of active sensor locations, overall

number of non-zero coefficients, ||pr −wHS||2 and ||LT w||2.

Both methods will also be compared to the previous design

examples, where we did not consider sparsity along the TDLs.

The same threshold scheme was also applied (to remove coef-

ficients with a negligible contribution to the overall response)

to these examples here in order to get a fair comparison of

performance.

Here we will again only consider the reweighted forms of

the two proposed design methods. In addition, we will not

consider a comparison with GA here as we have already shown

comparable performance levels are reached in our earlier

design examples.

1) Broadside Design Examples: For this case, any coeffi-

cients with a value below 1 × 10−9 were discarded. For the

method involving the second l1 minimisation of the weight

coefficients, the locations found in the previous design exam-

ple were used. For the combined design method a value of

β = 0.8 was used, along with the same input parameters used

in the previous reweighted wideband CS design example. This

value was selected in order to ensure that enough importance

was still placed on the reduction in the number of sensors,

and therefore a sparse solution was still ensured. Tab. VII

summarises the performance of the two methods compared

to the CLS design example.

The first thing to note is that the introduction of the second

term into the modified l1 minimisation in (33) has lead to there

being more active sensor locations. This is to be expected

as we are no longer simply trying to minimise the number

of active locations but also the number of non-zero valued

coefficients. Although the aperture of the array is longer in

this case, the mean adjacent sensor separation is smaller due

to a larger number of active sensors, suggesting a smaller

reduction in number of sensors compared to an equivalent

ULA in this instance. In addition, this method also gives a

larger average number of coefficients per TDL compared to the

two-step method. However, both offer a reduction compared

to the design example with coefficients redesigned using the

CLS method based on the set of fixed sensor locations.

Comparing the values of ||pr − wHS||2 and ||LT w||2 for

the CLS design and the two-step design, we can see that the

performance for both measures is the same. However, there

is an increase in both values for the combined simultaneous

minimisation method. The increase in ||LT w||2 is significant,

suggesting there will noticeably be an increase in the variation
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TABLE VIII
SENSOR LOCATIONS FOR THE BROADSIDE DESIGN EXAMPLE WITH

COMBINED MINIMISATION.

n dn/λ n dn/λ n dn/λ n dn/λ
0 0.81 4 2.83 8 5.00 12 7.17
1 1.31 5 3.43 9 5.56 13 7.68
2 1.92 6 4.04 10 5.96 14 8.08
3 2.32 7 4.44 11 6.57 15 8.69

16 9.19
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Fig. 6. Responses for the broadside example with two-step minimisation.

between responses at different normalised frequencies. It is

likely that this decrease in performance is due to the fact

that there is no redesign of the weight coefficients after

the merger of sensors on directly adjacent grid locations.

The effect of discarding small non-zero valued coefficients is

negligible compared to this. As a result, reducing the threshold

below which coefficients are discarded will only offer a small

improvement, while in some cases drastically increasing the

number of non-zero valued coefficients. If improving the final

value of ||LT w||2 is desirable, then the easiest way would be

to put a tighter constraint on the value in the first place.

Figs. 6 and 7 show the response obtained by the two-

step l1 minimisation and combined minimisation methods

respectively. For completeness the locations for the combined

minimisation are also shown in Tab. VIII.

In both cases the mainlobe is at the correct location of θ =
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Fig. 7. Responses for the broadside example with combined minimisation.

TABLE IX
OFF-BROADSIDE PERFORMANCE COMPARISON FOR TDL SPARSITY.

Method CLS Two-Step

Mean ||w||0 per TDL 25 16.4

||pr − wHS||2 0.82 0.82

||LT w||2 0.031 0.075

90◦ and there is sufficient sidelobe attenuation. The effect of

the increase in the value of ||LT w||2 for the combined method

can clearly be seen here. The performance in terms of the FI is

clearly not as good in the sidelobe regions as it is for the other

method. This, coupled with the fact that the two-step method

gives us an array with less sensors and less coefficients per

sensor, allows us to conclude that the method with the two-step

l1 minimisation is the best of the two.

We could redesign the coefficients for the locations found

using the combined minimisation in (33) with another l1
minimisation as with the first proposed method for TDL

sparsity in (28). However, there appears to be no advantage

in doing this over using the first method on its own, as the

second method in (33) tends to result in more active sensor

locations. This would also mean it was unnecessary to include

the TDL sparsity in the minimisation in the first place in (33).

2) Off-Broadside Examples: Here we only compare the

two-step method in (28) with the CLS redesigned example us-

ing the locations obtained by (23), as it has already been shown

in the broadside example that the combined minimisation

method has no real advantages. Tab. IX summarises the design

results of the two methods. Note that the aperture length,

number of active locations and mean adjacent separation are

not shown, as both have used the same sensor locations.

Here we can see that redesigning the coefficients using

an l1 minimisation has successfully reduced the number of

coefficients per sensor location. However, this reduction in the

number of coefficients has come at the cost of increasing the

final value of ||LT w||2. As a result, we would expect more

variation in the response at different normalised frequencies.

However, there has been no change in the value of ||pr −
wHS||2, suggesting the response at the reference frequency

is still as close to the desired response as it previously was.

The same criterion for removing small coefficients was applied

to both design examples – any TDL coefficient with a value

smaller than 1×10−6 is discarded. As with the broadside case,

this did not change the total number of coefficients that were

present for the CLS design example.

D. Robust Sparse Array Design Example

We now consider a broadside design example in order to

verify the effectiveness of the method for designing an FIB

with robustness against a norm-bounded steering vector error.

Here the same parameters as used for the previous broadside

design examples are considered. In addition, the values of ε =
5 and γ = 0.0001 are also used when solving (42).

When deciding if a response is robust or not we randonly

generate N = 1000 error vectors that meet the norm-bounded

constraint in (41). For the nth error vector the achieved

response at normalised frequency Ωk and angle θl, pn(Ωk, θl),
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TABLE X
SENSOR LOCATIONS FOR THE ROBUST SPARSE ARRAY DESIGN

EXAMPLE.

n dn/λ n dn/λ n dn/λ n dn/λ
0 1.92 3 3.94 6 5.56 9 7.07
1 2.93 4 4.44 7 6.06 10 8.08
2 3.43 5 5.00 8 6.57
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Fig. 8. Designed response without temporal sparsity.

is found and the average achieved response is given by

p̄(Ωk, θl) =
1

N

N−1
∑

n=0

pn(Ωk, θl), (50)

which is then used to find the normalised variance of the

achieved array response,

var(Ωk, θl) =
1

N

N−1
∑

n=0

|pn(Ωk, θl)− p̄(Ωk, θl)|
2

|p̄(Ωk, θl)|
, (51)

A close match between mean achieved and designed re-

sponses, along with low normalised variance levels, would

indicate that robustness has been achieved.

After discarding negligible locations and merging those on

directly adjacent grids we end up with the 11 active sensor

locations detailed in Tab. X, giving a mean adjacent sensor

separation of 0.62λ. However, this process will again mean the

weight coefficients may no longer be optimal for the location

we have. The coefficients were however used to find the values

σ = 0.035562 and γ = 0.23732 that were used solving (49).

The result was a set of weight coefficients without zero values

(i.e. as expected no TDL sparsity).

Fig. 8 shows the resulting designed response for each of

the sampled frequencies. We can see that for each frequency

the mainlobe is in the desired location, and sufficient sidelobe

attenuation and a good (especially around the mainlobe) FI

property is achieved. Fig. 9 shows the mean achieved response,

which is a close match to the designed one. Along with the

low normalised variance levels shown in Fig. 10, this indicates

a robust response has been achieved.

The next one is for designing a temporally sparse robust

FIB. With the coefficients obtained in the first step, the values

of α = 0.87448, σ = 0.035562 and γ = 0.23732 were found

for use in solving (43). However, using these constraint values
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Fig. 9. Mean achieved response without temporal sparsity.
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Fig. 10. Normalised variance levels without temporal sparsity.

failed to give a temporally sparse solution. As a result the value

of α was increased to 0.9 and a solution showing temporal

sparsity was achieved. On average there was a reduction of

13.1 non-zero valued coefficients per TDL.

The designed response, mean achieved response and nor-

malised variance levels are shown in Figs. 11, 12 and 13
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Fig. 11. Designed response with temporal sparsity.
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Fig. 12. Mean achieved response with temporal sparsity.
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Fig. 13. Normalised variance levels with temporal sparsity.

respectively. Again an acceptable designed response has been

achieved, with satisfactory mean achieved response and nor-

malised variance level.

VI. CONCLUSIONS

In this paper, a series of CS-based methods for the de-

sign of sparse arrays for wideband beamforming including

frequency invariant beamforming has been proposed. Two

levels of sparsity were considered: one is the sparsity in

sensor locations and the other one is the sparsity of the TDL

coefficients associated with each sensor in order to reduce the

implementation complexity of each TDL.

Although CS-based methods have been proposed for the

design of narrowband sparse arrays, their extension to the

wideband case is not straightforward, as there are multiple

coefficients along a TDL associated with each sensor and

it is not sufficient to simply minimize the l1 norm of the

weight vector. Instead all the coefficients along a TDL have

to be simultaneously minimized, which was achieved by a

modified l1 norm minimization method. An extra constraint

based on the concept of response variation was then added to

ensure a frequency invariant response. To further improve the

sparsity of array locations, an iterative process is employed

with a reweighting term introduced in the cost function so

that locations with small contributions are penalised in the

next iteration, while locations with a large contribution are

replicated.

For the design of sparse TDLs, two methods were proposed.

The first one is based on a two-step l1 minimisation, where

we first obtain the sparse sensor locations using the above

proposed methods and then find the minimum number of non-

zero valued coefficients for the fixed set of sensor locations.

In the second method, we consider the sparsity in sensor

locations and TDL coefficients simultaneously. It seems that

the second one may give a better result. However, based on

our design results, the first one has achieved a better result.

Details of a further constraint, which can ensure the solution

is robust against steering vector errors were also given. This

constraint works by keeping the maximum change in array

response, due to a norm-bounded steering vector error, below

a predetermined acceptable level.

Various design examples have been presented, with com-

parisons also drawn with a GA-based method. Similar perfor-

mance levels are achieved but the GA design takes consider-

ably longer to reach the solution, highlighting the advantage

of our proposed design methods.
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