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Although the basal ganglia have been widely studied and implicated in signal processing
and action selection, little information is known about the active role the striatal
microcircuit plays in action selection in the basal ganglia-thalamo-cortical loops. To address
this knowledge gap we use a large scale three dimensional spiking model of the striatum,
combined with a rate coded model of the basal ganglia-thalamo-cortical loop, to asses the
computational role the striatum plays in action selection. We identify a robust transient
phenomena generated by the striatal microcircuit, which temporarily enhances the
difference between two competing cortical inputs. We show that this transient is sufficient
to modulate decision making in the basal ganglia-thalamo-cortical circuit. We also find that
the transient selection originates from a novel adaptation effect in single striatal projection
neurons, which is amenable to experimental testing. Finally, we compared transient
selection with models implementing classical steady-state selection. We challenged
both forms of model to account for recent reports of paradoxically enhanced response
selection in Huntington’s disease patients. We found that steady-state selection was
uniformly impaired under all simulated Huntington’s conditions, but transient selection was
enhanced given a sufficient Huntington’s-like increase in NMDA receptor sensitivity. Thus
our models provide an intriguing hypothesis for the mechanisms underlying the paradoxical
cognitive improvements in manifest Huntington’s patients.
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1. INTRODUCTION
Finding the neural substrate for the process of “selection” is key
to furthering our understanding of decision-making (Ding and
Gold, 2013), action selection (Mink, 1996; Grillner et al., 2005),
planning (Houk and Wise, 1995), action sequencing (Jin and
Costa, 2010), and even working memory (Gruber et al., 2006).
A unifying proposal is that the basal ganglia forms just such a
generic selection mechanism (Prescott et al., 1999; Redgrave et al.,
1999); this proposal neatly explains why the basal ganglia have
been hypothesized to contribute to each of these functions. But
specifying the computational process of selection by the basal
ganglia is challenging (Berns and Sejnowski, 1998; Gurney et al.,
2001a,b; Humphries et al., 2006; Leblois et al., 2006).

A particular unknown is the computational role of the basal
ganglia’s input nucleus, the striatum. The striatum’s GABAergic
projection neurons comprise the vast majority of cells and are
connected by local collaterals of their axons (Wilson and Groves,
1980). The lack of layers or of clear axial preferences in the
direction of dendrites or axons suggests that striatal tissue is
homogeneous in all three dimensions (Humphries et al., 2010).
Such GABAergic connectivity naturally lends itself to the idea that
the striatum forms a vast recurrent network that, locally, imple-
ments a winner-takes-all computation (Alexander and Wickens,
1993; Fukai and Tanaka, 1997; Wickens, 1997). The weak strength

of synapses between the projection neurons (Jaeger et al., 1994;
Czubayko and Plenz, 2002; Tunstall et al., 2002) is difficult to
reconcile with this proposal (Plenz, 2003), as they suggest projec-
tion neuron output can only modulate ongoing activity and not
outright inhibit their targets.

Here we report an alternative, transient form of selection that
can occur in weak, sparse networks of striatal projection neu-
rons. Using our three-dimensional network model of distance-
dependent connections in the striatal microcircuit (Humphries
et al., 2009b, 2010), we explored the effect on striatal output
of competing inputs to two projection neuron populations. We
found that rapidly stepped input to one population caused a tran-
sient competitive effect on the two populations’ outputs, which
disappeared after around 100 ms. In response to the same inputs,
we also found that sufficiently dense striatal connectivity could
result in steady-state competition, where the post-step equilib-
rium activity of each population reflects the inhibition of one by
the other.

To compare transient and steady-state selection we challenged
both forms of model to account for the paradoxical response
selection results of Beste et al. (2008). They found that mani-
fest Huntington’s disease patients were both faster and less error
prone than controls on a simple two-choice reaction-time task.
As Huntington’s disease primarily results in striatal damage, this
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suggests the hypothesis that changes in the striatum directly affect
response selection. We expand on the role of the striatum in sig-
nal selection, by describing a framework for signal selection that
may account for both the typical decline in performance for most
tasks under Huntington’s conditions Ho et al. (2003), as well as
a mechanism for increased performance under the same condi-
tions. We thus explored how Huntington’s disease-like changes
to our striatum models could affect both transient and steady-
state selection, and sought whether the effect on either form of
selection could explain the results of Beste et al. (2008), while also
accounting for the usual cognitive impairment in Huntington’s
disease (Lawrence et al., 1998; Ho et al., 2003).

2. MATERIALS AND METHODS
We study here an updated version of our prior, full-scale model
of striatum (Humphries et al., 2009b, 2010). Compared to those
models, the model here brings together the three-dimensional
anatomy model from Humphries et al. (2010) with an updated
version of the dopamine-modulated projection neuron model
from Humphries et al. (2009a).

2.1. SPIKING NEURON MODELS
The basic model neuron used in the large scale striatal model is
derived from the model neuron proposed in Izhikevich (2003),
which was extended to encompass the effects of dopamine modu-
lation on intrinsic ion channels and synaptic input in Humphries
et al. (2009b).

In the biophysical form of the Izhikevich model neuron, v
is the membrane potential and the “recovery variable” u is the
contribution of the neuron class’s dominant ion channel:

Cv̇ = k (v − vr) (v − vt)− u + I (1)

u̇ = a [b (v − vr)− u] (2)

with reset condition

if v > vpeak then v← c, u← u+ d

where in the equation for the membrane potential (Equation 1),
C is capacitance, vr and vt are the resting and threshold potentials,
I is a current source, and c is the reset potential. Parameter a is a
time constant governing the time scale of the recovery due to the
dominant ion channel. Parameters k and b are derived from the
I-V curve of the target neuron behavior, where b describes how
sensitive the recovery variable u is to fluctuations in the mem-
brane potential v. Parameter d describes the after spike reset of
recovery variable u, and can be tuned to modify the rate of spiking
output.

2.1.1. Projection neuron model
The projection neuron models’ parameter values and their source
are given in Table 1. Parameters C, d, vt , and the AMPA synaptic
conductance gampa (see below) were found by searching for the
best-fit to the f-I curve and spiking input–output functions of the
Moyer et al. (2007) 189-compartment projection neuron model
(Humphries et al., 2009a).

In Humphries et al. (2009a) we showed how this model
can capture key dynamical phenomena of the projection
neuron: the slow-rise to first spike following current injec-
tion; paired-pulse facilitation lasting hundreds of millisec-
onds; and bimodal membrane behavior emulating up- and
down-state activity under anaesthesia and in stimulated slice
preparations.

2.1.2. Fast-spiking interneuron model
For the FSI model, Equation (2) for the u term is given by
(Izhikevich, 2007b)

u̇fs =
{−aufs if vfs < vb,

a
[

b
(
vfs − vb

)3 − ufs

]
if vfs ≥ vb,

(3)

which enables the FSI model to exhibit Type 2 dynamics,
such as a non-linear step at the start of the current-frequency
curve between 0 and 15–20 spikes/s. Further discussion on the
FSI model used in the striatal microcircuit can be found in
Humphries et al. (2009b); the FSI model parameters are repro-
duced in Table 2.

Table 1 | Intrinsic parameters for the projection model.

Parameter Value Source

a 0.01 Mahon, 2000; Izhikevich, 2007b

b −20 Izhikevich, 2007b

c −55 mV Izhikevich, 2007b

k 1 Izhikevich, 2007b

vr −80 mV Izhikevich, 2007b

vpeak 40 mV Izhikevich, 2007b

C 15 pF Humphries et al., 2009a

vt −30 mV Humphries et al., 2009a

d 91 Humphries et al., 2009a

K 0.0289 Humphries et al., 2009a

L 0.331 Humphries et al., 2009a

α 0.032 Humphries et al., 2009a

Table 2 | Intrinsic parameters for the fast spiking interneuron model.

Parameter Value Source

a 0.2 Izhikevich, 2007a

b 0.025 Izhikevich, 2007a

d 0 Izhikevich, 2007a

k 1 Izhikevich, 2007a

vpeak 25 mV Izhikevich, 2007a

vb −55 mV Izhikevich, 2007a

C 80 pF Tateno et al., 2004

c −60 mV Tateno et al., 2004

vr −70 mV Tateno et al., 2004

vt −50 mV Tateno et al., 2004

η 0.1 Fitted to Bracci et al. (2002)

ε 0.625 Fitted to Gorelova et al. (2002)

Dimensions are given where applicable. See Humphries et al. (2009b) for details.
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2.1.3. Dopaminergic modulation of intrinsic ion channels
Tonic levels of dopamine in the striatum modulate the excitability
of the projection neurons and fast-spiking interneurons (Nicola
et al., 2000; Mallet et al., 2006). Our network model incorporates
modulation by tonic dopamine through the relative activation
levels of D1 and D2 receptors. These levels are modeled using the
method proposed in Humphries et al. (2009b), in which com-
plex membrane dynamics are subsumed by linear transforms with
only two parameters φ1, φ2 ∈ [0, 1], describing the proportion of
D1 and D2 receptor activation, respectively. Throughout we used
φ1 = φ2 = 0.3.

For activation of D1 receptors on projection neurons we used
the simple mappings:

vr ← vr (1+ Kφ1) (4)

and

d← d (1 − Lφ1) , (5)

which respectively model the D1-receptor mediated enhancement
of the inward-rectifying potassium current(KIR) (Equation 4)
and enhancement of the L-type Ca2+ current (Equation 5).

For activation of D2 receptors on projection neurons we used
the mapping:

k← k (1− αφ2) (6)

which models the small inhibitory effect on the slow A-type
potassium current, increasing the neuron’s rheobase current
(Moyer et al., 2007).

With these mappings, the model neuron is able to accurately
capture the effect of D1 or D2 receptor activation on both the f-
I curves and spiking input–output functions of the Moyer et al.
(2007) compartmental model of the projection neuron.

Dopamine modulated fast spiking inter-neurons in the striatal
network only express the D1-family of receptors (Centonze et al.,
2003). Activation of this receptor depolarizes the neuron’s resting
potential [see Humphries et al. (2009b) for further details]. Thus
we used the following mapping of the resting potential:

vr ← vr (1− ηφ1) (7)

2.2. SYNAPTIC MODELS
Synaptic input comprises the source of current I in Equation (1):

I = Iampa + Igaba + B(v)Inmda. (8)

where Iampa, Igaba , Inmda are current input from AMPA, GABA,
and NMDA receptors, respectively, and B(v) is a term that models
the voltage-dependent magnesium plug in the NMDA recep-
tors. Compared to the projection neuron, FSIs receive no NMDA
receptor input from cortex, have a moderately larger AMPA con-
ductance (Table 2), but do receive input via local gap junctions
(see below).

Each synaptic input type z (where z is one of ampa, nmda,
gaba) is modeled by

Iz = ḡzhz (Ez − v) , (9)

where ḡz is the maximum conductance and Ez is the rever-
sal potential. We use the standard single-exponential model of
post-synaptic currents

ḣz = −hz

τz
, and hz(t)← hz(t)+ Sz(t), (10)

where τz is the appropriate synaptic time constant, and Sz(t) is
the number of pre-synaptic spikes arriving at all the neuron’s
receptors of type z at time t.

Given that one interest here is in the possible roles of striatal
NMDA sensitivity in Huntington’s disease, we paid careful atten-
tion to two complexities of the NMDA receptor: its non-linear
voltage-gating, and its saturation. The term B(v) in Equation
(8), which models the voltage-dependent magnesium plug in the
NMDA receptors, is given by (Jahr and Stevens, 1990)

B(v) = 1

1+ [Mg2+]0
3.57 exp (−0.062v)

, (11)

where [Mg2+]0 is the equilibrium concentration of magnesium
ions.

As glutamate can remain locked into the NMDA receptor for
100 ms or more (Lester et al., 1990), so the pool of available recep-
tors becomes rapidly saturated at high afferent firing rates. To
capture this we introduce a mean-field model of synaptic satu-
ration where we interpret the term hz in Equation (10) as the
number of active receptor groups over the whole neuron. Each
step in hnmda, following a number of spikes Snmda(t), activates
that number of receptor groups, which decays with a time con-
stant τnmda. To introduce saturation, we bound the size of the step
by the proportion of available groups. Together, these concepts
give us the model:

ḣnmda = −hnmda

τnmda
, and hnmda(t)← hnmda(t)

+
[

1− hnmda(t)

Nnmda

]
Snmda(t). (12)

As well as introducing this saturation of the NMDA synapses,
we also removed the 1/τs scaling of post-synaptic current ampli-
tude used in Humphries et al. (2009a). This allowed the model
synaptic conductances to be the same order of magnitude as their
experimental counterparts. Consequently, we re-tuned gampa by
fitting the input–output functions of the Moyer et al. (2007) 189-
compartment projection neuron model, following the protocol
in Humphries et al. (2009a). We obtained equally good fits to
those found previously with a value of gampa = 0.4 (results not
shown).

2.2.1. Dopaminergic modulation of synaptic input
Following the projection neuron models in Humphries et al.
(2009a), we add D1 receptor modulation of NMDA receptor
evoked EPSPs by

ID1
nmda = Inmda (1+ β1φ1) , (13)
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and we add D2 receptor modulation of AMPA receptor evoked
EPSPs by

ID2
ampa = Iampa (1− β2φ2) , (14)

where β1 and β2 are scaling coefficients determining the relation-
ship between dopamine receptor occupancy and the effect magni-
tude (Table 3). Due to the addition of saturating NMDA synapses,
we also re-tuned these parameter values by fitting the input–
output functions of the Moyer et al. (2007) 189-compartment
projection neuron model under D1 and D2 receptor modula-
tion of synaptic inputs, following the protocol in Humphries et al.
(2009a).

Finally, following the model in Humphries et al. (2009b),
we add D2 receptor modulation of GABAergic input to
FSIs by

Ifsi
gaba = Igaba (1− ε2φ2) . (15)

2.2.2. Gap junctions
A gap junction between FSIs i and j is modeled as a compartment
with voltage v∗ij, which has dynamics

τv̇∗ij =
(

vi − v∗ij
)
+

(
vj − v∗ij

)
, (16)

where τ is a time constant for voltage decay, and vi and vj are the
membrane potentials of the FSI pair. The current introduced by

Table 3 | Synaptic and gap junction parameters for the striatal

network.

Parameter Value Source and notes

Eampa,Enmda 0 mV Moyer et al., 2007

Egaba −60 mV Moyer et al., 2007

τampa 6 ms Moyer et al., 2007

τnmda 160 ms Moyer et al., 2007

τgaba 4 ms Moyer et al., 2007

τ FSI gap 5 Fitted to Galarreta and Hestrin (1999)

[Mg2+]0 1 mM Jahr and Stevens, 1990

gampa Ctx-SPN 0.4 nS Tuning (see main text)

gampa Ctx-FSI 1 nS Fits linear rise in EPSC data from Gittis
et al. (2010)

gnmda Ctx-SPN 0.2 nS Fixed by maintaining the 2:1 AMPA:NMDA
ratio from Moyer et al. (2007)

ggaba SPN-SPN 0.75 nS Koos et al., 2004

ggaba FSI-SPN 3.75 nS Mean 5-fold increase compared to
SPN-SPN (Koos et al., 2004); 3× increase
of PSP (Planert et al., 2010)

ggaba FSI-FSI 1.1 nS Gittis et al., 2010

g FSI gap 5 nS Fitted to Galarreta and Hestrin (1999)

β1 0.5 Tuning (see main text)

β2 0.3 Tuning (see main text)

that cable to the FSI pair is then

I∗gap(i) = g
(

v∗ij − vi

)
I∗gap(j) = g

(
v∗ij − vj

)
, (17)

where g is the effective conductance of the gap junction. The
total gap junction input Igap to a FSI is then the sum over all
contributions I∗gap.

2.3. STRIATUM NETWORK MODEL
Our model captures the connections within the GABAergic
microcircuit in striatum, illustrated in Figure 1. We simulated a
large-scale model representing a three-dimensional cuboid of the
striatum in the adult rat at one-to-one scale, containing every
projection neuron and fast-spiking interneuron present in the
biological tissue. We used a density of 89,000 projection neu-
rons per mm3 (Oorschot, 1996) and a FSI density of 1% [see
Humphries et al. (2010) for discussion]. We assumed projection
neurons were evenly split between D1 and D2 receptor domi-
nant types, and without any spatial bias. Hence we randomly
assigned half of the projection neurons to be D1-type and half
to be D2-type.

In the Results we predominantly report the results of simu-
lations using a 300 μm on the side cube, giving 2292 projection
neurons and 23 FSIs. Other sizes are noted explicitly where used.

To connect the neurons we used two different models. In
the physical model we used distance-dependent functions for

FIGURE 1 | GABAergic striatal microcircuit. Input to the striatum comes
from glutamatergic (GLU: •) fibers originating in the cortex, thalamus,
hippocampal formation and amygdala, and dopaminergic (DA: �) fibers
from brainstem dopaminergic neurons. The projection neurons (SPNs) are
interconnected via local collaterals of their axons projecting to other nuclei
of the basal ganglia. The fast-spiking interneurons (FSIs) can form
dendro-dendritic gap junctions between them and are also connected by
standard axo-dendritic synapses. All these intra-striatal axo-dendritic
connections (�) are GABAergic and hence inhibitory.
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probability of connection between each element of the microcir-
cuit. These functions were derived from overlap of dendritic and
axonal arbors, and are given in Humphries et al. (2010) for each
connection type in the microcircuit.

In the random model we ignored distance, and simply made
connections to each neuron at random until the correct number
of incoming connections of each type was made. The target num-
ber of connections were derived from the mean values obtained
from the central neurons of the three-dimensional connectivity
model in Humphries et al. (2010), and taken from column 1 of
Table 5 in that paper: SPNs→ 1 SPN: 728; FSIs→ 1 SPN: 30.6;
FSIs→ 1 FSI: 12.8; FSI gap junctions per FSI: 0.65.

2.4. SELECTION COMPETITIONS
Cortical input to the model was designed to emulate the response
selection component in a general two-choice task, where a (possi-
bly noisy) stimulus taking one of two values is observed over time
and a choice made between the two corresponding responses. In
such a task, we propose that the two responses are made salient by
the onset of each trial and then, after a perceptual decision is made
about the stimulus value, the corresponding response increases in
salience. This generic setup was inspired by the experimental pro-
cedures of Beste et al. (2008), in which participants were asked to
distinguish between short (200 ms) and long (400 ms) auditory
tones, using a distraction paradigm. Inputs followed a ramping
trajectory to simulate evidence accumulation and increasing deci-
sion confidence (Asaad et al., 2000). We previously showed that
transient selection can be seen in response to stepped cortical
inputs (Tomkins et al., 2012).

The striatum model was divided up into three populations,
two physically close SPN populations representing the two com-
peting responses, which we refer to throughout as channels,
and the remaining background neurons given a constant input.
Neurons were randomly divided into the two channels, with 40%
of the neurons in channel 1 and 2, respectively, and the remaining
20% of cells were labeled “background” neurons.

The input protocol is illustrated in Figure 2A, and Figure 2B
shows an example response of the entire network to this pro-
tocol. Each response population received a priming input at a
background rate for 1500 ms, causing them to reach a steady-
state of firing activity. At 1500 ms, channel 1, (black) received a
ramping input for a time of 50 ms, raising the salience toward a
new steady-state, when it became the most salient cortical input
to the striatum. During the 50 ms ramping time, channel 2 also
received a ramping input, matching that of channel 1 for 25 ms.
Following this, the signal to channel 2 decreased back to the back-
ground rate, describing the evidence accumulation trajectory of
an out-competed action.

Rates were specified for each cortical spike train input to each
projection neuron and FSI model. Both neuron models received
the equivalent of 250 input spike trains [see Humphries et al.
(2009b) for details].

We measured how the striatal microcircuit performed chan-
nel wise signal selection on the cortical inputs, using this
simple protocol, inspired by the auditory decision task per-
formed in Beste et al. (2008). However, due to the abstract
nature of the input protocol we use, applied to a generic

A

C

B

D

FIGURE 2 | Measures of selectivity in striatal output. (A) Ramping
cortical input into the striatum model. Two channels are driven by input spike
trains, demonstrating signal selection between most-salient (channel 1) and
least-salient (channel 2) striatal signals. (B) Raster plot of the striatum
microcircuit output for a single selection experiment. Increased firing can be
seen in channel 1 at the onset of the ramped input in panel (A). (C) A sample
striatal output of the physical network, showing a zero-phase filter of the
mean spiking output from the two competing channels in response to the
ramped input in panel (A). Annotations demonstrate the measures used in
the transient selectivity measure. S1, S2: stable firing rate; �S(1,2):
maximum of the difference between the two channels firing rates over the
transient period. (D) A sample striatal output of the random network, in
response to the same input. Annotations demonstrate the measures used
in the steady-state selectivity measure. SP : pre-step stable firing rate.

simulation of the striatal microcircuit, the selection measured
in these results could be applied to any channel-wise decision
task throughout the striatum, and is not limited to auditory
processing.

2.5. METRICS FOR SELECTION
We define “selectivity” in the striatum as the ability to robustly
distinguish competing signals. The striatum demonstrates two
complementary modes of selectivity, which we measure with dif-
ferent metrics. These selection metrics are applied to the output
of each channel, which is characterized by a zero-phase filtered
mean firing rate.

2.5.1. Transient selectivity
Given a competitive split in cortical input, we see a tempo-
rary boosting of the most-salient signal, accompanied with a
temporary suppression of the least-salient competitive signal
(Figure 2C). This transient phenomena presents a boost of the
difference in salience between the two competing signals. We
identify two key regimes: (1) �S(1,2), the maximum difference
between the two signals during the transient peaks; (2) S1, S2,
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the mean stable activity level of each channel after the transient
period dissipates. The total transient selectivity, between 0 and 1,
is defined as

TS = 1− S1 − S2

�S(1,2)
, 0 ≤ TS ≤ 1 (18)

where �S(1,2) is the maximum difference between the firing
rates of Channel 1 and Channel 2 over the transient win-
dow (t = 1500 : 2000 ms). This enables the measure to allow
for cases in which the largest perturbations from the mean
are not temporally coincident, either due to reliable intrinsic
dynamic properties of the network, or statistical fluctuations
therein.

2.5.2. Steady-state selectivity
The striatum network can exhibit signal suppression on its least-
salient channel due to sustained inhibition by the most salient
channel. Steady-state selectivity is measured on the least-salient
channel, as the percentage reduction in the mean channel firing
rate after the rise in salience of the most-salient signal. An exam-
ple of steady-state selectivity in the random network can be seen
in Figure 2D. We define (SP) as the stable firing rate of the primed

channel 2 before the increase in competition, and from this we
calculate the steady-state selectivity (SS) as:

SS = 100×
(

1− S2

SP

)
. (19)

2.6. BASAL GANGLIA-THALAMOCORTICAL LOOP MODEL OF
TRANSIENT SELECTION

To study the contribution of the transient striatal dynamics to
the selection mechanism of the whole basal ganglia, we used the
population-level implementation of our basal-ganglia thalamo-
cortical loop model (Humphries and Gurney, 2002). Figure 3
schematically illustrates the loop model, and the connectivity of
the response-representing populations.

The average activity a of all neurons comprising a channel’s
population changes according to

τȧ = −a(t)+ I(t) (20)

where τ is a time constant and I is summed, weighted input. We
used τ = 10 ms throughout. The normalized firing rate y of the

FIGURE 3 | Basal ganglia thalamo-cortical loop model. The main circuit
(right) embeds the basal ganglia into a thalamo-cortical feedback loop. Each
nucleus contains multiple response-representing populations. Within the basal
ganglia, the circuit can decomposed into an off-center, on-surround network
(left): three populations are shown, with example activity levels in the bar
charts to illustrate the relative contributions of the nuclei. Note that, for clarity,
full connectivity is only shown for the second population. Briefly, the selection
mechanism works as follows. Constant inhibitory output from substantia nigra
pars reticulata (SNr) provides an “off” signal to its widespread targets in the
thalamus and brainstem. Cortical inputs representing competing saliences are

organized in separate populations, which project to corresponding populations
in striatum and subthalamic nucleus (STN). The balance of focussed inhibition
from striatum and diffuse excitation from STN results in the most salient input
suppressing the inhibitory output from the corresponding SNr population,
signaling “on” to that SNr population’s targets. Tonic dopamine levels in the
striatum set the ease with which the channels are selected, and subsequently
switched between following further salient inputs. For quantitative
demonstrations of this model see Gurney et al. (2001b) and Humphries and
Gurney (2002). GP: globus pallidus; SNr: substantia nigra pars reticulata; STN:
subthalamic nucleus; TRN: thalamic reticular nucleus.
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unit is given by a piecewise linear output function

y(t) = F (a(t), θ) =

⎧⎪⎨
⎪⎩

0 a(t) ≤ θ

a(t)− θ θ < a(t) < 1− θ

1 a(t) ≥ 1− θ

(21)

with threshold θ.
The following describes net input Ii and output yi for the

ith channel of each structure, with n channels in total. The full
model was thus given by (Humphries and Gurney, 2002):

Cortex: Ictx
i = ythal

i + ci,

yctx
i = F

(
actx

i , 0
)
,

Thalamus: Ithal
i = yctx

i − ySNr
i − 0.1yTRN

i

− 0.7
n∑

j �=i

yTRN
j ,

yctx
i = F

(
athal

i , 0
)

,

TRN: ITRN
i = ythal

i + yctx
i ,

yTRN
i = F

(
aTRN

i , 0
)

,

Striatum D1: Id1
i = yctx

i (1+ λ1) ,

yd1
i = F(ad1

i , 0.2),

Striatum D2: Id2
i = yctx

i (1− λ2) ,

yd2
i = F

(
ad2

i , 0.2
)

,

Subthalamic nucleus: Istn
i = yctx

i − y
gp
i ,

ystn
i = F

(
astn

i ,−0.25
)
,

Globus pallidus: I
gp
i = 0.9

n∑
j

ystn
j − yd2

i

y
gp
i = F

(
a

gp
i ,−0.2

)
,

SNr: Isnr
i = 0.9

n∑
j

ystn
j − yd1

i − 0.3y
gp
i ,

ysnr
i = F

(
asnr

i ,−0.2
)
,

Net input was computed from the outputs of the other structures,
except driving input ci to channel i of cortex. The striatum was
divided into two populations, one of projection neurons with the
D1-type dopamine receptor, and one of projection neurons with
the D2-type dopamine receptor. Many converging lines of evi-
dence from electrophysiological and anatomical studies support
this functional split into D1- and D2-dominant projection neu-
rons and, further, that the D1-dominant neurons project to SNr,
and the D2- dominant neurons project to GP (Gerfen et al., 1990;
Surmeier et al., 2007; Matamales et al., 2009).

In line with the projection neuron model described above,
the model included opposite effects of activating D1 and D2
receptors on striatal projection neuron activity: D1 activation
facilitated cortical efficacy at the input, while D2 activation
attenuated this efficacy (Moyer et al., 2007; Humphries et al.,
2009a). The mechanism for this mirrored that of the spik-
ing projection neuron model in using simple linear factors.
Thus, if the relative activation of D1 and D2 receptors by tonic
dopamine are λ1,λ2 ∈ [0, 1], then the increase in efficacy due
to D1 receptor activation was given by (1+ λ1); the decrease
in efficacy due to D2 receptor activation was given by (1− λ2).
Throughout we set λ1 = λ2 = 0.2, simulating tonic levels of
dopamine.

The negative thresholds ensured that STN, GP, and SNr have
spontaneous tonic output (Humphries et al., 2006). We simplified
the model here compared to Humphries and Gurney (2002) by
delivering input only to cortex, to represent the salience-driven
response selection, rather than to cortex, striatum and STN; both
models gave qualitatively the same results. We used exponential
Euler to numerically solve this system, with a time-step of 1 ms.

We used n = 8 channels in total, with two of those channels
(4 and 5) receiving non-zero inputs, mimicking the input pro-
tocol used for the striatal network model, which is designed to
abstractly simulate the two choice reaction-time task performed
in Beste et al. (2008). Baseline inputs c4 = c5 = 0.3 were deliv-
ered at simulation onset. A step in input c5 occurred between
100 and 200 time-steps: a small step of c5 = 0.5 or a large step of
c5 = 0.7. The ability for the model to select was assessed during
this step period. As in prior models (Berns and Sejnowski, 1998;
Gurney et al., 2001b; Humphries and Gurney, 2002; Humphries
et al., 2006), selection was assessed by observing the change in
activity on each SNr channel, as this output provides the tonic
inhibition of thalamic and brainstem structures and is thought
to gate the execution of actions (Redgrave et al., 1999). Here, suc-
cessful selection of a channel was defined as the SNr output falling
to zero.

2.6.1. Modeling transient selection in the rate-coded model
We mimicked the ability of the striatum microcircuit to produce
transient phenomena using an input injection into the striatum of
the rate coded model. At t = 100 we injected external inputs into
each striatal channel in the model, forcing a transient increase or
decrease as appropriate in the corresponding channels. Transient
sizes were extracted from the striatal microcircuit traces, and
reproduced in the rate coded model. Individual transients were
calculated as the percentage change in the firing rate of the cir-
cuit during the transient period compared to the stable firing rate
achieved post-transient. This allowed us to gauge the role of the
complex striatal dynamics, generated by our microcircuit model
and responsible for the transient selection mechanism, on the
selection properties of the entire basal ganglia-cortex loop.

3. RESULTS
In what follows we discuss the simulation results of our model and
interpret them as potential mechanisms explaining the findings of
Beste et al. (2008). We discuss the two types of potential selection
mechanisms that we have termed transient and steady-state.
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3.1. TRANSIENT SELECTION BY THE STRIATUM
3.1.1. Transient selection emerges from the striatal microcircuit
We sought insight into the potential for competition within the
striatum by examining the dynamics of our three-dimensional
network model. We first explored the effect on striatal output of
competing inputs to two projection neuron populations. These
inputs were intended to emulate the changes in cortical signals
representing two alternative responses in a generic two-choice
decision-making task.

Figure 4A shows the mean firing rate of each channel from
the same example simulation. After the divergence in inputs at
t = 1.5 s, a transient increase of the firing rate is elicited in chan-
nel 1, the most salient population, and a transient suppression of
the firing rate is elicited in channel 2. This transient suppression
occurs despite no change in the input to channel 2. Moreover, this
population rapidly returns (∼100 ms) to its pre-step firing rate.
Consequently, we termed this phenomenon transient selection.

We found that the elicited transient selection was robust over
a wide range of choices for the baseline input rate and the signal
difference between the two channel inputs after the signal diver-
gence. Figure 4B shows that transient selection could be robustly
elicited for any step size over 0.5 Hz when the baseline input rate
exceeded∼4 Hz.

3.1.2. Transient selection is due to both circuit and intrinsic
membrane properties

We further investigated the mechanisms underlying the posi-
tive and negative transient changes in population activity. We
found that the positive transient was produced by single neuron
dynamics, whereas the negative transient was due to network con-
nectivity. This can be seen in Figures 5A,B, where lesioning either
the projection neuron connections or all the network connections
abolished the negative transient but did not prevent the positive
transient.

To confirm the positive transient was a single neuron phe-
nomenon, we simulated an individual projection neuron model
receiving many trials of the same stepped input protocol,
and averaged its responses. The resulting peri-stimulus time

A B

FIGURE 4 | Transient selection of competing input signals by the

striatum. (A) Mean firing rate of the two output channel populations in the
experiment in response to the ramped input protocol (inset); individual spike
trains have been convolved with a zero-phase digital filter to create smooth
firing rates without lag. (B) Mean transient selection landscape color coded
such that brighter colors represent higher selectivity. Landscape shows the
mean transient selectivity averaged over 30 trials as a function of base
input signal and step in signal difference during competition.

histogram (Figure 5C) shows that the neuron had a clear tran-
sient increase in firing probability immediately after the step of
input. Running the same test on a model of a cortical regular-
spiking pyramidal neuron, with input scaled to produce approx-
imately the same steady-state rates, showed no such transient
increase in firing probability after a step in input (Figure 5D).
Thus the transient increase in population activity observed in a
single trial of the network is a statistical phenomenon of syn-
chronous spiking of many projection neurons, and seemingly
dependent upon properties particular to the striatal projection
neuron.

We sought to elucidate these properties by injecting sequen-
tial current steps directly into the projection neuron model and
observing the behavior of the membrane voltage v and slow cur-
rent u. Figure 5E shows that a step in current applied to an already
depolarized membrane triggers a rapid double spike, followed
by slower regular spiking. Figure 5F plots the corresponding tra-
jectory of the slow current u: the initial depolarizing injection
makes the slow current u increasingly negative, thus slowly charg-
ing the membrane potential v [Figure 5E; see Equation (1)].
The subsequent step of injected current increases the membrane
potential rapidly, and the contribution of the large, negative u
ensures a rapid pair of spikes time-locked to the current step.
However, once spiking has been initiated, the equilibrium value
of u is less negative than immediately before the current step.
Consequently, the smaller contribution of the slow current u
ensures a comparatively slow spike rate in the steady-state.

To show that the slow current u is critical, we examined the
dependence of this spiking “adaptation” on the parameters of
the slow current. We repeated the sequential-step current injec-
tion protocol for a range of step-sizes, and measured the adapting
response as fratio = Ffirst/Flast, the ratio of the first and last inter-
spike intervals after the current step. A value of fratio > 1 thus
indicates an adaptation. We found that the adaptation response
appeared with a second current step above ∼50 pA (blue curves
in Figures 5G,H). Figure 5G shows that the adaptation response
disappeared if we reduced the effective time constant of the
slow current (increased a), allowing the slow current to recover
faster after spiking. Figure 5H shows that the adaptation response
also disappeared if we reduced the gain b of the slow current
The transient phenomena thus depends critically on the slow
current u.

As lesioning only the connections between the projection
neuron could abolish the negative transient (Figure 5A), this sug-
gested it arose from a network effect where the neurons contribut-
ing to the positive transient inhibited their targets. To test this
observation, we simulated the model with lesioned projection-
neuron collaterals for a range of baseline input firing rates and
step sizes (protocol in Figure 2A) and computed the size of the
negative transient that resulted. Figure 5I shows that the nega-
tive transient was indeed abolished for a wide-range of values for
the input firing rates. However, a sufficiently large baseline firing
rate and step in firing rate could still result in a negative transient
(upper-right corner of Figure 5I). Thus, it seems that sufficient
cortical drive of the FSI population (which inhibits the projection
neurons) also contributes to the negative transient in projection
neuron population activity.
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FIGURE 5 | Sources of the positive and negative transients. (A) Striatal
output with lesioned projection neuron connections. (B) Striatal output
with all intra-striatal connections lesioned. (C) Peri-stimulus time histogram
of a single projection neuron output, averaged over 50 steps of spiking
input from r = 4 Hz to r = 7.2 Hz (onset t = 3 s), exhibiting transient
behavior. (D) Peri-stimulus time histogram of a single regular-spiking
cortical neuron model, averaged over 50 steps of spiking input from
r = 0.75 Hz to r = 3 Hz, with no transient behavior. Model parameters
given in Izhikevich (2007a). (E) The membrane potential (v ) of the

projection neuron model in response to a depolarizing current injection
(200 pA) followed by a further step in current at 1 s. (F) The corresponding
changes in the slow current (u). (G) fratio in the projection neuron model as
a function of current step size and slow current decay constant 1/a ms.
(H) fratio in the projection neuron model as a function of current step size
and slow current gain b. (I) The effect of projection neuron connection
lesions on the negative transient. Landscape of negative transients
measured as ratio of the maximum negative transient peak over the
steady-state, plotted as a function of base input rate vs signal difference.

3.1.3. Transient selection is sufficient to alter decision making
performance

Though the previous result demonstrates the existence and origin
of transient selection within the striatum, it is not sufficient to
show a causative effect of transient selection on decision-making.
To address this issue, we asked whether such transient signals in
the striatum could enhance the selection of input signals by the
basal ganglia circuit. Here we consider selection to mean that the
output of a substantia nigra pars reticulata (SNr) population falls
from its tonic rate to zero. In particular, we hypothesized that the
transient signals in striatum would be amplified in the complete
basal-ganglia-thalamo-cortical loop, and thus directly influence
the output of the basal ganglia.

To test this, we used our rate-coded model of population activ-
ity in the basal ganglia-thalamocortical loop (Humphries and

Gurney, 2002). The model received inputs to two populations
of cortico-striatal neurons (Figure 6A), mimicking the protocol
used in our full-scale striatum model. An example of the sub-
sequent SNr outputs are illustrated in Figure 6B. At the time
of the step in input to one population, we emulated the subse-
quent transient signals observed in our full-scale model by brief
injections of further increased input to that striatal population
and decreased input to the other. These correspondingly pro-
duced small, brief positive and negative transients in the output
of those striatal populations, for both D1 and D2-type projec-
tion neurons (Figures 6C,D). Note that the subthalamic nucleus
populations also received the cortical input signals, but not the
transient signals.

We found that a small positive transient elicited in the stri-
atal population was sufficient to change the speed and persistence
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FIGURE 6 | Transient selection in striatum is amplified by basal

ganglia-thalamo-cortical loop. Panels (A–D) show an example simulation
of the loop model that included emulation of the transient selection signals
originating in the striatum (transient size: 50%; thalamo-cortical loop gain
g = 2). (A) Cortical input to the rate-coded model, mimicking the selection
protocol used in the striatal microcircuit selection experiments. (B)

Corresponding SNr output response for three populations: no input (red);
baseline only (blue); and baseline-plus-step (green). The input step thus
caused clear selection by forcing the SNr output to zero. (C) Evoked
response in the rate coded striatal D1 neurons, showing the effect of the
injected transient at t = 100. (D) Evoked response in the rate coded striatal
D2 neurons. (E) Proportion of time an action was selected, as a function of
transient size. Transient size is expressed as a proportion of the
steady-state firing rate achieved without the transient. Step values indicate
the cortical input before and after the step in input. Parameter g:
closed-loop gain of the thalamocortical loop. (F) Proportion of time an action
was selected, given a small input step. (G) Time delay before selection
achieved, as a function of transient size, for large input step. Delay is given
between the step in cortical input and the corresponding SNr population
reaching zero output. (H) Time delay before selection achieved, as a
function of transient size, for small input step.

of selection (Figures 6E–H). Figures 6E,F show that signal selec-
tion was maintained for longer with increasing transient sizes.
Correspondingly, Figures 6G,H show that increasing the size of
transients injected into the model striatum decreased the time
to selection. These changes were found irrespective of the size of

input step, or of the closed-loop gain g of the positive thalamo-
cortical feedback loop (Chambers et al., 2011) (When g = 1, this
loop is a perfect integrator, while with g = 2, there is an ampli-
fying feedback loop.) Thus, transient signals in the striatum are
sufficient to modulate selection by the basal ganglia.

3.2. STEADY-STATE SELECTION BY THE STRIATUM
Prior debates about selection in the striatum have focussed on
stable, winner-take-all modes of computation (Wickens, 1997;
Plenz, 2003). In order to compare transient selection with this
more common form of selection computations, we sought to
understand whether our striatal model could show stable, winner-
takes-all-like dynamics; here we refer to these as “steady-state”
selection, in contrast to “transient” selection, as the competition
between inputs causes persistent changes to output firing rates.

3.2.1. Steady-state selection in a randomly-connected model
Neurally-inspired models of winner-take-all dynamics are often
based on fully-connected or dense randomly-connected networks
(Hartline and Ratliff, 1958; Alexander and Wickens, 1993; Fukai
and Tanaka, 1997; Mao and Massaquoi, 2007; Yim et al., 2011).
We thus simulated our striatal model with random connectivity,
in which each neuron type received, on average, the same num-
ber of connections, and the connections were made by choosing
source neurons at random from across the three-dimensional
cuboid. The target number of connections was based on the
expected number of connections of a projection neuron and
FSI in the center of a 1 mm3 network, according to the com-
putational anatomical estimates of Humphries et al. (2010) (see
Materials and Methods). In this way, the randomly-connected
model was more densely connected relative to the distance-
dependent model. Thus, while closer to the topology usually
studied for steady-state selection, the randomly-connected model
still retained connection statistics consistent with the estimates
obtained in Humphries et al. (2010).

We tested the randomly-connected model with the same
stepped input protocol as the physically-connected model
(Figure 2A). Figure 7A shows an example of the mean popu-
lation firing rates in the randomly-connected striatum model,
with evident steady-state selection: the population receiving the
stepped cortical input increases its firing rate, and the other pop-
ulation correspondingly decreases its firing rate despite receiving
the same input throughout. We found that the magnitude of
steady-state selection was dependent on the size of the baseline
firing rate and input step. Figure 7B shows that the most effec-
tive steady-state selection occurred for low baseline rates and
large input steps, approaching a winner-takes-all like response of
nearly complete suppression (∼80%) of the losing population’s
activity.

Figure 7C shows that lesioning the connections between pro-
jection neurons prevents steady-state selection. Figure 7D shows
that lesioning the FSI input to the projection neurons reduces but
does not eliminate the steady-state selection, while also reinstat-
ing a transient period. This suggests that mutual inter-channel
inhibition by the projection neurons populations is responsible
for the suppression effect seen in both the random and the larger
physical networks.

Frontiers in Computational Neuroscience www.frontiersin.org January 2014 | Volume 7 | Article 192 | 10

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Tomkins et al. Selection in the striatum
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FIGURE 7 | Steady-state selection in the randomly-connected striatum

model. (A) Smoothed mean firing rates of two projection neuron
populations, in response to the ramped input protocol (inset). (B) The
magnitude of steady-state selection as a function of baseline input and
step size. The magnitude gives the fall in firing rate of the losing
population as a proportion of its pre-step firing rate. Each magnitude is an

average over 15 simulations. (C) Smoothed mean firing rates of two
projection neuron populations, with SPN-SPN connections lesioned, in
response to the same input as above. Steady-state selectivity is removed.
(D) Smoothed mean firing rates of two projection neuron populations, with
FSI-SPN connections lesioned, in response to the same input as before.
Steady-state selection remains.

3.2.2. Distance-dependent connectivity can support steady-state
selection

To assess if such steady-state selection required homogeneous,
random connectivity of the kind described above, we checked
whether such selection could be found in the physical model of
connectivity. Again using the same stepped input protocol, we
simulated physical networks up to 1 mm3, in order to increase the
density of connectivity within the center of the network, which
scales with the number of neurons in the model (Figure 8B).

Figure 8A shows that steady-state selection could be observed
for distance-dependent connectivity, given a sufficiently large
model (here 1 mm3). We found that the magnitude of steady-
state selection increased monotonically with increasing network
size (Figure 8D), approaching the steady-state selectivity seen in
the random model. Figures 8B,C shows that in the physical model
as the number of neurons increases as a function of network
size so does the average number of connections each projection
neuron receives. By contrast, the random model always has the
same density of connections. The physical model’s correspon-
dence between the number of connections to a projection neuron
and the effectiveness of steady-state selection suggests that such
selection is dependent on the density of connections between
projection neurons.

The model further suggests that it is only the increased den-
sity of connections that is key, and not an increase in recur-
rent connections between projection neurons. Figure 8E shows
the absolute number of recurrent connections in the physical
and random network configurations. Note that the number of
bi-directional connections in the random network drops of as a

function of network size due to the fact that each neuron receives
a fixed number of connections regardless of the network size. By
contrast we see a small rise in the number of bi-directional con-
nections in the physical model. However, Figure 8F shows that
in both random and physical networks the proportion of con-
nections that are bi-directional falls with increasing network size.
Thus, the increased effectiveness of steady-state selection is likely
due to increased absolute connection density and not increased
recurrent connections.

3.3. COMPARING SELECTION MECHANISMS: PARADOXICAL
SELECTION ENHANCEMENT IN HUNTINGTON’S DISEASE

Having established that two contrasting forms of selection can
be supported by the striatal circuit, depending on the type and
density of connectivity, we then sought insight into how the
two forms of selection could be distinguished. In particular, we
hypothesized that they would make different predictions about
how changes to the striatum would alter response selection. In
order to test this hypothesis, we sought an experimental data-set
that could provide a basis for testing our predictions.

Beste et al. (2008) have recently shown a rare example of para-
doxical cognitive enhancement in a neurological disorder. They
reported that manifest Huntington’s disease patients had faster
and less error prone response selection on a simple two-choice
auditory task than controls or pre-manifest Huntington’s dis-
ease patients. As Huntington’s disease is primarily characterized
by widespread loss of striatal projection neurons [FSI popula-
tions have been shown to be more resistant to HD-modifications
(Ghiglieri et al., 2012)], and increased sensitivity of NMDA
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receptors on striatal projection neurons (Fan and Raymond,
2007), these results suggest the hypothesis that one or both of
these changes to the striatum lead to enhanced selection, and as
such we look into excitotoxicity as a possible candidate for the
paradoxical improvements investigated.

We thus simulated both transient and steady-state selec-
tion under Huntington’s-like changes to the striatal model,

A B

C D

E F

FIGURE 8 | Steady-state selection in the physical model of the striatal

microcircuit. (A) Mean firing rate of two projection neuron populations in a
1 mm3 model, with 89,749 total simulated neurons. (B) Number of
simulated neurons as a function of network size. (C) Average number of
connections per neuron as a function of network size. The physical network
(black) approaches the density of connections seen in the random network
(gray) with increased network size. (D) Magnitude of steady-state selection
as a function of network size. All simulations used the inputs [5,6] Hz.
Magnitude is the percentage suppression in the average firing rate of the
losing channel after the competitive signal onset (t = 2.5 s). Shown in gray
is the steady-state selectivity seen in the random model for a network of
size 300 μm3. Bars set at ± 2 s.d, computed over 15 repeats. (E) Number
of bi-directional connections as a function of network size. The total
number of pairs of reciprocal connections in the physical model are shown
in black, and the random model in gray. Bi-directional pairs decrease in the
physical model with increasing network sizes, due to the fixed number of
connections each neuron receives. (F) The ratio Rbiof bi-directional
connections to the total number of connections a neuron makes for the
physical model (black) and the random model (gray).

and searched for evidence of enhanced selection. We emulated
increased NMDA receptor sensitivity by increasing the conduc-
tance of the NMDA synapse (we report this as the ratio of the
NMDA:AMPA conductances), and separately emulated the cell
loss by randomly removing a specified percentage of projection
neurons. We did this to explore a wide range of plausible simu-
lated Huntington’s disease conditions. Across both changes, we
mapped the change in transient and steady-state selection in
response to the same input protocol (baseline 5 Hz, step 1 Hz).

3.3.1. Steady-state selection consistently degrades in simulated
Huntington’s disease

To assess the impact of Huntington’s-like changes on steady-state
selection, we used the randomly-connected model to ensure that
the suppression of the losing population was sufficient to be
detectably modulated by the Huntington’s-like changes. Figure 9
shows that steady-state selection was uniformly diminished by all
Huntington’s-like changes, whether in isolation or combination.

3.3.2. Transient selection enhancement in simulated Huntington’s
disease

We assessed the impact of Huntington’s-like changes on transient
selection using the same physical model network as that used
for Figure 4. Figure 10 shows that transient selection could be
diminished by the loss of projection neurons alone, yet could be
enhanced by the simultaneous increase in NMDA conductance.
Thus the model predicts a region of Huntington’s-like condi-
tions where the deleterious effect of cell loss can be more than
compensated by the increased sensitivity of NMDA receptors.

Figure 10A shows an example improvement in transient selec-
tivity under high cell atrophy and a high excitability, whereas
Figure 10B shows the removal of the transient selectivity under
high cell atrophy but only a small increase in excitability. These
examples show that the transient selectivity range of ∼0.10 over

A

B

C

FIGURE 9 | Steady-state selection under simulated Huntington’s

disease. (A) An example of reduced signal suppression in the striatum with
high cell atrophy (65% cell loss, NMDA:AMPA ratio 0.5). (B) An example of
removed signal suppression in the striatum with high degradation (75% cell
loss, NMDA:AMPA ratio 1). (C) Magnitude of signal suppression over all
simulated Huntington’s conditions. Magnitudes are means over 15
simulations. The control, healthy-state model is in the bottom left-hand
corner (NMDA:AMPA = 0.5; 0% atrophy).
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FIGURE 10 | Transient selection can be enhanced in simulated

Huntington’s disease. (A) An example of enhanced transient selection in a
Huntington’s-like condition (81% cell atrophy, 0.95 NMDA:AMPA ratio) (B)

An example of the loss of transient selection in a Huntington’s-like condition
(81% cell atrophy, 0.55 NMDA:AMPA ratio). (C) Selection landscape for
NMDA:AMPA conductance ratio against cell atrophy. Color coded such that
brighter colors represent better transient selectivity in the striatal model.
Magnitudes are means over 30 simulations. The control, healthy-state
model is in the bottom left-hand corner (NMDA:AMPA = 0.5; 0% atrophy).

the “excitotoxicity landscape” in Figure 10C, corresponds to dra-
matic changes in the striatal output. Further, Figure 6 shows that
even small modifications in the transient size in the striatum will
modulate the signal selection speed in the wider basal ganglia
networks.

4. DISCUSSION
We found a novel form of transient selection supported by the
striatal network. This emerged from our three-dimensional net-
work of sparse, weak feedback connectivity between the striatal
projection neurons and dense, strong feedforward inputs from
the fast-spiking interneurons. We observed that rapidly increasing
the ongoing input to one of two competing populations of projec-
tion neurons caused a transient peak of activity in that population
and a synchronous transient dip in activity of the other. The dip
lasted around 100 ms before the activity returned to its pre-step
level, thus showing no steady-state competitive effect between the
two populations.

Using a population-level model of the complete basal ganglia-
thalamo-cortical loop, we showed that transient selection in the
striatum was sufficient to enhance selection by the entire cir-
cuit (as determined by suppression of SNr output). The pres-
ence of transient selection both increased the speed at which
the whole circuit resolved a competition between salient inputs,
and increased the circuit’s ability to persist with the selected
input. Both effects were observed for either perfect-integrator or
amplifying feedback in the thalamo-cortical loop.

The origin of the transient selection had two components. The
positive transient in the population activity was driven by single
neuron adaptation. We found that a further step in input to an
already depolarized projection neuron caused a spike followed by
rapid decrease in spiking probability. This implies that the posi-
tive transient observed in the population activity was a statistical
effect: that, across a whole population of projection neurons, a

sub-set of neurons were sufficiently depolarized at the time of
stepped input to show this adaptation effect in synchrony, and
thus cause a transient peak in population activity.

The negative transient in the population activity was a subse-
quent network effect of the positive transient: the synchronized
spiking of the neurons participating in the positive transient was
sufficient to drive a dip in activity in their target neurons in the
other population.

4.1. TWO FORMS OF SELECTION COMPETITION
Having established the existence and mechanics of the tran-
sient selection phenomenon, we sought to understand the con-
ditions under which our striatal model could also support a
steady-state competition effect, akin to classical winner-takes-all
(Hartline and Ratliff, 1958; Fukai and Tanaka, 1997; Mao and
Massaquoi, 2007). Such steady-state competition could plausi-
bly arise in striatum as each projection neuron receives sufficient
weak synapses from other projection neurons to continuously
modulate its ongoing activity (Guzman et al., 2003; Humphries
et al., 2010; Chuhma et al., 2011).

We found that increasing the number of projection neuron
synapses gave rise to steady-state competition where the stable
increase in activity in one population caused a stable decrease
in activity of the other population. These results are consistent
with Yim et al. (2011) who reported a weakly-competitive effect
between two populations of neurons in a randomly-connected
inhibitory network of spiking neurons, and showed that weak
correlation between inputs to the network could enhance this
effect. We advanced this result by showing that such steady-
state competition could arise in both distance-dependent and
randomly-connected networks, given either that we increased the
physical size of our three-dimensional striatal network, and thus
increase the density of connections, or randomly-connected the
network based on the average connections of the most densely
connected projection neuron.

Our models thus predict that the form of selection competi-
tion is dependent on the density of connections between projec-
tion neurons. Whether the striatum is ever as sparsely connected
as in our distance-dependent model, or ever as densely connected
as in the homogenous random model is an open question. It is
possible that both forms of selection exist depending on local
inhomogeneities in striatal tissue. We know that many aspects
of the striatum shows gradients of density across the network,
including the dorsal-ventral gradient of interneuron populations
(Kubota and Kawaguchi, 1993) and the rostro-caudal gradient of
FSI gap junctions (Fukuda, 2009). Correspondingly, it is plausi-
ble that there exists a gradient of projection neuron connection
density.

We also note that the recent report by Oorschot et al. (2013) of
projection neuron collaterals making synapses on to the somas of
other projection neurons can only enhance both forms of com-
petition. Such GABAergic somatic synapses are likely to shunt all
dendritic input to the soma, thus providing powerful feedback
inhibition. For transient selection, this could result in a larger
negative transient; for steady-state selection, this could result in
more depressed activity in the losing population. Open ques-
tions here include the relative density of such somatic synapses
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originating from projection neurons, and whether they have spe-
cific functional targets such as specifically occurring between
projection neurons in competing populations.

Both forms of striatal selection mechanisms ultimately influ-
ence selection mediated by the whole basal ganglia network and
expressed via their output nuclei (including SNr). As discussed
in the Materials and Methods, this expression is via disinhibi-
tion (Chevalier and Deniau, 1990; Berns and Sejnowski, 1998;
Redgrave et al., 1999; Gurney et al., 2001a; Humphries et al.,
2006); increased activity of a striatal population inhibits the
tonic inhibitory output of a SNr population, thus representing
the selection of their represented signal (Figure 3). We showed
that transient selection in the striatal populations is sufficient
to enhance selection by disinhibition from SNr (Figure 6). This
occurs because the most salient input causes a transient increase
of activity in the corresponding striatal population and conse-
quently transiently decreases the output of the corresponding SNr
population. This fall is sufficient to allow activity to grow in the
target thalamo-cortical loop, which in turn projects to the orig-
inal striatal population, further increasing its activity—thus the
positive feedback loop amplifies the transient changes in stria-
tum. The effect of steady-state selection in the striatum on the
whole basal ganglia is more straightforward. The long-lasting
drop in output of all losing striatal populations comparatively
reduces their inhibition of the corresponding SNr populations.
Consequently, the fall in output of the SNr population represent-
ing the winning signal is enhanced compared to its competitors.

4.2. EXPERIMENTAL PREDICTIONS OF TRANSIENT SELECTION
Direct experimental observation of transient selection is challeng-
ing. The positive transient in population activity could only be
observed on a single trial given sufficient simultaneous sampling
of neurons within that population, a situation unlikely to occur
with current recording technology. However, we showed that the
basic mechanism underlying the positive transient in the popula-
tion activity could be observed through sequential steps of current
injection into a single neuron model. Thus our model makes a
tractable experimental prediction: that there exists a regime of
long, sequential steps of current into the projection neuron soma
that will elicit a rapid burst of two or more spikes followed by
slower regular firing. If such a regime exists, it would provide evi-
dence in favor of the existence of transient selection mechanisms
in the striatal network.

4.3. TRANSIENT SELECTION ALONE COULD EXPLAIN ENHANCED
SELECTION IN HUNTINGTON’S DISEASE

We sought to determine whether transient and steady-state selec-
tion could be differentiated by their predictions for how changes
to the striatal circuit would affect selection. To this end, we asked
if Huntington’s-like changes of increased NMDA receptor sensi-
tivity and loss of projection neurons could account for Beste et al.
(2008)’s report of enhanced selection by Huntington’s disease
patients. In terms of our models, we asked if either transient or
steady-state selection would improve due to these Huntington’s-
like changes to the striatum.

As one might expect a priori, simply removing projection
neurons and thus reducing connectivity between them impaired

both types of selection. Increasing NMDA receptor sensitivity also
impaired steady-state selection, and thus this form of selection
predicted that all Huntington’s-like changes impair selection, a
result which is inconsistent with the report by Beste et al. (2008).
Surprisingly, however, we found that for transient selection,
increased NMDA receptor sensitivity could more than compen-
sate for cell loss and actually enhance selection. We also found
that transient selectivity was only clearly improved with both
high cell degradation and increased excitability, and thus not
in pre-symptomatic-like conditions. Thus, alteration of transient
selection and not steady-state selection in striatum is consistent
with enhanced performance of symptomatic Huntington’s disease
patients compared to controls and pre-symptomatic patients.

Beste et al. (2008) noted that this enhanced response selection
was paradoxical, as Huntington’s disease patients are consistently
worse than age-matched controls across a range of cognitive
decision-making tasks (Knopman and Nissen, 1991; Bamford
et al., 1995; Lawrence et al., 1998; Ho et al., 2003). Our mod-
els offer two potential explanations for why Huntington’s disease
related changes in striatum are usually associated with cognitive
impairment but could also lead to paradoxical cognitive enhance-
ment. First, suppose that all regions of striatum engaged by
cognitive tasks implement transient selection. Our model shows
that there are limited combinations of NMDA receptor sensitiv-
ity increase and cell atrophy where transient selection is enhanced
compared to the healthy case; for most combinations transient
selection is deteriorated compared to the healthy-state. Thus,
one hypothesis is that there is a continuum of NMDA recep-
tor sensitivity increase and cell atrophy across the striatum, and
the Beste et al. (2008) task engaged a region of striatum with
enhanced transient selection, whereas most tasks engage regions
of the striatum with deteriorated transient selection. Second, sup-
pose instead that different regions of striatum use transient or
steady-state selection dependent on the local density of projec-
tion neuron connections. Our models shows that steady-state
selection is always deteriorated by any Huntington’s-like change
to the striatum. Consequently, this suggests the hypothesis that
the Beste et al. (2008) task engaged a region of the striatum
using (enhanced) transient selection, whereas most cognitive
tasks engage a region of striatum using steady-state selection,
and thus are always deteriorated in Huntington’s disease patients
compared to the healthy-state.
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