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During development, animals can spontaneously discover action-outcome pairings
enabling subsequent achievement of their goals. We present a biologically plausible
embodied model addressing key aspects of this process. The biomimetic model core
comprises the basal ganglia and its loops through cortex and thalamus. We incorporate
reinforcement learning (RL) with phasic dopamine supplying a sensory prediction error,
signalling “surprising” outcomes. Phasic dopamine is used in a cortico-striatal learning
rule which is consistent with recent data. We also hypothesized that objects associated
with surprising outcomes acquire “novelty salience” contingent on the predicability of the
outcome. To test this idea we used a simple model of prediction governing the dynamics
of novelty salience and phasic dopamine. The task of the virtual robotic agent mimicked an
in vivo counterpart (Gancarz et al., 2011) and involved interaction with a target object which
caused a light flash, or a control object which did not. Learning took place according to
two schedules. In one, the phasic outcome was delivered after interaction with the target
in an unpredictable way which emulated the in vivo protocol. Without novelty salience,
the model was unable to account for the experimental data. In the other schedule, the
phasic outcome was reliably delivered and the agent showed a rapid increase in the
number of interactions with the target which then decreased over subsequent sessions.
We argue this is precisely the kind of change in behavior required to repeatedly present
representations of context, action and outcome, to neural networks responsible for
learning action-outcome contingency. The model also showed cortico-striatal plasticity
consistent with learning a new action in basal ganglia. We conclude that action learning is
underpinned by a complex interplay of plasticity and stimulus salience, and that our model
contains many of the elements for biological action discovery to take place.
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1. INTRODUCTION
How can animals acquire knowledge of their potential agency in
the world—that is, a repertoire of actions enabling the achieve-
ment of their goals? Moreover, how can this be done sponta-
neously without the animal being instructed, or without having
some overt, primary reward assigned to successful learning? In
this case we talk of action discovery, and call the learning intrin-
sically motivated (Oudeyer and Kaplan, 2007). It is typical of the
kind of action learning found in the young as they discover their
ability to influence their environment (Ryan and Deci, 2000). We
argue that an understanding of the biological solution to these
problems will lay foundations for a robust and extensible solution
to skill acquisition in artificial agents like robots. We now outline
the theoretical, behavioral and neuroscientific background to the
paper.

The relation between actions and outcomes is not a given—the
animal must use reinforcement learning (RL) to acquire inter-
nal models of action-outcome contingencies associating context,
action and outcome, and be able to deploy the relevant action
given a context and a desired outcome or goal. Consider, for
example, the act of switching on a particular room light. There

is a forward, prediction model: “if I am in front of this switch and
I press it, the light in the corner will come on.” There is also an
inverse model: “if I need the light in the corner to come on, I need
to press this switch here” (Gurney et al., 2013). The framework for
action-outcome acquisition we propose is shown in Figure 1A.

We suppose that the internal models of action-outcome are
encoded in associative neural networks. In order for these associa-
tions to be learned (possibly via some kind of Hebbian plasticity),
representations of the motor action, sensory context, and the sen-
sory outcome must be repeatedly activated in the relevant neural
systems. This requires a transient change in the action selection
propensities of the agent—its so-called selection policy—so that
the to-be-learned action occurs more often than other competing
actions. The repeated presentation of the representation of out-
come is taken care of by physics; if the switch is pressed the agent
doesn’t have to do any more work to make the light come on.

The process of repetition bias in policy must continue until
the new action-outcome has been learned, and then cease. We
therefore require that the agent’s policy is modulated by the pre-
dictions being developed in the forward model; as the outcome
is predicted, the repetition bias must be reduced and, ultimately,
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FIGURE 1 | (A) Scheme for learning action-outcome associations—see
text for details. (B) Loops through basal ganglia, thalamus, and cortex
performing action selection in the animal brain. Two competing action
channels are shown. The channel on the left encoding action 1 has a
higher salience than that for channel 2. It has “won” the competition

for behavioral expression in basal ganglia which has therefore released
inhibition on its thalamic channel target, thereby allowing the
corresponding thalamo-cortical loop to build up activity. Blue/red lines
show inhibition/excitation, respectively and the width of lines encodes
signal strength.

removed. In general, we propose that the intrinsically motivated
behavior is driven by novelty—the agent engages with the situa-
tion because the target object (e.g., the switch) is novel or that the
“surprise” of the outcome on first encountering the light cause
some plastic change in the policy engine.

In this paper, one of our aims is to understand the dynamics
of repetition bias. To proceed, we therefore turn to the machinery
for solving the problem of action selection, and policy encoding in
the animal brain. We and others (Mink and Thach, 1993; Doya,
1999; Redgrave et al., 1999; Houk et al., 2007) have argued that
a set of subcortical nuclei—the basal ganglia—are well placed to
help solve this problem, and act as the policy engine or “actor” in
the vertebrate brain.

The basal ganglia are connected in closed looped circuits
with cortex, via thalamus (Figure 1B). Their outputs are toni-
cally active and inhibitory, and selection is achieved by selectively
releasing inhibition on cortico-thalamic targets that encode spe-
cific actions (Deniau and Chevalier, 1985). We refer to the neural
representation of an action, and its anatomical instantiation, as
it runs through these loops as an action channel (Redgrave et al.,
1999). Release of inhibition on a thalamic channel allows activ-
ity in its corresponding thalamo-cortical loop to build up and
eventually reach a threshold which allows behavioral expression
of the action. More details of this architecture are given in the
section 2.

Within this framework we can identify two components of
a successfully established action encoding. First, within cortex,
there must be the correct specific patterning of contextual (sen-
sory, cognitive, and possibly homeostatic) and preparatory motor
features. We refer to this as the action request and the overall
level of activity in the action request is supposed to signal its
urgency or salience. Channels within basal ganglia are subject to

competitive processes therein and action requests with the highest
salience are those that are selected. Clearly, one mechanism then
for inducing repetition bias would be to enhance the salience of
requests for the action to be discovered (Redgrave et al., 2011).
A second component of action encoding occurs at the level of
the main basal ganglia input nucleus—the striatum. Here, the
cortical action request must selectively activate a subset of the
striatal projection neurons, or so-called medium spiny neurons
(MSNs). In this way, a striatal channel is established which can
“listen” to the action request (Redgrave et al., 2011). For a neuron
computing a weighted sum of inputs, this occurs by a process of
matching the pattern of synaptic efficiencies to the strengths of
action request components, resulting in a proportional encoding
of salience. Evidence for such an encoding of salience in striatum
has recently been provided by human fMRI studies (Zink et al.,
2006).

To establish channel selectivity in MSNs requires cortico-
striatal plasticity whose dynamics depend on the animal’s behav-
ior and resulting environmental feedback. The theory of RL
encompasses exactly this scenario (Sutton and Barto, 1998) and so
it is not surprising that cortico-striatal plasticity has been the sub-
ject of study using the classic algorithms of RL (such as temporal
difference learning) with reinforcement contingent on biologi-
cal reward. The reinforcement signal in this scenario is supposed
to be supplied by short-latency phasic dopamine bursts which
encode a reward prediction error (Schultz et al., 1997).

In contrast to this, we have recently argued that such sig-
nals are unlikely to be associated with primary reward as such,
because they occur too soon to be the result of a relatively lengthy
process of explicit evaluation in which the stimulus is assigned
rewarding, neutral or aversive status. Instead, we propose that
phasic dopamine primarily encodes a sensory prediction error
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which may be used to guide acquisition of goal-directed actions
(Redgrave and Gurney, 2006; Redgrave et al., 2008).

This interpretation does not preclude a role for reward in mod-
ulating the phasic dopamine signal, and these issues are explored
further in section 4.3 in the “Discussion.” However, under the sen-
sory prediction error hypothesis, action acquisition is supposed
to take place with the following sequence of events. An animal
performs an action which results in an unexpected outcome. The
phasic component of the outcome (not requiring computation
of value) causes midbrain dopamine neurons to fire (Comoli
et al., 2003) eliciting a phasic release of dopamine in striatum
(the mechanistic substrate for this is described in more detail
in section 2.5.4). This then acts to induce cortico-striatal plas-
ticity associated with recently active action-based representations
in cortex, and corresponding striatal responses. If repetition bias
is operative, this sequence of events is repeated and MSNs in
striatum can become selectively responsive to the action request
which is required to elicit the environmental event. It is also pos-
sible that this plasticity can itself contribute to repetition bias,
as each increment in the match between the patterns of synap-
tic strengths and action request should make the selection of the
action more likely. However, one of the questions we address here
is the extent to which this can be wholly responsible for transient
policy changes seen in vivo. Fortunately there is a recent behav-
ioral study (Gancarz et al., 2011) which provides data we can use
to constrain the possibilities here.

At the neuronal level, electrophysiological data from studies in
cortico-striatal plasticity have provided a complex and often con-
fusing picture. Both long term depression (LTD) and long term
potentiation (LTP) have been observed at glutamatergic (excita-
tory) cortical synapses on MSNs, and their expression is depen-
dent on dopamine (Reynolds and Wickens, 2002; Calabresi et al.,
2007). Further, this dependence is linked to specific dopamine
receptor types in different populations of MSNs (Pawlak and
Kerr, 2008) and has spike timing dependent characteristics (Fino
et al., 2005; Pawlak and Kerr, 2008). This phenomenological
complexity has hampered the development of a quantitative func-
tional understanding of cortico-striatal plasticity. In particular,
given the limitations of much in vitro data with regards to the class
of MSNs based on their dopamine receptors, we would expect
this data to display mean characteristics rather than those of one
class alone. This is then necessarily reflected in models (Thivierge
et al., 2007) which may account for spike timing and dopamin-
ergic effects, but rely on data which is agnostic about the MSN
classification.

Recently this impasse has been overcome in a study in stri-
atal slices by Shen et al. (2008), in which the different classes of
MSN could be reliably identified. In addition, this study deployed
a variety of techniques to investigate the effects of dopamine
depletion, thereby providing data at different levels of intrin-
sic dopamine. This study formed the basis of our recent spiking
model of cortico-striatal plasticity (Gurney et al., 2009) which we
adapt here for rate-coded neurons.

Within the framework described above, we seek to address in
this study, the following questions about action discovery. Having
proposed that action-outcome discovery depends on a repetition
bias in selection policy, what are the mechanisms responsible for

this? In particular what are the relative roles for enhanced corti-
cal salience (“louder action request”), and better cortico-striatal
transmission (“listening to the request”) induced by dopamine
modulated cortico-striatal plasticity? If increased cortical salience
is required, what is its origin? How should salience and plasticity
be moderated by the development of the prediction model? Is any
cortico-striatal plasticity observed in the model consistent with
the requirements of long term afferent/synaptic-strength pattern
matching? To ensure a biologically plausible solution, we take
advantage of recent behavioral data (Gancarz et al., 2011), made
possible with our embodied (robotic) approach, and recent in
vitro data (Shen et al., 2008) on cortico-striatal plasticity.

2. MATERIALS AND METHODS
2.1. In vivo EXPERIMENTAL COMPARISON
The robot task mimics an in vivo counterpart (Gancarz et al.,
2011) in which rats spontaneously poke their snouts into one of
two poke-holes in a small operant chamber (Figure 2A). Each
experiment was conducted over 16 days with the rat exposed
to a single 30 min session in the operant chamber each day.
Critically, the animals were not food or liquid deprived, and were
therefore not motivated by any extrinsic reward. The ambient
light condition was complete darkness, and the rats were free
to move around the chamber. In a first habituation phase (the
first 6 days), there were no consequences to the animal making
a snout entry into either poke hole. In a second response con-
tingent phase (subsequent 10 days) one of the snout holes was
designated the “active hole” and a snout entry here could cause
a phasic light stimulus to flash briefly (mechanistically, this was
achieved with two lights, one near the snout holes and one at
the back of the chamber). This light flash was the only source of
behavioral reinforcement and its occurrence was under control
of a variable interval (VI) schedule with mean of 2 min. That is,
there was a random interval (with mean 2 min) between potential
snout-entry/light-flash pairings; premature snout entry into the
active hole before completion of this interval caused no light flash.
Snout entry into the active hole was designated an active response
(with or without any consequent light flash) and entry into the
other hole, an inactive response. The labeling of the snout holes
in the response contingent phase is carried across to the habitu-
ation phase, although here it constitutes an arbitrary distinction.
Thus, “active responses” in the habituation phase are simply those
responses directed to the snout hole which becomes active during
response contingency.

Relevant results of this experiment are shown in Figure 3. In
that experiment, animals were divided in “low and high respon-
ders” according to a pre-experimental assay of overall levels of
motoric activity (Gancarz et al., 2011). Here, we have averaged
the data across the two groups. Figure 3A shows that there is no
significant difference in responding to the two snout holes dur-
ing the habituation phase. However, there is a clear difference
during the response contingent phase; the animals spent more
time engaging with the active snout hole. Other trends indicated
are a gradual development, and subsequent decline, in the pref-
erence for the active hole during the response contingent phase.
Figure 3B shows the mean behavior with each session during the
response continent phase. There is a clear initial high number of
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FIGURE 2 | In vivo experimental paradigm of Gancarz et al. (2011)

(panel A) and our embodied in silico counterpart (panel B).

(A) Shows the small test chamber used with rats undergoing
instrumental learning. One side of the chamber has two poke holes with
a light above them. Rat snout entry into the “active” poke hole may
cause the two lights to flash and the active hole may be either one (for

a particular rat). (B) Shows the virtual world created as a counterpart to
that in (A). A simulated Khepera I robot replaces the rat, and snout
holes are replaced by colored blocks. Only the red block is ever
designated the active one, and the white block corresponds to the
inactive poke hole. There is a point-light located at the top of the red
block which may flash if the robot bumps into the red block.

active and inactive responses, and a subsequent decline in both
during the session.

2.1.1. Fixed-ratio variant
While the VI schedule provides valuable data to constrain the
model, the action discovery paradigm, as encountered etholog-
ically, is likely to be governed by less random reinforcement. In
particular, if reinforcement is reliably given at every successful
interaction with the target object, we have fixed-ratio (FR) sched-
ule with ratio one (FR1). We therefore also ran simulations with
this schedule.

At the time of completing this work, the corresponding biolog-
ical data was not yet available and so the behavioral outcomes of
the simulated agent became predictions for a similar in vivo exper-
iment. However, during revision of this paper, we became aware
that the laboratory responsible for the study described above had
just published a followup which used an FR1 schedule (Lloyd
et al., 2012). Our predictions were therefore immediately put to
the test. The relevant data for the FR1 schedule from the study
in (Lloyd et al., 2012) are shown in Figures 3C,D. Only active
responses are shown in order to facilitate a comparison with the
VI data described above (inactive responses are similar to that for
the VI case). For FR1 training, the peak number of responses in
the response contingent phase occurs in the first day of that phase,
and shows a rapid decline thereafter (Figure 3C). In contrast, the
peak response for VI training occurs after the first day of response
contingency and shows a more gradual decline. Within a session,
the FR1 schedule shows a steeper decline than its VI counterpart
(Figure 3D).

2.2. SIMULATED ROBOT WORLD
We used simulation of a small autonomous robot in an arena
with stimulus objects to mimic the in vivo experiment of Gancarz
et al. (2011)—see Figure 2B. The robot was the K-Team Khepera

(Mondada et al., 1999) and simulation used the Webots (v6.3.2)
software environment (Cyberbotics, 2010a,b). The arena con-
sisted of a tiled ground-plane (60 cm × 60 cm) with blue walls
(two each of 10 cm and 20 cm height). The stimuli comprised two
static blocks (5.9 cm by 9.8 cm by 10 cm) colored red and white,
that played the role of the poke holes. Unlike the snout holes in
the experiment with rats, the blocks were spatially well separated
(opposite sides of the arena). For the rats, their use of local tac-
tile (whisker-based), rather than wide-field visual information,
means that the snout holes are well separated in the sensory space
of the animal. This is what we achieve in the visual modality
using the arrangement in Figure 2B. A light source that can flash
briefly was located above the red block (there was no need for
additional, rear-mounted lighting to cause sensor response in the
Khepera). This light is triggered by the robot bumping into the
red block (albeit possibly under VI-schedule control). The red
block is therefore a surrogate for the active snout hole in the
in vivo experiment of Gancarz et al. (2011).

The robot has a cylindrical body shape with height 3 cm and
diameter 5.6 cm. Each wheel can be separately controlled to go
forwards or backwards. There are eight infrared sensors in a
radial configuration that were used for proximity detection in an
“exploratory” behavior which also required avoiding contact with
objects. The two front sensors were also used to detect the light
flash. We used an RGB camera with 64(wide) × 1(high) pixel
array mounted on top of the Khepera’s central body to detect
the colored blocks, and a binary tactile sensor at the front to
detect bumping into objects. The supplementary material con-
tains a short video showing the actions available to the virtual
robot.

2.3. THE VIRTUAL ROBOT CONTROL ARCHITECTURE: OVERVIEW
The complete virtual embedded robot model is shown in
Figure 4. It comprises three principal components: the virtual
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FIGURE 3 | Behavioral data adapted from the in vivo studies of Gancarz

et al. (2011) (study 1) and Lloyd et al. (2012) (study 2). (A,B) For variable
interval (VI) training from study 1. (A) Shows the number of inactive and active
responses in each 2-day period (averaged over the two 30 min sessions
therein) with white and black symbols, respectively. The habituation and
response contingent phases (see text) are designated “H” and “RC,”
respectively, and the average response during the response contingent phase
is shown on the extreme right as “Avg.” (B) Shows the within-session
behavior during the response contingent phase. Results are averaged over all

10 days of this phase and means are reported for each epoch of 6 min duration
during the 30 min sessions. Error bars in both panels are the mean of the
standard errors for the low and high responding animals (as originally reported
in study 1). (C) Shows active responses (star-shaped data points) from a
fixed-ratio (FR1) schedule reported in study 2. Also shown for comparison are
the active response in (A) (black squares). Note, there were more days in the
habituation phase of study 2, and error bars in the habituation phase are not
shown. (D) Is a counterpart to (B) with FR1 data shown by stars, and the VI
data from (B), replicated for comparison (black squares).

robot—referencing its hardware, motor plant and peripheral sen-
sors; an embedding architecture, or engineered surround, and
the biomimetic core model. This partitioning scheme has been
described in our previous work (Prescott et al., 2006; Gurney,
2009; Gurney and Humphries, 2012). The idea is to sepa-
rate off the biomimetic model which is the primary subject
of study, from less biologically realistic, and somewhat “engi-
neered” components which are, nevertheless, required to produce
a complete, behaving agent. In this way, we package together
those elements of the architecture which are part of the model
proper, and which encapsulate our hypotheses about brain func-
tion, and separate them from elements which are predicated
on our hypothesis set. Thus, if we identify the cause of defi-
ciencies in behavioral outcome with issues in the embedding

architecture, we can be sure we are not falsifying hypotheses
embodied in the biomimetic core. It is not necessary for a
part of the biomimetic core to be a neural network; algorith-
mic elements are also candidates if they implement key model
functions.

The key for this approach to work is the signal interface
between surround and core. Thus, just as in modular software,
the signals must have the same interpretation for both compo-
nents either side of this interface. In our context, the embedding
architecture must supply signals to a “sensory cortical” area in the
biomimetic core that can interpret them as saliences for action
requests, as well as any internal state variables required to mod-
ulate them. Sensory indication of phasic events must be made
available to the dopamine system, and the motoric output of the
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FIGURE 4 | The virtual robot control architecture, and its interaction

with the robot and environment. The virtual Khepera robot is endowed a
range of sensors and the motor output is locomotion via a pair of wheels. The
architecture is split into embedding, and biomimetic core, components. The
embedding architecture contains three action-subsystems: two for
approaching-and-bumping into each of the red and white blocks (“interact red
block,” “interact white block”), and one (“explore”) for randomly roaming the

arena while avoiding object contact. Within each action subsystem the motor
command units are designated “motor comm.” The biomimetic core contains
a biologically plausible circuit (representing basal ganglia, and its connectivity
with cortex, thalamus, and brainstem), a phasic stimulus prediction
mechanism, a source of phasic dopamine, and the new learning rules for
basal ganglia plasticity. Other symbols and components are labeled as in the
main text.

biomimetic core must comprise a “selection signal” that can be
used to gate actions. This signal interface is precisely that shown
in Figure 4. We now go on to describe each major system in more
detail.

2.4. EMBEDDING ARCHITECTURE
The embedding architecture is based on that described by Prescott
et al. (2006). The agent is supposed to have a fixed repertoire of
behaviors or action-sequences, and the enactment of each one is
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encapsulated in an action subsystem. In the current model there
are three such behaviors:

Explore: move around the arena and avoid obstacles (blocks
and walls).
Interact with the red block: orient to the red block, approach
it, and perform a controlled “bump” into it. This latter com-
prises, in turn, the following sub-actions: bump once against
the red block, move backwards, stop, and then slowly approach
the red block again.
Interact with the white block: this is identical to its counter-
part for the red block, except actions are directed to the white
cube.

The block-interaction behaviors are surrogates for the snout
hole poking in the in vivo experiment of Gancarz et al. (2011).
The key difference in outcome between the two behaviors is
that interaction with the red block causes the light flash—
it comprises the active response—whereas interaction with the
white block has no consequences and comprises the inactive
response.

The granularity of behavior encoded in each action sub-system
is clearly quite coarse; we have already noted that they each com-
prise small action sequences. Thus, they have similarities with
the fixed action patterns (FAPs) of the ethologists (Lorenz, 1935;
Tinbergen, 1951) and the options used in hierarchical RL (Barto
et al., 2004). This is not a drawback in the current model as we
are primarily interested in the basic principles of adaptive aspects
of behavior with novel stimuli, and any consequent plasticity;
the precise semantics of each action are not important. Further,
the behaviors we encode are not as rigid as FAPs or options, as
our method of behavioral maintenance—an excitatory recurrent
connection within the motor cortex (see “Appendix”)—allows
the behaviors to be interrupted by “exploration” if this has suffi-
ciently high salience. We will revisit the issues surrounding action
granularity in the section 4.

Within each action-subsystem, the sequencing of primitive
actions into behaviors is accomplished in a motor command unit.
These units make use of sensory information to trigger various
events in the sequence. The “explore” behavior is governed by the
infra-red sensors which detect distance to objects in the robot’s
path, thereby allowing locomotion while avoiding objects. The
block-interaction behaviors use camera information to identify,
and orient to the blocks, and the bumper sensor to know when
contact has been made.

The motor output of each motor command unit is 2-vector
z = (zl, zr) whose components indicate the desired speed for each
robot wheel (left and right) to enact the current segment of
behavior. The motor command units are not neural networks but
conventional procedural code which use sensor information to
trigger the next action component in the sequence, and update
z at each time step. If the behavior in the action subsystem has
been selected by the biomimetic core, then the corresponding
speed-output vector is sent forward to be averaged with output
vectors from any other selected sub-systems. In this way, multiple
selected actions are blended together to produce a final behavior.
This forces a strong test of the action selection capability of the

biomimetic core model which must prevent over-expression of
such multiple action selection.

The selection criterion for an action subsystem i, is that the
corresponding brainstem output signal from the biomimetic core,
ybs

i should exceed some threshold φ. That is, H(ybs
i − φ) = 1,

where H() is the Heaviside function. In our simulations φ = 0.5.
The perceptual sub-system supplies sensory information for

generation of the salience of the action requests for the block
interaction behaviors. In the first instance, this is quite simple;
the perceptual subsystem detects the presence of the red/white
block in the visual field and triggers a salience for the red/white
block-interaction behavior. However, the salience of the blocks
is subject to a variety of additional processes driven by sensory
habituation and perceived novelty of the stimulus. These pro-
cesses are based on biological notions and so we reserve them
for the biomimetic core. They also depend on the status of the
block-interaction behaviors (completion of a block interaction
cause an habituation increment). Therefore, these two command
units also provide signals to an internal state monitoring unit that
indicate if their respective sequences have recently been com-
pleted. This unit also provides a representation of the motivation
to explore the arena, governing the selection of the “explore”
action sub-system. Finally, the perceptual subsystem also provides
a signal to the dopamine system about phasic events such as the
light flash.

2.5. THE BIOMIMETIC CORE
The biomimetic core comprises several functional blocks (see
Figure 4)—we now deal with each in turn.

2.5.1. Prediction of phasic stimuli
A key component in our model is the idea that the phasic outcome
of the interaction with the blocks (the light flash) is subject to
prediction via an internal model. This prediction is then used to
modify the salience of objects in the visual field at the time of the
light flash (the blocks) and also to form a sensory prediction error
which forms the basis for the phasic dopamine signal.

Prediction is believed to be a fundamental process at the heart
of perception and cognition (Bar, 2007; Bubic et al., 2010; Friston,
2010; Gurney et al., 2013) and is, in general, a complex neural pro-
cess requiring substantial model resources. However, formalizing
a phenomenological model of prediction of the phasic light flash
is straightforward if we assume that the latter is represented by
a single scalar feature yf (t) whose value is binary: a 1 signals the
detection of a light, and 0 its absence (no light flash). The pre-
diction is then a real-valued scalar between 0 and 1, where values
close to 1 or 0 are strong predictions that the light will flash on or
be absent, respectively.

To proceed further, consider the set of times {ti} when the light
flash might occur (during block-interactions), where i indexes
the block-interactions over the entire (multi-day) experiment. We
distinguish between the phasic manifestation of the prediction
y∗

f (ti), at discrete time ti, and the internal latent representation

of the prediction y(∗)
f (t) which exists at all times t. The phasic

prediction is supposed to correspond to phasic neural activ-
ity, whereas its latent counterpart is encoded in the structure
(synaptic weights) of the internal model of prediction.
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The model we use is phenomenological and we use a similar
approach, based on exponential rise and decay as is used with
habituation (Marsland, 2009). Thus, if a phasic event (light flash)
occurs at ti, the prediction is increased according to the recursive
relation

y(∗)
f (ti + δt) = 1 − k(1 − y(∗)

f (ti)) where 0 < k < 1 (1)

This occurs within days and across day boundaries, because
we assume no day-to-day unlearning of the internal model for
prediction of phasic outcome. The definition is completed by

defining the effect of the first reinforcing event: y(∗)
f (t1 + δt) =

0.2. If, after a block-interaction, there is a non-zero prediction of
a phasic outcome which was not delivered (no light flash), then
the prediction is updated according to

y(∗)
f (ti + δt) = ky(∗)

f (ti) (2)

(both within and between days). Thus, latent prediction is con-
stant for the intervals ti < t ≤ ti + 1. Then, when activated by
sensory cues, the model delivers the phasic prediction y∗

f (ti) =
y(∗)

f (ti). For all our simulations, k = 0.95. Figure 5A shows a car-
toon of a typical sequence of events and the resulting predictions.

2.5.2. Salience generation
Salience for the block interaction behaviors is initiated by the per-
ceptual subsystem being activated by the presence of a colored
block in the field of view. This generates a nominal salience value
which is then subject to habituation, dishabituation, and possibly
a sensitization due to novelty. We refer to the nominal salience of
the colored blocks modulated by (dis)habituation as the intrin-
sic salience of the blocks. This may be augmented by a separate
novelty salience; both contributions are detailed below.

Habituation is defined as “a behavioral response decrement
that results from repeated stimulation and that does not involve
sensory adaptation/sensory fatigue or motor fatigue” (Rankin
et al., 2009). Evidence for habituation in the in vivo experiment of

FIGURE 5 | Prediction and its deployment for novelty salience and

sensory prediction error under a simple phenomenological model.

(A) The red markers indicate the presence or absence of phasic
outcome (light flash) during each interaction with the red (active) block.
The latent prediction, y(∗)

f (t), is shown as the solid line and the phasic
prediction, y∗

f (ti ), by the open markers. (B) The translation of prediction
into novelty salience. (C) The time course of novelty salience

corresponding to the prediction in (A), obtained via the mapping in (B).
Open circles represent the salience perceived at each block interaction,
when the block is in view. These bouts of block-perception are longer
than the observation of the light flash, but we identify each interaction
with a point-time marker for simplicity. The continuous line is a formal
mapping of the latent prediction using Equation (3). (D) The sensory
error signal derived from (A).
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Gancarz et al. (2011) comes from close examination of the data in
Figure 3. There is clear evidence of a decline of inactive responses
within each session (day) of the response contingent phase. There
is also some indication of similar trends across days with in each
phase of the experiment. Thus, linear fits to the means of inac-
tive responses have a negative slope within each phase and, for
the habituation phase, this was a significant trend (Gancarz et al.,
2011). The inactive responses are least likely to be subject to any
contribution from novelty and represent (as far as possible) a
control stimulus. We therefore assume any behavioral changes
in inactive responses are a consequence of the dynamics of the
intrinsic salience of the stimuli. Thus, we incorporated salience
habituation processes, both across, and within days, resulting in
the decline of the intrinsic salience of both blocks on these two
time scales.

It might be thought that the decline within a session could be
due to a general “fatigue.” However, this can be ruled out for sev-
eral reasons. First, there is little effort in a snout poke response,
and it is part of the normal behavioral repertoire of the rat.
Second, there is ample use in behavioral studies of testing rats
for much longer than the 30 min sessions used here. Third, in
the study by Lloyd et al. (2012), animals confronted with a more
difficult (VI) learning schedule, showed more responses within
a session than those under a less demanding, fixed-ratio sched-
ule. We therefore conclude that decrements in response are due to
genuine adaptive neural processes.

Habituation is usually accompanied by a dishabituation pro-
cess whereby, presentation of alternative stimuli, or a “rest
period,” allows habituated behavioral responses to recover to pre-
viously observed levels (Groves and Thompson, 1970; Rankin
et al., 2009). These complementary processes may be modeled
using simple exponential forms (Marsland, 2009), and we used

this general approach in the following way. Thus, let S
i,j
int be

the intrinsic salience during the jth block-interaction on day i,
given the associated block is in the visual field. Within a ses-
sion, we do not update salience from moment to moment, but
rather after each complete interaction with the block. This is
consistent with recent ideas about habituation that include ref-
erence to response rate change in operant tasks (McSweeney
and Murphy, 2009; Rankin et al., 2009). Therefore at the start

of the (j + 1)th interaction, S
i,j + 1
int = γbS

i,j
int, with γb < 1. At

the start of the next day, there is a re-initialization Si + 1,1
int =

γaSi,1
int, where γa < 1. Typically, as a result of this, there is

dishabituation between days (so that, if ĵ is the last interac-

tion on day i, S
i,ĵ
int < Si + 1,1

int ). Parameters were S1,1
int = 0.45, γa =

γb = 0.95.
We now suppose there may be an additional salience contribu-

tion to the target block interaction associated with the surprising
phasic outcome (light flash). Thus, we make the hypothesis that
objects or features in the perceptual field when a surprising phasic
event occurs, acquire novelty salience by a process of “inheri-
tance” or generalization from the surprise of the simple phasic
outcome (e.g., light). This is an extension to neutral stimuli
of the observation that sensitization usually occurs during the
first few presentations of a (non-neutral) rewarding stimulus
(McSweeney and Murphy, 2009). It is also consistent with the fact

that habituation (the counterpart of sensitization) can engender
generalization to other stimuli (Rankin et al., 2009).

To quantify this idea we assume that the novelty salience is
maximum when the outcome of the interaction is least pre-
dictable or most uncertain; that is, when y∗

f is at its intermediate
value of 0.5. For, at this point, there is no bias in the prediction
of the phasic stimulus occurring or being absent. We then assign
a novelty salience of zero to the “firm predictions” correspond-
ing to y∗

f = ±1, and assume piecewise linearity elsewhere. This

mapping is shown in Figure 5B. Formally, if S
i,j
nov is the novelty

salience for interaction j on day i, at time ti,j,

S
i,j
nov = 0.5 − |y∗

f (ti,j) − 0.5| (3)

The ensuing novelty salience from the events in Figure 5A is
shown in Figure 5C. The total salience is given by

S
i,j
tot = S

i,j
int + S

i,j
nov (4)

Salience only occurs when the stimuli are perceived (at the
points indicated by the open circles in Figure 5C). However, it
is useful to indicate the causality of changes in novelty salience by
formally transforming the latent prediction using Equation (3)
so into novelty salience after each interaction is the salience that
would be seen if the stimulus comes into view.

The salience for the exploratory action is assumed to be driven
by an internal motivational process (like fear or foraging for food)
which is notionally a component of “internal state monitoring.” It
manifests itself in a salience for exploration drawn from a uniform
distribution with constant mean of 0.4, and standard deviation
of 0.23.

2.5.3. Basal ganglia and loops through cortex
The main neural circuit in the biomimetic core is based on
our previous work with models of basal ganglia (Gurney et al.,
2001a,b) and loops through cortex (Humphries and Gurney,
2002). Key concepts were outlined in the Introduction; details of
the particular form used here are shown in Figure 6. The model
uses discrete processing channels for each action so that, within
each nucleus, there is a localist representation of each channel as
a population of neurons instantiated in a leaky integrator neu-
ral unit. Formally, each neural unit has an activation variable a
governed by a first order ODE

τ
da

dt
= −a(t) + I(t) (5)

where τ is the characteristic membrane time constant (here, τ =
40 ms) and I is the summed, weighted input. The normalized
firing rate y, of the neural unit is given by a piecewise linear
squashing function

y(a) = L(a, ε) =

⎧⎪⎨
⎪⎩

0 a ≤ ε

a − ε ε < a < 1 + ε

1 a > 1 + ε

(6)
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FIGURE 6 | Schematic diagram of the basal ganglia neural network

component of the biomimetic core. (A) Cortex, basal ganglia, brainstem,
and thalamic complex. The latter is comprised of the thalamic reticular
nucleus (TRN) and ventrolateral thalamus (VL). Note that action channels are
present but not explicitly shown here. (B) The basal ganglia circuit consisting
of: striatal projection neurons expressing D1 or D2 dopamine receptors;
subthalamic nucleus (STN); output nuclei—globus pallidus internal segment

(GPi) and substantia nigra pars reticulata (SNr); globus pallidus external
segment (GPe), and substantia nigra pars compacta (SNc). The three action
channels are shown in this panel, and a typical set of activities indicated in
cartoon form by the gray bars (the channel on the left is highly salient causing
suppression of basal ganglia output on that channel). The summation box
below STN is not anatomically present—it is graphic device to indicate that
each target of STN sums its inputs across channels from STN.

where, ε is a threshold below which y = 0, immediately above
which y depends linearly on a with unit slope, and there is
saturation at y = 1.

There are three channels in the current model—one for each
of the action-subsystems. The sensory cortex (Figure 6A) receives
input from the salience generators, and initiates activity in motor
cortex. This activity can potentially undergo amplification in the
recurrent loop with the thalamic system, but this is under basal
ganglia control. The motor cortex and the basal ganglia output
nuclei project directly to the reticular formation and pendun-
culopontine nucleus brainstem areas a (Takakusaki et al., 2004;
Jenkinson et al., 2009). If the increased drive from motor corti-
cal channel i to its corresponding brainstem population, as well
as the direct release of inhibition from that population, cause its
activity ybs

i to exceed the threshold φ, then the channel is selected
for behavioral expression (see Figure 4).

Within the basal ganglia, there are two interdigitated popu-
lations of projection neurons in the main input nucleus—the
striatum. These so-called MSNs are differentiated according to
their preferential expression of dopamine receptor type—D1 or
D2. We refer henceforth to these populations as D1-striatum and
D2-striatum. The subthalamic nucleus (STN) is the only source
of excitation in basal ganglia. The output nuclei of the basal gan-
glia are the globus pallidus internal segment (GPi) and substantia
nigra pars reticulata (SNr). The circuit comprising D1-striatum,

STN and GPi/SNr form a feedforward, off-center, on surround
network implementing an inter-channel competition; hence it is
dubbed the selection pathway . The “winning” channel in basal
ganglia competitive processes is that which has the lowest out-
put in GPi/SNr (inhibition to targets is released). This channel
will have received the largest inhibitory input fron D1-striatum,
which, in turn, will have been subject to the highest salience
input. The circuit comprising the globus pallidus external seg-
ment (GPe), STN and D2-striatum exercise a control function
acting on the selection pathway to ensure a good match between
overall excitation from STN, and striatal inhibition of the output
nuclei (Gurney et al., 2001a,b). The circuit through D2-striatum,
GPe and SNr also implements a NO–GO function, actively pre-
venting action selection (Frank et al., 2004). Parametric details of
the application of Eqs. (5) and (6) to the circuits in Figure 6 are
given in the “Appendix.”

The cortico-striatal synapses receive modulatory input from
dopamine axons which branch profusely throughout striatum
(Beckstead et al., 1979; Gauthier et al., 1999; Matsuda et al.,
2009). Dopamine terminals also seem to innervate striatum in
a dense, non-focal way within the neuropil of striatum (Moss
and Bolam, 2008), and dopamine also acts extra-synaptically via
volume transmission (Cragg and Rice, 2004). These data would
indicate a diffuse innervation of striatum by dopamine neurons
that cuts across channel boundaries.
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Tonic (background) dopamine levels are thought to influence
cortico-striatal transmission at D1 and D2 MSNs in opposite ways
with D1/D2 receptors facilitating/attenuating cortico-striatal
transmission (West and Grace, 2002). This is incorporated into
our model by including a constant tonic dopamine level λ, which
increases cortico-striatal D1-MSN weights by a multiplicative
factor 1 + λ, and decreases corresponding D2-MSN weights by
1 − λ. More significantly for the current study are the dynamics
of phasic (transient) dopamine, which are critical for cortico-
striatal plasticity (Reynolds and Wickens, 2002), and to which we
now turn.

2.5.4. Phasic dopamine and sensory prediction error
The starting point for this component of the model is our
hypothesis that phasic dopamine signals a sensory prediction
error (Redgrave and Gurney, 2006; Redgrave et al., 2008). Using
the notation developed in section 2.5.1, the sensory predic-
tion error e(ti) is given by e(ti) = yf (ti) − y∗

f (ti). The error
resulting from the sequence of events in Figure 5A is shown
in Figure 5D. In the rest of this section, we drop the tem-
poral argument and its indexing as it assumes a single block
interaction.

However, we also wish to relate this form for e to its biological
generation and realization in phasic dopamine. In particular, we
invoke the evidence that phasic dopamine is released in response
to neutral phasic stimuli and that this occurs via the recently dis-
covered tecto-nigral pathway (Coizet et al., 2003; Comoli et al.,
2003; Dommett et al., 2005). This is a direct (mono-synaptic)
pathway between the superior colliculus (SC) (optic tectum in
non-mammals) and midbrain dopamine neurons in substantia
nigra pars compacta (SNc). The SC plays a key role in gaze shifting
and orienting responses (Wurtz and Goldberg, 1972; Wurtz and
Albano, 1980) and is believed to act as a detector of novel, phasic
stimuli (Dean et al., 1989). In our terminology it detects yf . Phasic
responses in SC then excite SNc neurons and therefore potentially
cause phasic bursts of activity therein. However, as the stimulus
becomes predictable, this response in SNc disappears and, sig-
nificantly, if the predicted reward is omitted, there is a phasic
“dip” in the dopamine response below tonic level (Schultz et al.,
1997; Schultz, 2006). Taking these pieces of evidence together,
suggest that the null response in SNc under stimulus prediction
is a result of the excitatory influence of SC, and a similarly timed
inhibitory signal from another nucleus which we will call the
“canceling signal.” The lateral habenula may be a candidate for
such signals in dopamine neurons (Matsumoto and Hikosaka,
2007).

To model the SC, we assume that its response is not only con-
tingent on yf but also on any phasic prediction y∗

f . This extends
the temporally adaptive response of colliculus at long time scales
under habituation (Drager and Hubel, 1975) to include phasic
prediction at shorter time scales. Thus, if ySC

f is the response of

SC to phasic feature f , we put ySC
f = [yf − y∗

f ]+, where [x]+ =
max(0, x). Then, the canceling signal yC

f takes the form yC
f =

[y∗
f − yf ]+ and the sensory prediction error is given by

e = ySC
f − yC

f = [yf − y∗
f ]+ − [y∗

f − yf ]+ = yf − y∗
f (7)

Since the collicular and canceling signals are not derived from
prior inputs, we modeled their dynamics phenomenologically so
that each of ySC

f , yC
f are triangular pulses of width 0.2 s.

In translating this into dopamine activity in our model there
are several issues to contend with. First, we don’t know the rela-
tion between positive and negative excursions of e and phasic
dopamine bursts and dips—it could be that an error of +1 is sig-
nalled by a dopamine level many times that of tonic, but that an
error of −1 is signalled by sufficiently prolonged dip with mini-
mum of zero. We are therefore free to include parameters a+, a−
in forming the effective input to a dopamine neuron, ISNc, which
encodes prediction error

ISNc = a+ySC
f − a−yC

f (8)

These parameters were chosen for best model fit to the data of
Gancarz et al. (2011) giving a+ = 2, a− = 1. Further, we don’t
know a priori the relationship between the magnitude of e (which
lies in the interval [−1, 1]) and the corresponding level of simu-
lated dopamine, d, expressed in our plasticity rules. We therefore
use ISNc, to determine an effective SNc output, ySNc, which we can
then equate with d. Thus, we form the SNc activation aSNc in a
first order ODE like that in Equation (5) and use this, in turn, to
generate ySNc ≡ d via the function

ySNc =
{

0, aSNc ≤ −0.2

a + 0.2, a > 0.2
(9)

The lack of normalization is a requirement for interpreting ySNc

as the simulated dopamine level d, used in the next section.

2.5.5. Cortico-striatal plasticity: the learning rule
The learning rule is based on our recent work on cortico-striatal
plasticity at the level of spikes (Gurney et al., 2009) which is, in
turn, grounded in a comprehensive in vitro study (Shen et al.,
2008). The latter was able to distinguish recordings between
D1 and D2-type MSNs, and yielded responses at different lev-
els of dopamine. The resulting learning rules are complex and
reflect the unavoidable complexity in the data. However, the
rules do provide an account of plasticity consistent with action
discovery and so we sought to incorporate them in the cur-
rent model. Fortunately Pfister and Gerstner (2006) have shown
how to relate spike timing dependent plasticity (STDP) to the
Bienenstock, Cooper, and Munro (BCM) rule for rate-coded
neurons (Bienenstock et al., 1982; Cooper et al., 2004) which
therefore allows us to proceed with this programme.

The work of Pfister and Gerstner (2006) dealt with STDP for
spike pairs and triplets. The transition to firing rates is done by
calculating the expected weight change 〈dw/dt〉. Let the pre- and
post-synaptic firing rates be x and y, respectively. If �t = tpost −
tpre is the time interval between post- and pre-synaptic spike pairs
then let τ+, τ− be time constants associated with processes for
�t > 0, �t < 0, respectively. The rate coded rule takes the form

〈
dw

dt

〉
= A3τ

+τyy(y − θBCM)x (10)
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θBCM = 〈y2〉CBCM

CBCM = −(A−τ− + A+τ+)

A3τ+τy

Here, τy is a time constant associated with spike triplets, and
A3 is a factor for the plasticity from triplet timing. This has no
direct counterpart in our spiking level model but we assume a
positive value.

More importantly, the terms A+, A− are derived from the
contributions to plasticity from positive and negative spike pair
timing [here they are signed quantities; in (Pfister and Gerstner,
2006) they are absolute magnitudes]. Further, we endow them
with dopamine dependence and specificity under the D1/D2
MSN dichotomy. Thus, following (Gurney et al., 2009) we
use the data of Shen et al. (2008) to determine these terms
for D1-MSNs at high levels of dopamine AD1(hi)

+ , AD1(hi)
− , at

low levels of dopamine AD1(lo)
+ , AD1(lo)

− , and for correspond-
ing quantities for D2-MSNs; we refer to these eight quanti-
ties as plasticity coefficients. For example, with positive spike-
pair timing in D1-MSNs at high levels of dopamine, the data
imply strong LTP, and for negative spike-pair timing, weak
LTD (Shen et al., 2008). This led to the assignment shown
in Figure 7A (see “D1(hi)” bar grouping). Other coefficient
assignments are shown in Figure 7A and compared with the
“classic” finding for STDP in hippocampus and cortex, in

which with LTP/LTD is associated with positive/negative �t
(Song et al., 2000). Notice that several of the coefficient pairs
give LTP/LTD assignments which are “non-classical”; for exam-
ple, D2-MSNs at low dopamine have uniform LTP for both
timings.

At levels of dopamine, d, intermediate between the “low” and

“high” extremes, we define AD1/D2
± (d) as a function of dopamine

by “blending” the relevant plasticity coefficients together using a
monotonic, saturating function α(d) (see Figure 7B)

α(d) = 4d

1 + 4d
(11)

For example, for D1-MSNs, AD1+ is given by

AD1+ (d) = α(d)AD1(hi)
+ + (1 − α(d))AD1(lo)

+ (12)

with similar relations for AD1− (d), AD2+ (d), AD2− (d). This gives, in
turn, functional forms CBCM(d) derived from scalar factors CBCM

in Equation (10) (see Figures 7C,D).
Weights from both motor cortex and sensory cortex to stria-

tum (“motor weights” and “sensory weights,” respectively) are
subject to the learning rule described above. The motor weights
are supposed to endow the agent with the ability to perform the
three actions expressed in the action-subsystems. They are initial-
ized in such a way as to allow this to occur in the presence of the

FIGURE 7 | Construction of the learning rule. (A) The plasticity coefficients consistent with the data of Shen et al. (2008). (B) The dopamine mixing function
α(d) defined in Equation (11). (C,D) The dopamine-dependent versions of the factors CBCM in Equation (10) for D1 and D2-MSNs, respectively.
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exploration action, during an initial “weight calibration” learning
session. In contrast, the sensory weights are initialized to zero, and
any positive increments therein are thought of as supplying new
“biases” in the selection of the three given actions, derived from
contextual information. However, the uniform treatment of both
motor and sensory weights means their trajectories will mirror
each other in form (see for example, Figure 10).

3. RESULTS
3.1. CORTICO-STRIATAL PLASTICITY ALONE IS NOT SUFFICIENT TO

ACCOUNT FOR VARIABLE INTERVAL TRAINING DATA
Figure 8 shows the behavioral outcome for an agent with no
novelty salience (or its associated internal prediction model),
undergoing VI training in the block-bumping task. Results are
averaged over 10 repetitions with different initial random num-
ber seed, and the two panels show outcomes with and without
phasic dopamine enabled. This dichotomy will be a recurring
theme as we wish to explore the relative contributions of nov-
elty salience and phasic dopamine during learning. We will refer
to models with and without phasic dopamine enabled as “pDA,”
and “no-pDA” models, respectively. In the presence of phasic
dopamine, there is a statistically significant difference between
the number of interactions with the control (white) and target
(red) blocks. However, this difference is nowhere near as sub-
stantial as that shown in the data of Gancarz et al. (2011). We
conclude that other mechanisms must be at work and there-
fore invoked the notion of novelty salience as described in the
section 2.

3.2. NOVELTY SALIENCE CAN ACCOUNT FOR BEHAVIORAL TRENDS IN
VARIABLE INTERVAL LEARNING

Figure 9 shows the behavior for an agent in the presence
of novelty salience and an internal prediction model (see

section 2) undergoing VI learning (results are averaged over 10
repetitions). Both pDA and no-pDA models show qualitatively
similar behavior to that from the in vivo experiment in Figure 3.
That is, they show a substantial increase in active responses dur-
ing the response contingent phase which declines toward the
end of the experiment. In addition, the peak response does not
occur on the first day of training in the response contingent
phase. However, the no-pDA model shows markedly more active
responses during the response contingent phase than its pDA
counterpart. To quantify this, let rpeak, be the ratio (rounded
to nearest integer) of the peak number of active responses dur-
ing response contingency to the mean inactive response over
this time. Note that, while absolute numbers of responses in
the model are not directly comparable with those in vivo, we
might expect ratios of responses under different regimes to be
more so. For the in vivo experiment rpeak = 3, while for pDA
and no-pDA models rpeak = 7, 12, respectively. This feature is
therefore more realistically captured with the inclusion of phasic
dopamine.

The role of phasic dopamine in explaining these differences
in active responses is made apparent by reference to Figure 10,
which shows the dynamics of the cortico-striatal weights in
the active response (red-block-interaction) channel as learn-
ing progresses. For the no-pDA model there is (unsurprisingly)
little change in the weights in the response contingent phase
(for both D1 and D2-MSNs, and motor and sensory cortical
inputs). However, for the pDA model, there is a decrease in
D1-MSN weights and an increase in D2-MSN weights. This is
consistent with a decrease in the ability of the selection path-
way in basal ganglia to facilitate an active response, and an
increase in the potential of the NO–GO pathway to suppress it
(Frank et al., 2004) (see section 2.5.3). Phasic dopamine, and
the biologically plausible learning rule, are therefore directly

FIGURE 8 | Behavior of an agent with no novelty salience or internal

prediction model, performing the block-bumping experiment. (A,B)

For models with, and without, phasic dopamine, respectively (pDA,
no-pDA), and each plot is an average over 10 runs. These plots are
based on those of the in vivo data in Figure 3. Thus, each panel
shows the number of interactions with the block stimuli in each 15 min
session comprising a “virtual day” of learning, plotted against such

days. Error bars are 1 standard error of the mean. Open symbols are
for the white (control) block while solid symbols are for the red block,
which elicits a phasic outcome in the response contingent phase
(labeled “RC”). The habituation phase (when there is no environmental
phasic outcome) is designated “H.” The average of the interactions for
each block over the entire response contingent phase is shown in the
pair of data points on the extreme right of each panel.
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FIGURE 9 | Behavior of an agent with novelty salience and feature

prediction performing the block-bumping experiment with variable

interval training. (A,C) Have a similar interpretation to counterparts in Figure 8

and are for pDA and no-pDA models, respectively. (B,D) Show the behavior
within a virtual “day” (considered as three, 5 min epochs), averaged over the
response contingent phase; (B,D) are for pDA and no-pDA, respectively.

responsible for the relative, overall difference in active responses
in the pDA model, compared to its no-pDA counterpart
(Figure 9).

We can see, mechanistically, the reason for the weight changes
by examining the dynamics of the reinforcement signal (light
flash), the prediction model, and resulting dopamine signal.
These signals are shown in Figure 11. It is apparent that there
are many more dopamine “dips” (negative prediction errors)
than “bursts” (positive prediction errors) and so the factors
CBCM in the learning rule (Equation 10) are dominated by their
low dopamine values. For D1/D2-MSNs this is positive/negative,
respectively (Figure 7), which is also reflected in θBCM. In addi-
tion, the high novelty salience in cortex causes high activity
〈y2〉 in the MSNs, thereby amplifying θBCM and any consequent
effects on learning. These signs and magnitudes of θBCM lead to
LTD/LTP for D1/D2-MSNs being likely (as θBCM appears in the
factor (y − θBCM) in the learning rule). This pattern of learning
has computational and ethological consequences taken up in the
section 4.

3.3. PHASIC DOPAMINE PROMOTES PLASTICITY IN FIXED-RATIO
TRAINING CONSISTENT WITH ACTION LEARNING IN STRIATUM

Figure 12 shows the behavioral responses of the robot in the
fixed-ratio (FR) experiments. The results are qualitatively similar
to those for VI training but there are fewer active responses and,
unlike the VI behavior, the peak response occurs on the first day of
the response contingent phase. This prediction was borne out by
the study of Lloyd et al. (2012)—see Figure 3C. Within a session,
the number of active responses declines more steeply than the cor-
responding VI data. This is similar to the in vivo data (Figure 3C)
although the latter does not show such a tight clustering in the
first epoch, with some residual responding at the end of the
session.

The pDA and no-pDA models have similar behavior but the
former shows somewhat more active responses (especially on the
first response contingent day). This is quantified in the (rounded)
ratios rpeak which are 6 and 4, respectively. These are both smaller
than the values for the VI experiment, and have a different rank
order (that for pDA is larger for FR, but is smaller for VI).
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FIGURE 10 | Weight trajectories w*(t) for the active response channel, in

models with novelty salience and prediction, undergoing variable

interval training. Rows are for pDA and no-pDA models, columns for D1- and
D2-type MSNs. Weights from motor cortex and sensory cortex are labeled
“motor” and “sensory.” The trajectories are expressed as continuous

functions of time to show both within-day, and between-day dynamics, and
the onset of the response contingent phase (at the start of day 6) is indicated
at 75 min. These plots capture the statistics of the weights over a group of 10
models; the dark red line is the mean, and the red-shaded region
encompasses ±1 std dev.

The similarity in behavioral response over the pDA, no-pDA
variants is in stark contrast to the difference in weight trajectory
(Figure 13).

The pDA model shows a very large transient change in the
D1-MSN weights (both motor and sensory) with a substantial
final change compared to initial baseline. This plasticity is clearly
responsible for the extra activity in the response contingent phase
compared to that for no-pDA models. None of the other weight
trajectories show significant variation.

The clustering of active response in day 6 and the transient
weight change associated with this are explained by reference to
the prediction, novelty salience and dopamine signals shown in
Figure 14. Thus, there is a large increase in novelty salience in the
first part of the response contingent phase (panel A) but this is
short lived as the prediction becomes reliable. This is made pos-
sible, of course, by the reliable delivery of the reinforcement. The
phasic dopamine reflects this, and is almost always signalling pos-
itive reinforcement errors (the very few occasions for which this is
not the case, are caused by failure of the robot to bump properly
against the block). High levels of (phasic) dopamine occurring

during these events is associated with negative values of CBCM

for D1-MSNs in the learning rule [Equation (10), and Figure 7].
This implies θBCM < 0 too, so that there is a likelihood of LTP as
observed.

4. DISCUSSION
4.1. MAIN RESULTS AND THEIR INTERPRETATION
We have used the embodiment of a biologically plausible model
of intrinsically motivated operant learning (action discovery)
to explore the possible roles of cortical salience, cortico-striatal
plasticity in basal ganglia, and phasic dopamine therein. The
embodiment allowed us to use behavioral data (Gancarz et al.,
2011) to constrain the model, and our core model compo-
nent was sufficiently biologically plausible to take advantage of
a new framework for dopamine-dependent cortico-striatal plas-
ticity constrained by a comprehensive suite of physiological data
(Shen et al., 2008; Gurney et al., 2009).

In seeking an understanding of action discovery, we are
primarily interested in the ethological situation in which the
required action reliably produces the desired outcome; in the
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FIGURE 11 | Signals governing learning in pDA models with novelty

salience and prediction, undergoing variable interval training. (A) Shows
the novelty salience (solid green line) and prediction signal (dashed black line)
during the response contingent (RC) phase in a similar way to that used in

Figure 5, but here the symbols have been omitted. (B) Is similar to (A), but
for a smaller temporal window immediately after the onset of the RC phase.
(D) Shows the phasic dopamine signal corresponding to the events in (A).
(C) Is similar to (D) and relates to events in panel (B).

current context this is what has been referred to as the FR1
schedule. However, the data we have access to (Gancarz et al.,
2011) concern a VI schedule. We have shown that cortico-striatal
plasticity alone is insufficient to account for the increased active
response in this data. In order to successfully model the behav-
ioral data, we were therefore forced to consider the other possible
contribution to more prolific action selection—an increase in
the salience of the action request. Thus, we proposed that the
sensory contribution to the action request for block interaction
is enhanced by inheriting the novelty of any surprising pha-
sic outcome associated with the target block. To incorporate
this “novelty salience” we deployed a simple phenomenological
model of prediction of the phasic outcome and its influence on
the salience. We also used the prediction model to describe the
dynamics of the sensory prediction error signal manifest in phasic
dopamine.

With these components in place, the main trends in the behav-
ioral data of the in vivo experiment could be replicated. Moreover,
there was a somewhat counterintuitive result that there were fewer
active responses with phasic dopamine than without. Further,
the relative number of responses (active/inactive) in the data was
better approximated by the inclusion of phasic dopamine. This

difference could be explained by noting the preponderance of
phasic dopamine dips in the VI schedule, the consequent weight
dynamics, and their interpretation in the context of selection
(GO) and NO–GO pathways in basal ganglia.

The attenuation of activity by dopamine mediated plasticity
in the VI schedule is ethologically rational. The outcome in VI
training is highly unpredictable and it is therefore fruitless for
an intrinsically motivated agent to waste resources in attempt-
ing to build a model of agency. This notion has been formalized
by Schmidhuber (2009) who argues that agents seek to com-
press information about their world (equivalent to our internal
model building) and failure to see progress in this regard will
cause them to disengage with the situation. Attempts to persist
in doing so could lead to irrelevant and “superstitious” behavior
(Pear, 1985). The dopamine mediate plasticity appears to prevent
just this scenario. In addition, the failure of the D1-MSNs to show
strong LTP would mitigate against the possibility that these neu-
rons could learn to encode a match between their synapses and
cortical representations of the new action request.

We carried over the notion of novelty salience to the FR1
schedule; there is no reason to suppose that the mechanisms
for prediction and novelty salience generation suddenly become
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FIGURE 12 | Behavior of an agent with novelty salience and feature prediction performing the block-bumping experiment with fixed-ratio training. All
panels have the same significance as their counterparts for variable interval training in Figure 9. Thus, (A,B) are for pDA models, whereas (C,D) are for no-pDA models.

muted because the statistics of the stimulus are changed. The
result was a strong increase in active responses on the first day of
the response contingent phase. Overall activity during this time
was, however, less than that for the VI schedule. Both these pre-
dicted features were shown in a recent in vivo study (Lloyd et al.,
2012).

In contrast with the simulated VI result, phasic dopamine in
FR learning enhanced the activity level with respect to the no-
dopamine control. Further, much of the interaction occurred
early in the session (also broadly in line with the in vivo data) and
subsequent epochs within a session showed little interaction with
the blocks. Activity is refreshed somewhat at the start of each day,
which can be attributed to the dishabituation of block salience
between days.

The rapid increase in, and subsequent decline of, responding
with the novel situation is exactly what we would require with
our repetition bias hypothesis. The results suggest that, while the
behavioral repetition is due to a combination of novelty salience
and plasticity (there is more responding with phasic dopamine)
the bulk of this effect is caused by the novelty salience. We there-
fore predict that lesioning systems that may be responsible for

developing novelty salience should severely compromise action-
outcome learning (see discussion of novelty below).

We also predict a residual, persistent elevation of the num-
ber of active responses at the end of the response contingent
phase, compared to that at the end of the habituation phase.
There is some indication of this in the study of Lloyd et al.
(2012) but further experiments would help confirm or fal-
sify this outcome. In the event that it is true, this may be
interpreted as the “bumping-into-the-red-block” action having
acquired the status of a preferred action or affordance (Gibson,
1986; McGrenere and Ho, 2000). Thus, we suppose, along with
Cisek (2007), that affordances become what we have dubbed
“action requests,” subject to competitive selection by basal
ganglia.

The weights in FR learning show strong LTP in D1-MSNs
consistent with the encoding of the action in basal ganglia via
synaptic-afferent matching. There is a marked peak during the
early sessions of the response contingent phase (promoting rep-
etition bias) before a decline to an equilibrium level which is
elevated with respect to the initial value. It is only in the FR sched-
ule with phasic dopamine that we see such a substantial weight
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FIGURE 13 | Weight trajectories w*(t) for the active response channel, in models with novelty salience and prediction, undergoing fixed-ratio (FR-1)

training. All panels have the same significance as their counterparts for variable interval training in Figure 10. Note the different scale for D1 and D2-MSNs.

increase and so we deem these conditions to be necessary for
action learning.

4.2. RELATION TO OTHER WORK
There have been many attempts in disembodied models to
describe the role of phasic dopamine in animal learning. Most of
these use some kind of RL technique and, typically something like
the temporal difference (TD) algorithm (Sutton and Barto, 1998)
or variants therein—for a recent review see Samson et al. (2010).
These machine learning algorithms require an explicit representa-
tion of value as the expected sum of rewards over some predefined
trial or epoch. However, no such representation prevails in our
model. Further, in the TD-like schemes, there is usually a fine-
grained representation of time supporting a correspondingly rich
state-based description of the environment; we have no recourse
to such a description. Like TD, our model uses a prediction error.
However, this error has a quite different form from that in TD, is
used in a quite different way to update the weights, and the update
rule for the prediction is different.

Another hallmark of the general RL models is their empha-
sis on obtaining optimal behavior driven by explicit biological
reward. In contrast we have emphasized the concept of novelty

and sensory prediction as a primary source of reinforcement in
the learning rule. Novelty has been used in TD-learning models of
learning under phasic dopamine, appearing in the guise of “nov-
elty bonuses.” Kakade and Dayan (2002) show how such a model
may be used to enhance the explanatory power of the basic TD-
learning approach, but the very term “bonus,” is used advisedly
here to imply that novelty is an “add on,” and that optimality of
reward acquisition is the primary feature of the algorithms. We
revisit the issue of whether dopamine encodes reward or sensory
prediction errors in section 4.3 where we give a possible resolu-
tion of this apparent dichotomy. The model of Kakade and Dayan
(2002) is also unable to supply an explanation (even at an algo-
rithmic level) of the intrinsically motivated learning seen in the
study of Gancarz et al. (2011) because it does not address the
issues of novelty salience that we have found necessary in our
model.

In more biologically plausible (but still disembodied)
approaches, many models of RL in basal ganglia use the actor-
critic framework (Barto, 1995; Suri and Schultz, 1998, 1999).
However, the applicability of this framework to the study of
learning in basal ganglia has been questioned on the basis of its
biological plausibility (Joel et al., 2002). In contrast, our approach
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FIGURE 14 | Internal variables and phasic dopamine signals for a model with novelty salience and prediction undergoing fixed interval training. (A,B)

Show novelty salience and the prediction signal, and are counterparts to Figures 11B,C. (C,D) Show phasic dopamine and are counterparts to Figures 11A,D.

does not rely on the actor-critic scheme. Further, many of the RL
models that attempt to explain dopamine dynamics and learn-
ing in basal ganglia use the TD algorithm (Suri, 2002) which was
noted above to be quite different from our approach. In a recent
review, Frank (2011) notes several biologically plausible models
of dopamine modulated learning in basal ganglia (Brown et al.,
2004; Frank, 2005, 2006). However, these models do not address
the problems surrounding intrinsically motivated learning and
will therefore not seek to understand the automatically shaped,
phasic period of repetition bias under the control of surprise or
novelty, signalled by phasic dopamine. One recent model (Hazy
et al., 2010) does note the possible utility of encoding “novelty
value” in the phasic dopamine signal as well as reward, but this
model is at a somewhat abstract level without explicit reference to
basal ganglia components.

There are very few robotic models of operant learning that
seek to explain the role of phasic dopamine. The model by
Baldassarre et al. (2013) explores several of the issues in our gen-
eral framework but at higher level of abstraction. It has a less
physiologically constrained learning rule, several ad hoc mecha-
nisms in place to test general computational hypotheses (such as
repetition bias), the basal ganglia component is less well detailed,
no mention is made of novelty salience, and there is no behavioral
data against which it is constrained. Nevertheless, this model

does integrate many of the features in the general scheme out-
lined in the Introduction (Figure 1A) and show how they may
be deployed in concert with each other to achieve intrinsically
motivated learning of actions.

The model of Sporns and Alexander (2002) (see also
Alexander and Sporns, 2002) uses properties ascribed to the
animal dopaminergic system in its learning, but the model
architecture is rather abstract and has no reference to basal
ganglia and cortico-striatal connectivity. In contrast to our
own, this model also emphasizes the precise temporal repre-
sentation of reward prediction reminiscent of the TD learn-
ing algorithm. An explicit use of TD learning was invoked
by Pérez-Uribe (2001) but again, this model used a some-
what abstract actor-critic architecture. The model by Thompson
et al. (2010) emphasizes limbic loops through the basal gan-
glia which deal with genuine reward-related behavior rather
than intrinsically motivated behavior (hence no mention of nov-
elty salience) and, again, it uses a different approach to learn-
ing. Khamassi et al. (2011) have recently described a robot
model of learning with dopamine signalling prediction errors
based on salient phasic events but their emphasis is on plas-
ticity in cortico-cortical rather than cortico-striatal connections,
with the aim of storing action values in anterior cingulate
cortex (ACC).
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4.3. NOVELTY, DOPAMINE, AND REWARD
One of the key ideas in our general framework is that intrinsically
motivated action discovery is tightly bound up with the notion
of novelty; new and unexpected objects or situations cause an
agent to investigate them and discover operant contingencies. We
have invoked two kinds of novelty in the present model: stim-
ulus (object) novelty and surprise (phasic outcome). We have
identified the detection of the latter with the SC and have noted
the intimate link between the detection of surprise and release
of phasic dopamine (Comoli et al., 2003; Dommett et al., 2005).
However, the detection of novelty salience remains unresolved.
Several brain areas have implicated in the detection of novelty and
are candidates for this process including: lateral prefrontal cortex,
anterior insular and anterior temporal cortex, parahippocampal
cortices, and the hippocampal formation itself (Ranganath and
Rainer, 2003). In regards to the latter, Kumaran and Maguire
(2007) have proposed that the hippocampus acts as a compara-
tor between prediction and perception, while Lisman and Grace
(2005) have noted the link between hippocampus and midbrain
dopamine systems in novelty detection. Using fMRI studies in
humans, Bunzeck and Düzel (2006) have also demonstrated how
stimulus novelty can drive the activation of dopamine neurons.
However, when elicited by object novelty (rather than the sur-
prise of an outcome) phasic dopamine may be more potent
in facilitating learning in the structures which may encode the
prediction models—namely areas like the hippocampal complex
and prefrontal cortex (Lisman and Grace, 2005; Bunzeck and
Düzel, 2006)—rather than motor and associative territories of
striatum.

The preceding discussion has highlighted the ubiquity of pha-
sic dopamine as an encoder of novelty and, consistent with this, is
a recurrent theme in our work that dopamine is a sensory pre-
diction error. However, there is a substantial literature arguing
for its role in encoding reward (for recent review see Schultz,
2010). Thus, several studies (Fiorillo et al., 2003; Tobler et al.,
2005; Morris et al., 2006; Roesch et al., 2007) have shown that,
with well trained animals, size of reward or its probability of
delivery reward associated with unpredictable phasic cues pro-
duced phasic dopamine responses which reflected the expected
amount of reward. This is often cited as strong evidence that
phasic dopamine is signalling reward-prediction error. However,
one possible resolution of this apparent conflict is to suppose
that dopamine encodes a sensory prediction error which may
be modulated by reward value. This can occur because repeated
delivery of reward is known to sensitise primary sensory areas
including: visual cortex (Weil et al., 2010), somatosensory cor-
tex (Pleger et al., 2008), and SC (Ikeda and Hikosaka, 2003).
Thus, using an abbreviated form of our prior notation, let yf

and y∗
f be representations of a sensory feature and its predic-

tion, respectively, and let SR be a reward sensitization of yf

under extensive training (as typically deployed experimentally).
We now hypothesise (Gurney et al., 2013) that phasic dopamine
encodes

e = SR(yf − y∗
f ) (13)

Notice that e can still be thought of as a sensory prediction
error—there is no mention of a difference between observed or its

prediction, as such. The stimulus feature has been “tagged” with
additional value but the difference is fundamentally one between
sensory features and their prediction. This idea can accomodate
a recent theory by Bromberg-Martin et al. (2010) in which two
classes of dopamine neuron are identified. In one class, dopamine
neurons encode motivational value—the conventional idea that
dopamine signals prediction errors of rewarding/aversive stim-
uli with positive/negative-going responses, respectively. A sec-
ond class of neuron encode motivational salience with positive
responses irrespective of the rewarding/aversive significance of
the predicted stimulus. However, both classes of dopamine neu-
ron signal “alerting” or unpredicted sensory cues. This clas-
sification is consistent with Equation (13) if we allow two
cases in which SR is either a signed quantity, encoding reward-
ing/aversive value, or simply the absolute magnitude of this
quantity.

4.4. FUTURE DIRECTIONS
The action discovery used in our model is of the simplest kind; a
given “atomic” movement (bump a block) has been paired with
a context (the red block in this arena) to facilitate the predic-
tion of the outcome (light flash above the block). However, in
general we can imagine more complex combinations of action
components may need to be assembled with the context. For
example, the agent may not know how to perform a bumping
sequence (move forward, then back and slow down), in which
case it has to explore possible combinations of atomic move-
ments at a lower level of granularity and chunk them together to
make the new action. These lower level action components may
also have to occur simultaneously rather than sequentially (e.g.,
bumping may require extending an effector as well as moving
forward). Modeling the discovery of these more complex action
assemblies is an important next step.

One of the requirements of a multi-component action model
would be a true distributed representation of motoric commands.
Even with a single atomic movement this is most likely encoded in
a more plausible way a vector of command components. Further
work would test the learning rule with these higher dimensional
vector inputs. This was the approach taken in our spiking model
of plasticity (Gurney et al., 2009) and, indeed, one possible pro-
gression of the model would be to embed the spiking model of
MSNs into the larger basal ganglia model used here. This multi-
scale model would enable a closer examination of the finer details
of the learning rule as originally conceived. Finally, we aim to
test experimentally, predictions about the expected behavior of
animals in an FR learning schedule with dopamine lesions.
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APPENDIX
DETAILS OF BIOMIMETIC CORE MODEL
We give details here of the equations defining the biomimetic core
model which were not given in the main text. In most cases this
amounts to identifying the form of the net input I in Equation (5),
and parameterizing the output function (Equation 6). In what
follows, indices refer to action channels.

Basal ganglia
Sensory, and motor cortical output are denoted by yS

i , yM
i , respec-

tively. The tonic dopamine level λ = 0.2.

Striatum D1: ID1
i = (wS,D1

i yS
i + wM,D1

i yM
i )(1 + λ)

with initial weight values; wS,D1
i = 0,

wM,D1
i = 0.45

yD1
i = L(ID1

i , 0.1)

Striatum D2: ID2
i = (wS,D2

i yS
i + wM,D2

i yM
i )(1 − λ)

with initial weight values; wS,D2
i = 0,

wM,D2
i = 0.45

yD2
i = L(ID2

i , 0.1)

STN: ISTN
i = 0.4(yS

i + yM
i ) − 0.2yGPE

i

ySTN
i = L(ISTN

i , −0.25)

GPe: IGPe
i = 0.3

3∑
i=1

ySTN
i − 0.9yD2

i

yGPe
i = L(IGPe

i , −0.2)

GPi/SNr: IGPi
i = 0.3

3∑
i=1

ySTN
i − 0.7yD1

i − 0.4yGPe
i

yGPi
i = L(IGPi

i , −0.12)

Thalamus and brainstem

TRN : ITRN
i = yM

i + yVL
i

yTRN
i = L(ITRN

i , 0)

VL Thalamus : IVL
i = 0.9yM

i − yGPi
i

− 0.01yTRN
i

⎛
⎝1 − 0.11

∑
j �= i

yTRN
j

⎞
⎠

yVL = L(IVL
i , 0)

Brainstem: IBS
i = yM

i (1 − 1.5yGPi
i )

yBS
i = L(IBS

i , 0)

The action is behaviorally enacted if yBS
i > φ (recall φ = 0.5).

Cortex
For the sensory cortex, the input ci is provided by the salience
generation process (section 2.5.2)

IS
i = ci

yS
i = L(IS

i , 0)

For motor cortex, we consider two classes of action representa-
tion. For the “explore” action, arbitrarily assigned as channel 1

IM
1 = 0.75yS

1 + 0.89yVL
1

yM
i = L(IM

i , 0)

For the block-interaction channels (i = 2, 3), we incorporated a
recurrent, self reinforcing connection if the action is currently
selected.

IM
i = 0.75yS

i + 0.89yVL
1 + 0.005yM

i H(yBS
i − φ)

yM
i = L(IM

i , 0)

where H() is the Heaviside step function and φ is the same thresh-
old used in selecting behavior in brainstem (see “Thalamus and
Brainstem,” above). The self-recurrence here plays a similar role
to the “busy signal” used by Prescott et al. (2006) to ensure
correct execution of fixed action patters (FAPs) which should
not time-out before their completion. This signal was driven
explicitly by an internal clock and knowledge of the FAP dura-
tion. In contrast, we have taken a slightly different approach,
which is more neurally plausible and does allow for interrup-
tion of the action by a very highly salient competitor. In this
way we have something more akin to a soft-action pattern (SAP)
process.
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