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Early and late effects of objecthood and spatial
frequency on event-related potentials and
gamma band activity
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Abstract

Background: The visual system may process spatial frequency information in a low-to-high, coarse-to-fine sequence.
In particular, low and high spatial frequency information may be processed via different pathways during object
recognition, with LSF information projected rapidly to frontal areas and HSF processed later in visual ventral areas.
In an electroencephalographic study, we examined the time course of information processing for images filtered
to contain different ranges of spatial frequencies. Participants viewed either high spatial frequency (HSF), low
spatial frequency (LSF), or unfiltered, broadband (BB) images of objects or non-object textures, classifying them as
showing either man-made or natural objects, or non-objects. Event-related potentials (ERPs) and evoked and total
gamma band activity (eGBA and tGBA) recorded using the electroencephalogram were compared for object and
non-object images across the different spatial frequency ranges.

Results: The visual P1 showed independent modulations by object and spatial frequency, while for the N1 these
factors interacted. The P1 showed more positive amplitudes for objects than non-objects, and more positive amplitudes
for BB than for HSF images, which in turn evoked more positive amplitudes than LSF images. The peak-to-peak N1
showed that the N1 was much reduced for BB non-objects relative to all other images, while HSF and LSF non-objects
still elicited as negative an N1 as objects. In contrast, eGBA was influenced by spatial frequency and not objecthood,
while tGBA showed a stronger response to objects than non-objects.

Conclusions: Different pathways are involved in the processing of low and high spatial frequencies during object
recognition, as reflected in interactions between objecthood and spatial frequency in the visual N1 component.
Total gamma band seems to be related to a late, probably high-level representational process.
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Background
The visual system parses an enormous amount of infor-
mation in order to make sense of the world. Several
models of the visual system describe a coarse-to-fine se-
quence of parsing of visual information imposed by differ-
ential processing of spatial frequencies [1-3]; specifically,
low spatial frequencies (LSF) are privileged at early pro-
cessing stages whereas high spatial frequencies (HSF) are
privileged at later processing stages. Early, rapid process-
ing of LSF via the magnocellular visual pathway and
orbito-frontal cortex may have a critical role in object
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recognition: LSF provide information at a coarse scale,
and since they vary slowly across space, they provide rela-
tively clear information and a stable estimate of the global
shape of an object or scene. LSF provide sufficient coarse
information to allow a reasonable guess at the identity of
an object and guide subsequent processing of HSF in ven-
tral visual cortices [4]. The global precedence effect, in
which the global shape of a hierarchical form is recognized
faster than the local shapes which constitute it, may be
underpinned by speeded processing of LSFs [5-7]. HSF
vary much more rapidly across space, providing noisier,
less stable information which is nevertheless more specific
to the exact object or scene which is seen [8]. Thus, HSFs
support finer analysis, such as the identification of the
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local shapes, or discriminations between subordinate
object categories [9].
Event-related potentials (ERPs) are a valuable tool for

examining the temporal evolution of neural activity, and
thus provide a window into early interactions between
objecthood and spatial frequency. Previous ERP experi-
ments have examined the effects of differing spatial fre-
quency bands in face and object recognition on the early
perceptual P1 and N1 components, with somewhat mixed
results. For example, Pourtois, Dan, Grandjean, Sander
and Vuilleumier [10] found the P1 was enhanced for unfil-
tered faces relative to either high or low frequency filtered
faces, and that the N170 was almost abolished for filtered
faces. In contrast, Nakashima et al. [11] found a greater
positivity in the P1 to LSF faces and a greater negativity in
N170 to HSF faces. However, we also previously found a
greater positivity in the P1 and greater negativity in the
N1 for HSF relative to LSF objects using a categorization
task [12]. However, we did not directly contrast responses
to objects with responses to non-objects, and thus it is not
clear whether the differences in responses reflect an
object-specific method of processing stimuli or a more
general property of the visual system.
Additionally, there are obvious parallels between early

and late processing stages in models such as Bar et al.’s
[4] and patterns of oscillatory activity in the gamma
(>30 Hz) frequency band [13] typically observed during
object recognition. Gamma band activity (GBA) may
fulfil several critical roles in visual perception (see [14]
for a recent review), and in the context of object recog-
nition may reflect synchronization of disparate neural
populations representing individual features of an ob-
ject, and their binding into a unified percept. An early,
evoked (time- and phase-locked) GBA (eGBA) signal is
typically observed 50–150 ms after stimulus onset as
a clear peak in the lower gamma frequency range
(30–40 Hz). eGBA is highly sensitive to low-level
stimulus properties such as complexity [15] and size
[16], but generally does not differ between familiar and
unfamiliar objects [15,17-20]. Fründ, Busch, Körner,
Schadow, and Herrman [21] found a stronger early
(60–120 ms) eGBA response and greater phase-locking
to low frequency sine- or square-wave gratings (1 cycle
per degree; cpd) than to high frequency gratings
(10 cpd), and speculated that eGBA predominantly re-
flects magnocellular pathway excitation.
In contrast, induced – neither time- nor phase-locked –

GBA (iGBA) is increased for familiar relative to unfamiliar
objects in a window approximately 200–400 ms after
stimulus onset ([15], [17], [19], e.g. [22]). Although
iGBA findings might be compromised by a muscle artefact
arising from miniature eye movements [23], correction
methods for such artefacts now exist [24,25] and allow
once again the examination of gamma band activity.
Unlike eGBA, iGBA is relatively insensitive to low-level
stimulus properties such as complexity [15]. Neverthe-
less, it may be sensitive to spatial frequency: Adjamian
et al. [26] found that iGBA recorded using MEG peaked
in response to stimuli with a spatial frequency between 2–
4 cpd. Hadjipapas et al. [27] found much greater increases
in iGBA for 3.5 or 6 cpd gratings than for 0.5 cpd gratings.
However, the stimuli in both of these studies were sine- or
square-wave gratings, and the suggested neural sources
were in early visual cortices. It is not clear whether these
findings would extend to GBA in relation to more com-
plex stimuli or originating in higher-order visual cortices.
The hypothesized representational role of the iGBA and
its relatively late latency would suggest that it should be
relatively unaffected by low-level factors such as spatial
frequency.
An additional issue with many studies examining

how spatial frequency is important in object recogni-
tion is that the specific cut-off thresholds vary widely,
and are rarely motivated directly by physiological or
experimental evidence. A recent fMRI study found that
the orbito-frontal cortex/magnocellular route, which is
critical to Bar et al.’s [4] model of object recognition,
exhibits a greater response to stimuli with most energy
between 0.17 and 0.38 cycles per degree of visual angle.
In contrast, ventral areas critical to object recognition
more strongly respond to stimuli which are chiefly
composed of energy above 4.76 cpd [28]. We chose,
therefore, to contrast responses to images of objects
and non-objects which were either unfiltered (i.e. con-
tained the full range of spatial frequency information)
or filtered to remove selected frequency ranges (i.e.
HSF or LSF only images) in line with those which
evoked the strongest responses in the relevant cortical
areas [28]. Given that the P1 is typically associated with
sensitivity to low-level stimulus characteristics, we ex-
pected to see only effects of spatial frequency in the P1,
without effects of objecthood. In contrast, higher-level
characteristics (i.e. the presence or absence of an ob-
ject) may be reflected in the N1, and it is in the N1 we
might expect to see interactions between spatial fre-
quency and objecthood. We expected that spatial fre-
quency would modulate eGBA, but that objecthood
would not. In contrast, the later, induced GBA response
should be highest in response to objects but should not
be modulated by spatial frequency. Note that here we
examine total GBA (tGBA), which includes both iGBA
and eGBA. A common earlier practice was to subtract
the ERP from each trial before transformation to the
time-frequency domain in order to separate the evoked
from the induced gamma. However, this procedure has
little practical impact on the analysis of the late, non-
phase locked gamma response. Furthermore, it assumes
that the evoked response is stationary, and may introduce



Figure 1 Sample stimuli. Columns show unfiltered, high-pass filtered,
and low-pass filtered images. Noise images in the lower row were
created by randomizing the phase of the FFT of the intact object.
All pictures were matched for global luminance and RMS contrast.
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unwanted frequencies into the supposedly “induced”
response [29].

Methods
Participants
We recruited fifteen participants (ages 19 – 32, mean =
24 years) from the participant database of the University
of Leipzig EEG-Laboratory. Thirteen were right-handed, 2
left-handed. Three were male, 12 female. The study con-
formed to the Code of Ethics of the World Medical Asso-
ciation and was approved by the local ethics committee of
the University of Leipzig. Individual written informed con-
sent was obtained. Subjects either received class credit or
a small honorarium for participating.

Stimuli and apparatus
Two-hundred and forty grayscale photographs depicting
a single object against a neutral grey background were
drawn from a commercial image database (Hemera Photo
Objects). One-hundred and twenty of these photographs
were of man-made objects, such as items of furniture; the
other 120 were of natural objects, such as animals or fruit.
Each stimulus (including the surrounding grey back-
ground) was 400 × 400 pixels. To create HSF and LSF ver-
sions of each object, we first converted each broadband
image to the frequency domain using the fast Fourier
transform. We then multiplied the amplitude of the fre-
quency spectrum with a Gaussian low-pass filter with a
cut-off at ~4.7 cycles per degree for HSF images or high-
pass filter with a cut-off at ~0.9 cpd for LSF images. To
produce non-object noise textures corresponding to the
HSF, BB, and LSF images, we randomized the phase of the
frequency spectrum of each unfiltered and filtered image.
Thus, each noise texture had the identical amplitude
spectrum and spatial frequency content as the image
from which it was derived. We also matched the mean
(global luminance) and standard deviation (RMS con-
trast) of every image to the mean global luminance
and RMS contrast of the full set of BB images. Partici-
pants viewed the stimuli on a 17″ monitor (refresh
rate 85 Hz) at a screen resolution of 1024 × 768 pixels
from a distance of 80 cm. At this distance, the stimuli
subtended approximately 10 degrees of visual angle in
each direction (Figure 1).

Design
We manipulated two factors: Object (object or non-object
noise texture) × Spatial Frequency (HSF, BB, LSF). There
were 480 trials in total, with 80 trials per condition. In
object conditions, half of the trials showed natural objects,
while half showed man-made objects. The objects pre-
sented in each condition were counterbalanced across par-
ticipants, such that each object was presented an equal
number of times in every condition once data from all
participants was collected. The order of presentation of
the stimuli was randomized for each participant. Trials
were split into six blocks of 80, to allow brief rest periods
for participants during the EEG recording.
Trials began with a white fixation cross on a black

background presented for a randomly varying period of
500–800 ms. The fixation cross was then removed and a
stimulus image presented for 500 ms, after which the
image disappeared and was replaced with a fixation cross
for 1000 ms. The screen was then blank for a variable
period of 900–1200 ms. Participants were encouraged to
use this time to blink, and avoid making eye movements
or blinks while a stimulus or fixation cross was visible on
screen. To respond, participants pressed different buttons
to indicate whether each image showed a natural object, a
man-made object, or a non-object texture. For analysis,
we collapsed responses across man-made and natural ob-
jects, since our primary interest was in the contrast be-
tween objects and non-objects. Participants were given a
practice block of 54 trials, in which we presented images
created in the same way as those used in the actual experi-
ment but drawn from a different set of objects. The
Cogent toolbox for Matlab (Cogent, www.vislab.ucl.ac.uk/
Cogent/; The Mathworks, Inc, Natick, Massachusetts)
controlled the presentation of the stimuli.

Behavioural data analysis
Reaction times and errors were analysed using a two-way
repeated measures ANOVA with the factors Object (Ob-
ject, Non-object) and Spatial Frequency (HSF, BB, LSF).
Only reaction times on correct trials were included in the
analysis. As noted above, the data were collapsed across
living and non-living objects, since our primary interest
was in the contrast between objects and non-objects. Note
that for our error analysis, errors included categorizing a
living object as a non-living object and vice versa, any
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object as a non-object, and any non-object as an ob-
ject. Additionally, trials on which responses were not
made were also counted as errors. Where necessary,
Greenhouse-Geisser correction was used in cases of
violations of sphericity, and significant effects were
examined using post-hoc t-tests with Bonferroni-Holm
correction for multiple comparisons. Generalized eta-
squared is reported as a measure of effect size [30].

EEG recording and analysis
We recorded continuous EEG from 64 locations at a
sampling rate of 512 Hz using active Ag-AgCl electrodes
connected to a BioSemi Active-Two amplifier system
(BioSemi, Amsterdam, The Netherlands). Whereas many
EEG amplifiers have a separate, “ground” electrode, the Bio-
Semi system has two active electrodes placed close to elec-
trode POz of the international 10–20 system [31]: Common
Mode Sense (CMS) acts as a recording reference and Driven
Right Leg (DRL) serves as ground [32,33]. We also used four
electrooculograms (EOG) – above and below the right eye
and outer canthi of each eye – in order to exclude arte-
facts related to blinks and eye movements. Initial EEG
data processing was performed using the EEGLAB [34]
toolbox with in-house procedures running under the
Matlab environment (The Mathworks, Inc, Natick,
Massachusetts). The Fully Automated Statistical Thresh-
olding for EEG Artifact Rejection (FASTER) EEGLAB plug-
in was used to reject artefacts and interpolation of globally
and locally artefact contaminated channels [35]. We
corrected for miniature saccade artefacts following Keren
et al.’s [25] approach, using the microDetect EEGLAB
plug-in (https://github.com/craddm/microDetect).

ERP analysis
A 40 Hz low-pass Butterworth filter was applied to the data
before conducting event-related potential (ERP) analyses.
We assessed the P1 (85–130 ms) and N1 (145–220 ms) at
two lateral occipital electrode pairs (P7/PO7 and P8/PO8)
at which effects of object category are often displayed, typic-
ally with enhanced negativity for individual categories such
as faces ([36], the N170, e.g. [37]) or cars [38]. We defined
the clusters of electrodes and appropriate time windows for
ERP analyses on the basis of visual inspection of grand
mean plots. Note that since the studied components are
well established, with typical time-windows and topograph-
ies, circularity in this selection is minimal [39]. We used the
ERPLAB (http://erpinfo.org) plug-in for EEGLAB to calcu-
late the mean amplitude and local peak latency for each
component after subtracting the mean amplitude of a base-
line window from 200 ms prior to stimulus onset until
stimulus onset from each time point. To detect local peak
latency, ERPLAB searched over the time periods specified
above for the most positive (for the P1) or most negative
(N1) amplitude which was not surpassed within ±9.8 ms
(5 sampling points). This helps to prevent the detection al-
gorithm from selecting values from the rising edge of a
slope at the extremes of the time window. For example, if
both the peak of the P1 and the beginning of the transition
to a P2 are within the selected time range, then the peak of
the P1 should be selected rather than the rising P2 slope.
The absolute peak was taken if no local peak was found.
The detected peaks were visually inspected for each partici-
pant to ensure that the appropriate peaks were captured.
The P1 and N1 were analysed using a repeated-measures
ANOVA with the factors Object (Object, Non-Object),
Spatial Frequency (HSF, BB, and LSF) and Hemisphere
(Left, Right). All trials were included in the analyses, includ-
ing response errors; thus, as recommended by VanRullen
[40], the data were not conditioned on participant’s be-
havioural performance. Where necessary, Greenhouse-
Geisser correction was used in cases of violations of
sphericity, and significant effects were examined using
post-hoc t-tests with Bonferroni-Holm correction for mul-
tiple comparisons. Generalized eta-squared is reported as
a measure of effect size [30].
Time-frequency analysis
Time-frequency representations were obtained using
sliding-window FFT methods implemented in the Field-
Trip toolbox [41]. We applied bandstop 2nd order But-
terworth filters from 84–86 Hz and from 49–51 Hz to
remove activity relating to the (85 Hz) refresh rate of the
monitor and 50 Hz power line noise respectively. The
linear trend was also removed. Evoked power (time and
phase-locked to stimulus onset) was estimated by first
averaging the data across trials and then performing time-
frequency transformations. Total power (both evoked ac-
tivity and activity neither time- nor phase-locked to stimu-
lus onset) was estimated by performing time-frequency
transformations on each trial and then averaging across
trials. High-frequency power (30 to 110 Hz in 4 Hz steps)
was estimated using multitapers [42], with a fixed time win-
dow of 250 ms and 5 orthogonal Slepian tapers, yielding a
frequency smoothing of approximately 12 Hz. All activity
was normalized by dividing by the mean of a baseline
window from 400 to 100 ms before stimulus onset, yielding
a measure of percentage change relative to baseline activity.
Electrodes for the analysis of GBA were selected by aver-

aging the data across all conditions and choosing the re-
gions of maximal gamma band activity in parietal and
occipital areas. Thus, an occipital cluster was selected for
eGBA. The eGBA response has low variability between in-
dividuals, and typically peaks in the 30–40 Hz range ap-
proximately 100 ms after stimulus onset. Therefore, we
examined power averaged across this frequency range and
a time window from 50 to 150 ms after stimulus onset.
eGBA was examined using a repeated measures ANOVA
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with the factors Object (Object or Non-Object) and
Spatial Frequency (HSF, BB, or LSF).
For tGBA, we examined two bilaterally symmetric pos-

terior clusters, which correspond to areas where tGBA is
typically found after correction for miniature saccade arte-
facts [12,24,25]. We chose individual peak frequencies on
the basis of grand mean activity averaged across all condi-
tions for each individual participant, and analysed tGBA
from 200 ms after stimulus onset until stimulus offset
(500 ms), averaging across both the peak frequency and
one frequency bin on each side of that frequency (i.e. for a
peak frequency of 62 Hz, we averaged across the fre-
quency range 58–66 Hz). tGBA was examined using a re-
peated measures ANOVA with the factors Object (Object
or Non-Object) and Spatial Frequency (HSF, BB, or LSF).

Results
Behavioural data
Participants responded slower [F(1,14) = 80.38, p < .001,
ƞ2g. = .28] and made more errors [F(1,14) = 62.27, p < .001,
ƞ2g. = .53] when responding to objects (648 ms; 7% errors,
of which 5% were incorrectly categorizing an object, 1%
categorization of an object as a non-object, and 1% missed
responses) than to non-objects (541 ms; 1%).
There were significant main effects of Frequency for RTs

[F(2,28) = 92.08, p < .001, ƞ2g. = .06] and errors [F(2,28) =
68.59, p < .001, ƞ2g. = .5]. Participants responded fastest and
most accurately to BB (575 ms, 2% errors) images, with
slower but as accurate responses to HSF images (582 ms;
3%), and the slowest and least accurate responses to LSF
images (627 ms, 8%).
There was a significant interaction between Object and

Frequency for RTs [F(2,28) = 40.72, p < .001, ƞ2g. = .03] and
errors [F(2,28) = 44.90, p < .001, ƞ2g. = .34], see Figure 2.
Post-hoc tests indicated that RTs were significantly slower
when an object was present than when there was no ob-
ject on LSF (p < .001) and HSF trials (p = .02), while there
were no significant differences between objects and non-
objects on BB trials (p = .2). Additionally, responses to ob-
jects on LSF trials were slower than responses to both BB
and HSF non-objects (both ps < .001), while responses on
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Figure 2 Mean reaction times (ms) and errors (%). Error bars indicate b
HSF object trials were slower than responses on BB
(p = .04) non-object trials. There were significantly more er-
rors committed for LSF objects than in any other condition
(all ps < .001). There were also significantly more errors for
HSF objects than for BB (p = .002) and HSF (p = .005) non-
objects. There were no significant differences in errors be-
tween BB objects and non-objects (p = .2) or HSF objects
and non-objects (ps = .4). Errors did not significantly differ
across frequency for any non-objects (ps > .4).

Event-related potentials
In our analysis of P1 mean amplitudes, there was a sig-
nificant main effect of Object [F(1,14) = 14.59, p = .002,
ƞ2g. = .02], with more positive amplitudes on object
(3.67 μV) relative to non-object (3.05 μV) trials. Fur-
thermore, there was a significant main effect of Spatial
Frequency [F(2,28) = 17.95, p < .001, ƞ2g. = .04]. Pairwise
comparisons between each level of Spatial Frequency re-
vealed that amplitudes were more positive for BB images
(3.91 μV) than for HSF (3.26 μV; p < .001) and LSF images
(2.93 μV; p < .001). Responses to HSF images were also
significantly higher than to LSF images, despite the notice-
ably smaller difference (p = .01). Finally, there was a sig-
nificant main effect of Hemisphere [F(1,14) = 6.54, p = .02,
ƞ2g. = .04], with significantly more positive amplitudes in
the right hemisphere (3.80 μV) than the left hemisphere
(2.93 μV). No interactions were significant (all ps > .08).
See Figures 3 and 4 for an overview. For P1 peak latency,
no effects were significant (all ps > .08).
In our analysis of N1 mean amplitudes, there was a

significant main effect of Object [F(1,14) = 5.07, p = .04,
ƞ2g. = .03], with a more negative N1 amplitude for objects
(2.1 μV) than for non-objects (3.22 μV). There was also a
significant main effect of Spatial Frequency [F(2,28) = 33.71,
p < .001 ƞ2g. = .08], with more a negative N1 amplitude for
HSF images (1.70 μV) than for BB (3.91 μV; p < .001) and
LSF (2.36 μV; p = .01) images. LSF images were also more
negative than BB images (p < .001). However, there was a
significant interaction between Object and Spatial Fre-
quency [F(2,28) = 6.08, p < .001, ƞ2g. = .02], see Figures 3 and
5. The N1 was significantly more negative for BB objects
HSF BB LSF
Spatial frequency

Object

Non−object

ootstrapped 95% confidence intervals.
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Figure 3 ERP time course at the left and right parieto-occipital clusters. Solid lines show responses to objects, dashed lines responses
to non-objects. Red lines indicate responses to HSF images; blue lines indicate responses to BB images; green lines indicate responses to LSF
images. Shaded grey area indicates P1 time window; shaded pink area indicates N1 time window.
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than for BB non-objects (p < .001), and more negative for
LSF objects than for LSF non-objects (p = .03). However,
there was no significant difference between HSF objects
and HSF non-objects (p = 1). Thus, the N1 was sensitive to
objecthood for BB and LSF but not HSF images. The N1
was also significantly more negative for HSF (p = .003) and
LSF objects (p = .02) than for BB objects. Indeed, BB non-
objects elicited significantly more positive amplitudes than
any other combination of object and spatial frequency (all
ps < .001). Neither the main effect of Hemsiphere nor any
of the interactions involving Hemisphere were significant
(all ps > .2).
For N1 latencies, there were significantly longer peak

latencies [F(1,14) = 8.56, p = .01, ƞ2g. = .04] for objects
(173 ms) than for non-objects (165 ms). There was also
Figure 4 The interaction between object and spatial frequency in P1
clusters. Red bars show responses to objects, blue bars responses to non-
a significant main effect of Spatial Frequency [F(2,28) =
6.48, p = .005, ƞ2g. = .02], with significantly longer peak
latencies for HSF images (173 ms) than for LSF images
(166 ms). Peak latencies to BB images (168 ms) did not
significantly differ from those for HSF or LSF images.

Peak-to-peak analysis
In order to rule out the possibility that effects we observed
in the N1 amplitude were carry-over effects from the P1,
we also tested peak-to-peak amplitudes. We extracted the
peak amplitude of each condition for the P1 and N1 and
subtracted the N1 amplitude from the P1 amplitude,
allowing us to quantify the N1 effects independently from
the P1. We analysed peak-to-peak amplitudes with a re-
peated measures ANOVA with the factors Object (Object,
mean amplitudes for the Left and Right hemisphere electrode
objects. Error bars depict bootstrapped 95% confidence intervals.



Figure 5 N1 mean amplitudes for the interaction between object and spatial frequency at left and right hemisphere electrode clusters.
Error bars depict bootstrapped 95% confidence intervals.
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Non-Object), Spatial Frequency (HSF, BB, LSF), and
Hemisphere (Left, Right).
There were significantly greater N1 amplitudes (i.e. a

greater negative going deflection) for objects relative to
non-objects [F(1,14) = 7.40, p = .02, ƞ2g. = .04]. There were
no significant main effects of Spatial Frequency [F(2,28) =
2.33, p = .1, ƞ2g. = .003] or Hemisphere [F(1,14) = 1.81,
p = .2, ƞ2g. = .02]. However, there were significant interac-
tions between Object and Spatial Frequency [F(2,28) =
5.82, p = .003, ƞ2g. = .02] and Object, Spatial Frequency,
and Hemisphere [F(2,28) = 3.68, p = .04, ƞ2g. = .003], see
Figures 3 and 6. Significant two-way interactions should
be considered cautiously when a three-way interaction is
present. Nevertheless, in post-hoc tests the two-way inter-
action was driven by a significantly less negative N1 for
BB non-objects than for BB (p = .005), LSF (p = .02) and
HSF (p = .02) objects. Furthermore, it was less negative for
BB non-objects than for LSF non-objects (p = .002), with
marginal differences from HSF non-objects (p = .05).
Other comparisons were not significant (ps > .2).
Figure 6 Peak-to-peak (P1 minus N1) amplitudes for the interaction b
electrode clusters. Error bars depict bootstrapped 95% confidence interva
For the three-way interaction, no comparisons were sig-
nificant (all ps > .07), rendering statistical decomposition
of the interaction difficult. Inspection of Figures 3 and 6
suggests that the interaction is due to two small differ-
ences in the pattern across hemispheres. The difference
between BB objects and non-objects is present in both left
and right hemispheres. However, the smaller difference
between HSF objects and non-objects present in the right
hemisphere is absent from the left hemisphere. Similarly, a
small difference between LSF objects and non-objects is
apparent in the left hemisphere but absent from the right
hemisphere.

Evoked gamma band
As predicted, there was no effect of Object [F(1,14) = 1.30,
p = .3, ƞ2g. = .005] on evoked gamma band activity. How-
ever, there was a significant effect of Spatial Frequency
[F(2,28) = 5.29, p = .01, ƞ2g. = .02]. The change in evoked
gamma band activity was significantly greater for HSF
(805%) than BB (619%; p = .04) images. The difference
etween object and spatial frequency at left and right hemisphere
ls.
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between HSF and LSF images (634%) was marginal
(p = .06), while the difference between LSF and BB images
was clearly not significant (p = .8). Finally, the interaction
between Object and Spatial Frequency was not significant
[F(2,28) = 0.53, p = .6, ƞ2g. = .005], see Figure 7.

Total gamma band
Total gamma band activity showed a significantly greater
increase [F(1,14) = 28.3, p < .001, ƞ2g. = .14] relative to
baseline for objects (18.1%) than for non-objects (7.6%).
Neither the main effects of Spatial Frequency [F(2,28) =
2.44, p = .1, ƞ2g. = .008] nor Hemisphere [F(1,14) = .03,
p = .9, ƞ2g. < .001] were significant. Importantly, the two-
way interaction between Object and Spatial Frequency
was not significant [F(2,28) = 1.36, p = .3, ƞ2g. = .008], see
Figure 8. However, there was a significant interaction be-
tween Spatial Frequency and Hemisphere [F(2,28) = 5.86,
p = .007, ƞ2g. = .01]. Although no comparisons were sig-
nificant in post-hoc follow-up tests (all ps > .1), this
interaction was likely driven by smaller gamma band re-
sponses to HSF images in the left hemisphere than the
right hemisphere. Note that, although Figure 8 shows
Figure 7 Grand mean evoked GBA. (a) mean percent change from ba
condition; left column shows activity on object trials, right column on
averaged from 30–60 Hz and from 50-150 ms. Oval depicts electrode cluste
from baseline of eGBA. Red bars show eGBA on object trials, blue on non-o
the three-way interaction between Object, Spatial Fre-
quency, and Hemisphere, this interaction was not sig-
nificant [F(2,28) = 0.17, p = .8, ƞ2g. < .001]. No other
interactions were significant (all ps > .3).

Discussion
We presented high spatial frequency (HSF), low spatial
frequency (LSF), and broadband (BB) images of objects
and non-objects and asked participants to categorize
each image as depicting a living or non-living object, or
as a non-object. Models of visual object processing in
which processing of LSF precedes processing of HSF, or
in which different ranges of spatial frequencies are proc-
essed via different pathways [4], would predict early dif-
ferences in spatial frequency processing. As predicted,
we found that the P1 was sensitive to spatial frequency;
unexpectedly, we found that objects also provoked a
higher amplitude response than non-objects in the P1.
However, these factors did not interact. We also found
effects of spatial frequency and objecthood in the N1,
but, in contrast to the P1, we found that they interacted.
Our peak-to-peak analysis suggests the N1 was partially
seline in eGBA in the range 30 – 60 Hz, separately for each
non-object trials. (b) Topographical representation of eGBA,
r selected for analysis. (c) bar graph depicting mean percent change
bject trials. Error bars depict 95% confidence intervals.



Figure 8 Grand mean total gamma band activity. (a) Mean percent change from baseline in tGBA for each individual condition. Left column
shows activity on object trials, right column shows activity on non-object trials. (b) topography of tGBA averaged across all conditions, 40–90 Hz,
and 200-500 ms. Black ovals indicate the electrode clusters used for analysis. (c) Bar graph showing mean percent change in tGBA for each condition.
Red bars show tGBA on object trials, blue on non-object trials. Error bars depict 95% confidence intervals.
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moderated by the P1 since it yielded different results to
our analysis N1 mean amplitudes. It revealed slight differ-
ences across hemispheres which were otherwise not ap-
parent, but, more importantly, a clear interaction between
objecthood and spatial frequency. As predicted, we found
an effect of spatial frequency on evoked gamma band ac-
tivity (eGBA) but no effect of objecthood. And while the
overall difference between objects and non-objects in total
gamma band activity (tGBA) was substantial, tGBA was
not modulated by spatial frequency overall. These results
are broadly consistent with a model in which different
spatial frequencies are processed by different routes.

Event-related potentials
Schendan and Lucia [43] suggested that object sensitivity in
the P1 and N1 time windows largely reflects figure-ground
segregation. We found that the P1 exhibited object-selective
enhancement, with more positive amplitudes for objects
than non-objects. Salient local contrast edges strongly con-
tribute to figure-ground segregation. Given that they are
present in object images but are largely reduced or absent in
non-objects, this may drive early differences between these
classes of image. A possible alternative explanation for is
that these differences reflect a task difference between ob-
jects and non-objects. For non-objects, the task was fin-
ished once the decision had been made that the stimulus
was a non-object, whereas further processing would have
been required to establish whether objects were living or
non-living. Thus, it is possible that the level of attention
paid to objects was higher than to non-objects, since the
task was harder for objects.
If this were correct, the same explanation might hold for

N1 differences between objects and non-objects. However,
in contrast to the P1, the N1 showed an interaction be-
tween objecthood and spatial frequency in our analysis of
mean amplitudes. Once P1 amplitudes were taken into ac-
count with a peak-to-peak amplitude analysis, this inter-
action still obtained, albeit with some minor differences.
In both analyses, although there were small but non-
significant differences in patterns for HSF and LSF images
across hemispheres, there was a clear effect of objecthood
for broadband images, with a less negative N1 for BB non-
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objects than for any other category of image. In fact, the
N1 was almost absent for BB non-objects. HSF and LSF
images, on the other hand, produced similar negativities
for objects and non-objects. An attention account thus
seems unlikely to fully account for this pattern, since it
would predict overall less negative N1 amplitudes for non-
objects, rather than only for BB non-objects.
As noted earlier, task differences may alter spatial fre-

quency processing in the N170 to faces [44]. Previously, we
did not find evidence for such task-related differences in the
N1 to objects [12]. In that experiment, participants switched
between a basic-level, grammatical gender classification task
and a superordinate, living/non-living categorization task.
The visual N1 may index fine-grained discrimination pro-
cesses [45], which would still be ongoing for most stimuli.
For all objects, participants would likely still be determining
whether the object was living or non-living. It is possible
that for BB non-objects sufficient processing had been com-
pleted for little further processing to be required. BB object
categorization was as fast as categorizing a BB non-object as
a non-object, which was not true for LSF or HSF object
categorization, suggesting an overall processing advantage
for BB images. To relate the N1 findings to models such as
Bar et al.’s [4], in which LSF are processed fastest and used
to guide subsequent HSF processing, the BB images are the
only images which provide both HSF and LSF information,
and thus that have viable information to process early and
inform subsequent processing. Thus, BB images should
show different patterns to HSF and LSF only images, since
both the initial LSF guess and subsequent HSF confirma-
tion can proceed as usual.
In addition, the P1 was independently influenced by

spatial frequency, with higher amplitudes for BB images
than for HSF images, and higher amplitudes for HSF im-
ages than LSF images. Our spatial frequency effect is con-
sistent with our previous study on object categorization at
different levels of specificity [12], in which we found higher
P1 amplitudes for HSF relative to LSF objects. That the P1
was greater for images containing HSF (since BB images
also contain HSF) than LSF only images might suggest that
the P1 largely reflects the HSF pathway. However, this
would not necessarily predict that the BB images would
drive a larger P1 than HSF images. One possibility is that
total spectral power may have driven this difference [46].
Although we matched the images for luminance and con-
trast, filtering necessarily removes large regions of spectral
power from an image, and thus a BB image will necessarily
have higher spectral power across a broad range of frequen-
cies than a HSF image. This may drive a stronger response
than a stimulus targeted a particular range of frequencies.

Gamma band activity
As predicted, we found an effect of spatial frequency but
not of objecthood in eGBA. In a previous report, there
was higher eGBA in response to low frequency stimuli
compared to high frequency stimuli [21], whereas here,
we found higher eGBA in response to high frequency
stimuli. Fründ et al.’s difference was between responses to
1 cycle per degree (cpd) and 10 cpd stimuli; there was no
significant difference between 1 cpd and 5.5 cpd stimuli,
which are approximately the cut-offs used for our stimuli
(~0.9 cpd and ~4.7 cpd). Note also that our stimuli are
complex, and contain information at different spatial fre-
quencies, whereas the sine-wave gratings used by Fründ
et al. do not. Thus there are a number of differences in
the stimuli across the studies which may make the two
difficult to directly compare. Nevertheless, this does indi-
cate that spatial frequency may interact with other factors
in driving eGBA. Furthermore, that eGBA did not signifi-
cantly differ for objects and non-objects, in keeping with
many previous findings [15,18,19], does not support the
suggestion that evoked GBA reflects the matching of a
stimulus to a stored representation [47].
In contrast to the lack of an effect of objecthood on

eGBA, the overall difference between objects and non-
objects in tGBA was substantial, with a relatively large
effect size (ƞ2g. = .14). This effect was not modulated by
spatial frequency, in keeping with our suggestion that it
should reflect predominantly high-level stimulus charac-
teristics, and specifically, objecthood. There was a small
but significant interaction between spatial frequency and
hemisphere, which was driven by slightly lower tGBA in
response to HSF stimuli in the left hemisphere. However,
the pattern of previous results regarding hemispheric
spatial frequency specialization is diverse and given that
the effect was weak we do not make strong further inter-
pretations [48-53]. We would suggest that this inter-
action indicates that ongoing, artefact-corrected tGBA
may not reflect only the accessing of high-level, abstract
object representation, though the data here were consist-
ent with that being its primary role.
With respect to models of visual object processing in

which LSF are processed first followed by HSF [4], our
data is most consistent with tGBA only reflecting later
stages of such models. tGBA activity in response to
non-objects was in general also above baseline levels
(see Figure 8). It thus seems unlikely that tGBA is driven
by semantic information alone, given the absence of such
information from our non-object stimuli. In regard to the
physiological role of this gamma band activity, we would
speculate that it may result from recurrent processing in
higher visual cortices: it begins shortly after the time at
which Bar et al.’s [4] model predicts that such processing
begins in infero-temporal cortices with the back-projection
of an object-category guess from OFC. As such, the onset
of this activity may vary in time somewhat, dependent on
the speed at which previous steps in the processing chain
are completed.
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Conclusions
Overall, we found that the visual event-related P1 compo-
nent showed independent modulations by objecthood and
spatial frequency, while the N1 showed varying amplitudes
based on a combination of both spatial frequency and
objecthood. We would speculate that rather than early sen-
sitivity to objecthood in the P1 reflecting early high-level
processing, it may be related to figure-ground organization.
The reduction in the N1 response to BB non-objects
may reflect relatively easy categorization of these stim-
uli as non-objects, given that they had both high and low
spatial frequency information. Thus, little further visual dis-
crimination was necessary for such stimuli. Additionally,
artefact-corrected tGBA is relatively insensitive to spatial-
frequency, suggesting that it may be the activation of a
high-level, relatively abstract object representation. The ele-
vated gamma relative to baseline for non-objects is consist-
ent with the late gamma response to some extent reflecting
ongoing perceptual processing, possibly supplemented by
high-level representational analysis. Thus, our ERP and
gamma band results are consistent with different, low and
high spatial frequency ranges being processed by different
pathways at different speeds during object recognition.
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