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Abstract—This paper analyses the concept of Limif Set in
Iterative Learning Control. The authors investigate the exis-
tence of stable and unstable parts of Limit Set and demonstrate
that there will often exist in practice. This is illustrate via a
2-dimensional example where the convergence of the learning
algorithm is analyzed from the error's dynamical behaviour.
These ideas are extended to /N-dimensional cases by analogy
and example.

Learning Control, Iterative systems, Optimization, Nonlin-
ear systems.

I. INTRODUCTION

Iterative learning control is a technique to control systems
operating in a repetitive mode with the additional require-
ment that a specified output trajectory 7(t) defined over
a finite time interval [0,7] is followed to high precision.
There are numerous examples of such systems including
robot manipulators that are required to repeat a given task to
a high precision. The main idea of iterative learning control
is to use information from previous executions of the task in
order to improve performance from trial to trial in the sense
that the tracking error is sequentially reduced [1], this is:
Limy—.oollex|] = 0.

Many approaches to ILC have been presented in past: A
source of work up to 1993 is Moore [2] and the relevant
cited references, and for more recent work the especial issue
[3] together with conference papers and workshops. The ILC
algorithm used in this paper, uses parameter optimization
through a quadratic performance index as a method to es-
tablish the iterative learning control law. With this algorithm,
monotonic convergence of the error to zero is guaranteed if
the original system is a discrete-time LTI system and satisfies
a positivity condition [4].

In the case of nonpositive definite plants, the required results
of monotonic convergence to zero are not guaranteed. This
anomalous behavior that will be analyzed in this paper and
linked to @stair-like@ convergence behavior where periods
of slow convergence over several iterations are followed
by rapid convergence. this can happen several times in an
iterative sequence.

The structure of the paper is as follows: In section 2 the ILC
algorithm for a generic discrete time systems is proposed,
the concept of Limit Set is introduced. Section 3 presents
the concept of stability and instability of the limit set.
A 2-Dimensional example is presented. In section 4 the
phase-plane analysis for the previous example is carried
out. Section 5 extends the ideas here exposed to the N-

dimensional cases. Section 6 contains some conclusions and
proposes future work directions.

II. A BASIC ALGORITHM

Given the system:
z(t+ 1) = Az(t) + Bult), y(t) =Cz(t) )

where the state z(-) € R", output y(-) € R, input u(-) € R
and z(0) = zg. The operators A, B and C are matrices of
appropriate dimensions. It will be assumed for simplicity
that CB # 0 and the system (1) is controllable and
observable. The idea is to find an iterative control law

kg1 = f(UkyUk-1,"" ", €k+1,€k, " "+, Ek—s) SO that
Limp—eollexll =0, Limg_o|lur —u*|] =0

where ur =  [ug(0),ux(l), -, ux(T))T, w =
[we(0),w(1), -, uk(T)T, e = [r(0) — ye(0),m(1) —
yk(1), -, r(T) — yk(T))T, || - || is a suitable norm and k
is the trial index. Adopting the simple feedforward control
law as in [4]:

Up+1(t) = uk(t) + Betren(t +1) @

where Sxy1 is a scalar gain parameter that will vary at each
trial, it could be time-varied according to Sk+1(t) where ¢ €
[0,T) and h = &.

In order to obtain the control input uz4+1 on the (k + 1)"'1
trial, at the end of each trial k, Bx4+1 is selected to be the
solution of the quadratic optimization problem:

.Bk+1 = minuku (Jk:+1 (,Bk+l)) ©)
Ck+1 =T — Yk+1y Yk41 = Gupy1

where G is a lower triangular matrix which elements are
given by the Markov parameters of the plant, G;; =
CA* B, (see[2]) and the performance index J(Bk+1) is
defined as:

J(Br+1) = |lex+1|* +whiy, @

and w > 0.

It is to be noted that the first term of (4) is designed to keep
the tracking error small at each iteration. The second term
of (4) tries to keep the magnitude of S+ small, resulting
in a more cautious and robust algorithm.




-

Using the updating law (2) and e = r — Gu the tracking
error update relation is of the form:

I(Brr1) = llewrr|P+whi iy = 1= Prs1G)exl* +whiyy
= [lexll* = Brr1el (G + GT)ex + Biyal|Gexl|* +whksa

Minimizing with respect x4 gives:
< ey, Gep >
w + ||Gel|?

where < -, > is the chosen inner product and from (3) the
error at each trial k is given by the nonlinear iteration:

ex+1 = [I — Pr+1Glex (6)

Proposition 1: The error e, decreases monotonically,
ek ()| < llex(-)l| with equality iff Byr1 = 0.

Br+1 = (5

Proposition 2: Limy_er = 0if G+ GT > 0 or
G+GT <.

At this point it is necessary to introduce the concept
of Limit Set, Sso, as the set of all the possible values the
error can converge fo:

Soo = [eoo 1 €5, (G +GCT)exs =0, (el,Gew =0)] (7

This set is [0] iff G+ GT >0 or G+ GT <.

In the next section, the dynamics of the limit set are going
to be studied in the sense that its stability properties will be
under discussion. A practical 2-dimensional example will be
presented to illustrate the main ideas.

ITII. LIMIT SETS
A. Overview

As introduced in 2, S, denotes all possible cluster
points of the ILC algorithm. In this section its dynamics are
going to be studied from the stability point of view, defining
the concept of stability-instability for the limit set.

The limit set Seo # 0, iff G+G7 is not sign definite, this is,
the limit set contains eq # 0 if G+ G7 is not sign definite.
In the case of eg € S then ex = eg Vk and then , the limit
set Soo can be thought as the set of equilibrium points of
the ILC algorithm regarded as a dynamical system.

One might expect such equilibria to have stability properties ,
just as discrete dynamical systems do. In fact these dynamics
can be found presenting a "stair”-like behavior as appears
in fig.(1).

The apparent convergence (plateau) followed by further
dynamics and a seconds phase of convergence, suggest a
complex behavior of the limit set. The purpose of this
paper is to explore this complex behavior by regarding the
algorithm as a dynamical system. It is shown that some parts
of the limit set denoted by

el (G+GT)Geoo >0, €L (G+GT)ew =0
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Fig. 2. Different regions of attraction in the Soo

attract trajectories, whilst the parts of the limit set where
e(C 4+ GF )Gl < 0

repel trajectories.

This section provides the detailed background to these
statements and illustrates the graphical form of the
conditions using the 2-D case. Note, that the components of
Soo Where eI (G + GT)Ges = 0 are not studied as these
dynamics are far more complex, this will be addressed in
future works.

The generalization of these ideas to the N-dimensional case
will be presented in the next section.

Recalling the definition of Limit Set as in (7), intuitively (see
fig.2), any ey, close to an attracting component, converges to
a point e, in Soo. In the same way, if ey, is near a repelling
component of the limit set, e moves away from Se.




Fig. 3. Level curves for 3

B. Analysis

The definition of limit set has been given in previous
section and its analogy with a discrete time system has been
addressed in the sense that the limit set presents a dynamical
behavior consisting of attracting and repelling parts. In this
section, the mathematical analysis of this behavior is going
to be studied and a 2-dimensional example will be presented.
It must be noted that the iterative maps are of the form:

=3 g €k4+1
( Br+1 ) ( Br+2 ) @

with equilibrium points (see [4]):
el Gew =L (G+GT)ew =0

€oo . _
( ,Bco ) H IBDO =S 0:
©)

The task in here is to analyze the dynamics of the S, via
the study of the dynamics of [, this is, by studying the
level curves of § = constant in R™ (fig.3). The intuitive
geometric condition for stability will be that e, moves
towards the set So.

In order to simplify the analysis, note that those parts of S
that attract trajectories close to So. satisfy:

(Ok+1 —Be)Bk <0

and repel trajectories if (Ox41 — Bk)Br > 0.

From a geometric point of view, this can be summarized as
follows:

Proposition 3: Close to the point e € Soo,

Bi(Be+1 — Bk) >0, iff eL(G+GT)Geswn < 0.

Proof:
Bitr — Br = 68 ~ J(ex)T bk,

where J is the Jacobian and from (6), 41 = ex — O 1Gex.
Therefore,

88 ~ —J7 (ex)Br+1Ger = —Brr1el (G + GT)Gey
e ,Bk+15ﬁ = —,B.E_{_IB{(G + GT)C-'ek.

Proposition 4: Close to the point eo, € S,

Be(Brar — Br) <0, iff eL(G+G")Gew > 0.

Proof: similar to proof above.

These results have direct interpretation in terms of the
stability properties of the components of S,.. For example,

Proposition 5: The points of the S, (e : ef'Ge = 0) for
which eT(G + GT)Ge < 0 is satisfied, are non-attracting
points.

In order to throw light at the nature of these conditions,
consider the case of 2-dimensional matrix G:

o 1 0 T _ 2 «
G_(a 1), G+G ‘(a 2) (10)

with eigenvalues of G + G at A = 2 + o and eigenvectors
vy, = (1,1)T,u5 = (=1,1)T. The eigenvalues and
eigenvectors of GT + G need to be studied in order to
analyze the dynamics of the S..:

e G+GT>0iff a?<4

« (G + GT) singular iff o + 2

o (G + G7T) sign-indefinite iff a? >4
Represented in the orthogonal eigenbasis of (G + G7),
eT (G + GT)e =0 is just:

e=(m( : )im( ”11))-7, YER

an
where ~ is arbitrary.
In the case of @ > 2, there are two branches of the S
(stable and unstable, S~ and S* respectively) which can
be seen in fig.(4) and correspond to the different values +
of (11). It is seen that St yields negative values and S~
yields positive values, i.e.: the component St of S, repels
solutions whilst S~ attracts solutions:

This is confirmed by evaluating €T (GT + G)Ge,
eT(GT + G)Ge = (20:(02 —4) £22*/a? - 4) -2

which is negative on St and positive on §~ if o > 2. As
a consequence, it is expected that almost all errors ey to
converge towards the attracting parts of the Sq,i.e.:

Limit er €S,

k—o0

for almost all eg € R2.
In order to support this idea of the sensitivity to the choice
of initial error, ep, consider the G matrix with o = 3:

o= (s 7)
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Fig. 5. Log(||ex||?) with +0.0001 and —0.0001 displacement from eqz

In this case the S is parametrised:
e=( a—‘Z( _11 ):I:\/a-i-Q( i ))-’y, v € R.

Taking the initial value of the error eg € S* to be the pair
(1 —+/5+46,1+ +/5) where a small displacement § = 1075
from the point (1 —+/5,1++/5) is applied, it can be seen in
fig.(5) the different performance of the norm of the error: In
the case of a negative perturbation, the error ey achieves a
stationary value after approximately 10 iterations, whilst in
the case of a positive perturbation, it decreases abruptly and
then continues to decrease but at a slower rate. The difference
in magnitude in the two cases is very large.

The great difference in performances indicates great sensi-
tivity close to the unstable component St of S... The final
values of Log(||ex||*) depend on the displacement & from
the initial eg. That is, the convergence properties depend on
the distance of the initial error from the stable part of the

limit set, S+.

If now 4 is varied using the values § = 0.1,0.01, 0.00001, it
can be seen in fig. (6) that the smaller the perturbation, the
greater the tendency of the ||eg|| to exhibit the ”stair-like”
properties seen in fig.(1). It is therefore seen that ”stair-like”
behaviors can occur and will tend to occur at points near the
unstable component of the limit set.

‘Solidline d=-01

Log(e,)

Fig. 6. Log(|lex|[?) with different displacements from epz

In practical terms this may leed to problems in differentiating
between final or temporary convergence in performance. The
next section looks at the previous example in terms of exact
trajectories in R2.

IV. PHASE-PLANE ANALYSIS

In this section, the phase-plane dynamics of (1) in R? are
analyzed and the detailed behavior of the previous example
is studied.

Take the matrix G to be as in (10), with « = 3 and e; =
(1=v/3,1+v/5) € S perturbed as g = (1—+/5+4, 1++/5).
Two different cases are going to be studied; On the first case,
the initial error is ep = (1 — /5 — 8,1 + v/5), and in the
second case, eg = (1 —v/5+46,1+/5), with § = 1075, The
different movements of the ILC trajectories from St to S~
can be seen in fig.(7):

The speed of convergence is indicated by plotting ||ef+1 —
ex|| at each trial k for both cases.

o 1% Case: § = —1075. Starting from the given ey with
Log(||eol|?) = 2.4849, after 100 iterations, the error
reaches the point ej00 = (—2.8479, 1.0878) € S, such
that Log(||e100|?) = 2.2282 as appears in fig.(8) is
smaller. It can be seen too, how the dynamics of the
system, ||lek||, Bk, |lex+1 — ex|| change at each trial.

o 2 Case: 6 = 1075 In this case, ejpo =
(0.1209, —0.0461) € S, and it can seen in fig.(9) that
the final value of Log||e;00||* = —4.0903.

In both cases it is seen that rapid movements of e, are
associated with rapid movements in 3; and ||exy1 — ex|-
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Finally, the movement from the unstable S* to the

stable S~ region is seen in fig.(10) that plots the normalized
.. el (G+GT)Gey

quantity —E-————F,
. Ek Ck

to positive values.

starting off negative but converging

V. GENERALIZATION TO N-DIMENSIONAL CASES

In this section, the N-dimensional case will be consid-
ered in a similar manner as in previous section for the 2-
dimensional example. this is done using a nonpositive plant
of the form, for example;

(12)
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the state space model in this case is defined by the following
matrices:

A=(_12 _01), B=((1)), c=(0, 1) (13)

Converting it into a discrete model using ZOH with time
step h = 0.1, the next discrete time representation of (12) is

obtained:
& - 0.81435 —0.090484 A= 0.090484
“\ 0.090484  0.99532 } —\ 0.0046788
C=(0, 1) (14)

For this simulation the reference signal was chosen to be
r(t) = e sinwt over the time interval ¢ € [0,20] with
a frequency of w = 1. The value of the parameter W is
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W = 107% and ug = 0.

The eigenvalues of the 200x200 matrix (G + GT) are in
the range of (—0.2086, 1.8942), so this shows that G + GT
is not a positive definite matrix and hence S, contains
non-zero points in R2%0- a high dimensional space.

Fig.(11) shows the evolution of the norm of the error
; el (G4+GT)Gex
and the evolution of @ = =07 —F,

ek (3%
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Fig. 11. Error and normalized ef (G + G7)Gey,

It is clear that in this high dimension case the “stair-like”
behavior of the norm of error appears in the same form as in
fig.(1). Slow movement of the norm is associated with small
values of Gy and hence convergence of the error vector to
Seo. The sign of e(G + GT)GeT varies taking both positive
and negative values. In particular, it moves rapidly from
negative to positive as the error norm reduces rapidly. This
is consistent with the intuition that the algorithm is moving
from a portion close to S* towards S~.

Fig.(12) shows the evolution of the beta value 3; and the
evolution of the distance between two consecutive errors
|lex+1 — ex||. These dynamics are strongly correlated to the
changes in the dynamics of eg.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, the concepts of Limit Set and its stability
have been introduced. Experience in simulations suggests the
existence of attracting and repelling components of the Limit
Set. conditions for these properties have been derived in
general and the existence of repelling components illustrated
by a detailed 2-Dimensional example.

Altough the details are different, it is seen that the general
conclusions deduced from the N = 2 example do throw light
on more general high dimensional cases. The authors believe
that the observed phenomena are typical of behaviours that
will be met in all applications of parameter-optimal ILC.
Further study of the properties of S, ST and S~ are seen
to be crucial to both theory and practice and will extend to
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more general parameter-optimal ILC methods. Further work
is hence desirable to understand the behaviour more clearly
and to develop diagnostic tools to monitor and improve
performance. Current work in Sheffield is addressing these
issues.
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