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Significance statement 23 

We review state-of-the art genotypic adaptation modelling and suggest potential avenues to 24 

better realise the potential of model-based studies of genotypic adaptation for guiding 25 

future crop breeding efforts. 26 

 27 

Abstract 28 

Genotypic adaptation involves the incorporation of novel traits in crop varieties so as to 29 

enhance food productivity and stability and is expected to be one of the most important 30 

adaptation strategies to future climate change. Simulation modelling can provide the basis 31 

for evaluating the biophysical potential of crop traits for genotypic adaptation. This review 32 

focuses on the use of models for assessing the potential benefits of genotypic adaptation as 33 

a response strategy to projected climate change impacts. We first review some key crop 34 

responses to the environment as well as the role of models and model ensembles for 35 

assessing impacts and adaptation. Finally, we describe how crop-climate models can help 36 

focus the development of future-adapted crop germplasm in breeding programs. While 37 

recently published modelling studies have demonstrated the potential of genotypic 38 

adaptation strategies and ideotype design, we argue that for model-based studies of 39 

genotypic adaptation to be used in crop breeding, it is critical that modelled traits are better 40 

grounded in genetic and physiological knowledge. To this aim, two main goals need to be 41 

pursued in future studies: (1) a better understanding of plant processes that limit 42 

productivity under future climate change; and (2) a coupling between genetic and crop 43 

growth models –perhaps at the expense of number of traits analysed. Importantly, the latter 44 

may imply additional complexity [and likely uncertainty] in crop modelling studies. Hence, 45 

appropriately constraining processes and parameters in models and a shift from simply 46 



 3

quantifying uncertainty to actually quantifying robustness towards modelling choices are 47 

two key aspects that need to be included into future crop model-based analyses of 48 

genotypic adaptation. 49 

Keywords: climate change, impacts, genotypic adaptation, ideotypes, crop models 50 

 51 

1. Introduction 52 

Agriculture is one of the most vulnerable sectors to changes in climates, due to its reliance 53 

on adequate environmental conditions for achieving high productivity (Huntingford et al., 54 

2005). Crops are affected by shortages or excesses of water or excessively high or low 55 

temperatures during key periods of their growing cycle (Porter and Semenov, 2005). 56 

Effects from adverse environmental conditions have been largely studied and reported by 57 

several authors, using combinations of models and data (Allen et al., 2005; Boote et al., 58 

2005). This understanding, in addition to well-constrained and skilful simulation models 59 

can provide insights on what could happen under future climate scenarios of higher 60 

temperatures, changing precipitation patterns and increased likelihood of extremes. 61 

 62 

Although figures are varied, recent literature indicates that negative impacts are expected to 63 

affect the basic food basket (i.e. wheat, rice, maize and grain legumes), as well as major 64 

cash crops (i.e. sugarcane, coffee, cocoa) at moderate or low (≤ +3 ºC) levels of warming if 65 

no adaptation actions are taken (Lobell et al., 2008; Porter et al., 2014; Challinor et al., 66 

2014b). Evidence from regional and local studies as well as global meta-analyses of 67 

modelling studies indicates that adaptation strategies are critical in countering any negative 68 

and/or capitalising positive effects that may arise as a result of climate change (Claessens et 69 

al., 2012; Challinor et al., 2014b). Adaptation strategies are likely the only means by which 70 



 4

food availability and stability can be maintained and/or increased so as to meet future food 71 

security needs. In fact, recent model-based global estimates indicate that even incremental 72 

adaptation strategies could result in mean yield increases of ~7 % at any level of warming 73 

(Porter et al., 2014; Challinor et al., 2014b). This suggests that substantial opportunities 74 

may exist if deeper (i.e. systemic and transformational) changes in cropping systems are 75 

implemented.  76 

 77 

This review focuses on one such strategy, namely, genotypic adaptation. Genotypic 78 

adaptation involves the incorporation of novel traits in crop varieties so as to enhance food 79 

productivity and stability and, more broadly, also the design of crop ideotypes (i.e. crop 80 

plants with ideal traits) for future climates (Donald, 1968; Semenov and Stratonovitch, 81 

2013). Specifically, we review the use of models for the development of genotypic 82 

adaptation options. We first examine some important crop responses to key environmental 83 

factors. Secondly, we examine two aspects of climate impacts research: (1) the different 84 

approaches to climate change adaptation, and (2) the importance of models for developing 85 

adaptation options. We then describe existing models and provide recommendations so as 86 

to capitalise on the potential of using crop model ensembles for understanding crop 87 

responses and adaptation options under future climate scenarios. We finally describe how 88 

crop-climate models can help focus the development of future-adapted crop germplasm in 89 

breeding programs. In doing so, we review past experiences and recent trends in the crop 90 

modelling literature. We conclude by proposing a framework that mainstreams crop model-91 

based analyses into future breeding strategies. 92 

 93 

2. Key plant processes and crop responses to varying environmental factors 94 
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In large areas, climate signals are discernible for many crops and regions even when 95 

aggregated growing season information is used (Fig. 1). Signals in such areas reflect crop 96 

plant responses to variations in weather and climate at local scale. Some of these responses 97 

are discussed in detail below. 98 

 99 

[Figure 1 here] 100 

 101 

A balance exists in the plant-soil-atmosphere interaction so as to allow enough carbon 102 

uptake for plant growth, prevent desiccation due to excess transpiration, and maintain 103 

canopy and leaf temperatures at near-optimum levels (Huntingford et al., 2005; Lobell et 104 

al., 2013). Stomatal conductance, a key factor regulating plant growth, is highly correlated 105 

with net photosynthesis (Wong et al., 1979) and is affected by air moisture deficit (i.e. 106 

vapour pressure deficit –VPD), radiation intercepted, leaf temperatures, ambient CO2 107 

concentrations, and soil moisture. However, both temperature and air and soil moisture 108 

conditions operate against plant growth and also against each other in ways that are often 109 

difficult to understand.  110 

 111 

Mean air temperatures drive canopy and leaf temperatures, which are determinant for 112 

photosynthesis. Photosynthetic efficiency varies with temperature in all crop species 113 

because it affects RuBisCO (Ribulose 1,5 biphosphate carboxylase oxygenase) activity, and 114 

in turn intercellular CO2 concentration and stomatal conductance (Hew et al., 1969; El-115 

Sharkawy, 2014). Response of photosynthesis to temperatures varies by species (Fig. 2A). 116 

Mean temperatures also drive crop development rates and thus define crop duration (Fig. 117 

2B), which in turn affects total photosynthetically active radiation (PAR) intercepted –118 
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linearly related to total biomass production. Daily extremes of temperature reduce crop 119 

yield mostly through damage to plant reproductive organs (Fig. 2C) (Peng et al., 2004) and 120 

hastened senescence (Asseng et al., 2011). However, complex responses and interactions 121 

occur throughout the cropping cycle. For an example: under optimal temperatures and 122 

water availability, photosynthesis and transpiration from leaves occur at normal rates; 123 

however, under high temperatures plants open their stomata to avoid heat stress, which 124 

increases within-leaf CO2 concentrations and thus biomass accumulation (exception being 125 

made under high VPD conditions –dry air, as in such a case stomata would remain closed 126 

to avoid excessive transpiration). If the available soil water is limited, this induces 127 

desiccation and stomata are then closed. Drought causes desiccation and stomatal closure, 128 

but at the same time water is a direct input of photosynthesis and so the effects on carbon 129 

fixation are more direct than those of temperature. In addition, stomatal closure causes 130 

within-leaf CO2 concentrations to decrease, thus decreasing inputs to photosynthesis, in 131 

some cases also increasing photorespiration (Kobza and Edwards, 1987). This causes lower 132 

biomass production and limits growth (Hew et al., 1969; Huntingford et al., 2005). Low 133 

light incidence (i.e. solar radiation) also reduces photosynthesis, whereas winds increase 134 

transpiration. Drought stress may be induced by increased osmotic pressure in saline soils. 135 

Many limiting conditions can occur simultaneously in a given site [e.g. Trnka et al. 136 

(2014)], thus making any prediction of their effect a challenging task. 137 

 138 

[Figure 2 here] 139 

 140 

The effects of increased CO2 are beneficial for almost any food crop, with increased CO2 141 

concentrations thought to increase dry matter and thus yield (Leakey et al., 2009). 142 
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However, there is contrasting experimental evidence on crop responses to enhanced CO2 143 

concentrations across varying degrees of soil water and air moisture availability (Long et 144 

al., 2006; Tubiello et al., 2007; Ainsworth et al., 2008), despite advances in theoretical 145 

understanding (Ghannoum et al., 2000; Leakey, 2009). Underlining experimental evidence 146 

on crop responses to elevated CO2 concentrations is therefore needed, since most models 147 

incorporate effects in a fairly basic fashion –mainly through empirical factors to reduce 148 

assimilation. Particular attention must be placed on understanding the interactions between 149 

enhanced [CO2] and other environmental controls (particularly drought and high 150 

temperatures), as these remain only partially understood (White et al., 2011; Asseng et al., 151 

2013). 152 

 153 

A large number of other factors exert control on plant growth and, particularly, on 154 

photosynthesis, biomass accumulation and yield. Leaf nitrogen (N) content is strongly and 155 

positively associated with carbon exchange rates (CER), radiation use efficiency (RUE) and 156 

total plant biomass (Sinclair and Horie, 1989). Similarly, low phosphorous (P) and 157 

potassium (K) contents can also lead to limited CER and biomass production (Longstreth 158 

and Nobel, 1980; Fredeen et al., 1990). Limited availability of other nutrients (e.g. calcium, 159 

magnesium, sulphur, zinc, and iron, among others) can limit plant growth and reduce the 160 

nutritional quality of the harvested product, but research on their effects on plant processes 161 

is sparse. Responses to ozone concentrations (O3) are expected to negatively affect leaf area 162 

dynamics, light interception and biomass allocation and accumulation, but data scarcity has 163 

precluded accurate simulation of this process (Ewert and Porter, 2000). Understanding, 164 

parameterising, and evaluating many of these responses in models is essential for impacts 165 

science. 166 
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 167 

3. Approaches for assessing climate impacts 168 

Methods to assess impacts can be classified in projection-based approaches and utility-169 

based approaches. Utility-based approaches (also known as decision-based approaches) 170 

focus on making decisions that are robust against the known uncertainties. This is usually 171 

done by exploring the outcomes of decisions under a number of plausible scenarios and 172 

then choosing those decisions whose outcomes are not affected by the underlying 173 

uncertainties (Vermeulen et al., 2013). Projection-based approaches (also known as predict-174 

then-act approaches) are based on the use of models and data to produce projections of a 175 

given system’s future state that can be used by decision makers. Projection-based 176 

approaches therefore focus on reducing uncertainties in order to provide decision-makers 177 

with information that can be directly used to make a decision. As with most of the 178 

modelling literature, this review focuses on projection-based approaches. In the following 179 

sections, a summary of related methods is provided. For further discussion on decision-180 

based approaches the reader is referred to Vermeulen et al. (2013). 181 

 182 

In projection-based frameworks, typically, global climate model projections for one or 183 

more given forcing scenarios are first scaled and/or bias-corrected to produce climate 184 

scenarios. Crop models are then forced using these climate scenarios to produce a range of 185 

projections that are then used to conceptualise and develop adaptation strategies to be tested 186 

or implemented at different scales (from global to the field) (Fig. 3). Modelling choices 187 

across the framework shown in Fig. 3 are thus varied and can produce differing responses, 188 

thus causing uncertainty. It is expected for almost all steps in the impact assessment process 189 

that uncertainty will increase, although it can be reduced via model calibration and 190 
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evaluation. The global meta-analysis of Challinor et al. (2014b) is particularly useful 191 

portraying some of the uncertainties to which impact projections are subjected. 192 

 193 

[Figure 3 here] 194 

 195 

4. The role of process-based models in estimates of climate change impacts and 196 

adaptation 197 

The choice of both crop models and climate model projection types for climate change 198 

impact assessment varies substantially across modelling studies (White et al., 2011). 199 

Nevertheless, the vast majority of projection-based studies focus on a site-specific scale and 200 

use process-based simulation models, though a recent trend exists for regional-scale studies 201 

that use simple (yet process-based) or statistical models (Ramirez-Villegas and Challinor, 202 

2012). Rivington and Koo (2011) report the existence of 122 crop models –from which 203 

roughly a half are process-based. Due to the focus of this review, in this section, emphasis 204 

is placed on process-based models.  205 

 206 

Process-based models are both the most diverse and the most complex of the two model 207 

types reviewed here and can themselves be divided into two categories according to scale 208 

and level of complexity: (i) regional-scale and (ii) field-scale. Regional-scale models have 209 

been designed to capitalise on large-scale crop-climate relationships and thus operate at 210 

scales commensurate with those of global and regional climate models (i.e. 25 – 100 km). 211 

Despite their reduced complexity, regional-scale models retain enough mechanistic detail in 212 

plant growth processes as to be used with reasonable confidence under future climate 213 

scenarios, including increased CO2 concentrations, and higher rates of extreme temperature 214 
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and drought events (Challinor et al., 2004, 2007). Conversely, field-scale crop models are 215 

tools aimed to simulate growth processes in plants so that technological changes and 216 

environmental effects at the farm level can be assessed (El-Sharkawy, 2005). Initially, 217 

field-scale models were conceived with the objective of being perfect and comprehensive, 218 

and able to reproduce all plant functions [the ‘universal model’ myth, see Sinclair and 219 

Seligman (1996)], though they rapidly evolved into approaches that were theoretically 220 

coherent, yet different in their implementation and purpose (Affholder et al., 2012). While 221 

the choice of which processes to represent in detail, and the level of detail achieved for a 222 

given process is limited by an understanding of crop physiology derived from available 223 

data (Craufurd et al., 2013), it is also governed by research focus and intended model use. 224 

The guiding principle for designing abstractions in such models is to “Use the right level of 225 

description to catch the phenomena of interest. Don’t model bulldozers with quarks” 226 

(Goldenfeld and Kadanoff, 1999).  227 

 228 

4.2.1. Designing models for extensibility and correctness 229 

There are three key aspects involved in the development and use of well-established 230 

process-based crop models – (1) the modelling of biophysical processes, (2) the selection 231 

and maintenance of technical methodologies, and (3) collaborative community support. 232 

Modelling biophysical processes involves choosing the right abstractions to map the 233 

interactions of genotype, management and environment to phenotypic traits of interest. The 234 

selection of technical methodology involves choosing programming languages, software 235 

environments, data formats, collaboration software, computing hardware, and protocols for 236 

maintaining model quality (e.g., automated testing) and uncertainty (e.g., model 237 

ensembles). Collaborative community support includes communication between developers 238 
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of the model, between the modelling team and other expert modelling groups, and between 239 

model developers, users and the wider community of stakeholders (such as farmers, 240 

consultants and policy makers). 241 

 242 

These key modelling aspects have been traditionally undertaken within individual research 243 

groups, often using ad hoc procedures –although with exceptions [e.g. the International 244 

Consortium for Agricultural Systems Applications, ICASA, White et al. (2013)]. However, 245 

two relatively recent developments have had a significant impact on the design and 246 

development of process-based crop models. First, a significant increase in available 247 

computer processing power has enabled ever-increasing complexity in the processes being 248 

modelled. ‘Next generation’ frameworks spanning processes from gene expression to 249 

climate change are becoming available (Holzworth et al., 2014). Second, the rapid adoption 250 

of online tools has enabled global collaborative model development (McLaren et al., 2009) 251 

and inter-comparison [AgMIP; Rosenzweig et al. (2013)], and changed expectations 252 

regarding the availability of model source code and data. 253 

 254 

Contemporary process-based crop models are increasingly being used to combine sub-255 

components (such as different crop types and genotypic traits) in novel ways. These models 256 

are typically not developed in isolation, but are the refinement and integration of pre-257 

existing algorithms, data, and models [Fig. 1 in Holzworth et al. (2014)]. In addition, they 258 

are developed and tested in a variety of programming languages and computing 259 

environments, utilizing agronomical and climate data provided in a wide variety of formats. 260 

 261 



 12

This increased complexity of processed-based crop modelling, and the global, cross-262 

disciplinary nature of model development, assessment, and use, has led to modelling groups 263 

adopting more formal techniques to support their research. In particular, to facilitate 264 

scientific reproducibility, sharing, inter-comparison and integration of sub-models and data, 265 

the crop modelling community is increasingly relying on tools and techniques from the 266 

software development community. The use of support tools such as wikis, source code 267 

version control and issue tracking (as in the GLAM, DSSAT and APSIM communities), 268 

online user interfaces (Hochman et al., 2009), and the adoption of modular source code 269 

frameworks, is becoming more frequent. For example, the current APSIM process-based 270 

crop modelling framework (Holzworth et al., 2014) employs (1) a modular software 271 

structure that allows components to be combined in novel ways at runtime, and to be 272 

improved and tested in isolation, (2) XML configuration files allowing model parameters 273 

and custom logic to be shared in a standardized way, and (3) the integration of scripting 274 

language control (including the R and C# languages) that facilitates quick prototyping and 275 

sharing of model logic. 276 

 277 

While such developments are significant steps towards improved model sharing, 278 

uncertainty analysis, and code correctness, more work needs to be done. Automated testing, 279 

source code version control, and modular model structure are not yet ubiquitous process-280 

based modelling practices. Standardization of common parameter names and their 281 

definitions would facilitate more complete model intercomparisons. Significant gains can 282 

be achieved through the adaptation of the software design patterns process (Gamma et al., 283 

1994) to document key crop modelling components such as biophysical processes, model 284 

structure, ensemble design, and model intercomparison, in a form independent of any 285 
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specific implementation or programming language. The development of such patterns 286 

would help reduce the reinvention of solutions, encourage the use of state of the art 287 

procedures, and provide a community platform for crop model improvement. 288 

 289 

4.2.2. The use of ensembles for informing impacts and adaptation 290 

The aforementioned increase in the complexity and number of models, along with 291 

significant advances in the climate models used to drive regional-scale yield projections, 292 

has led to greater confidence in our model projections. However, increasing model detail 293 

has meant that uncertainty in projections is not being reduced [see, for example, Knutti & 294 

Sedlacek (2012)]. In addition, model simplifications (such as regional scale process-based, 295 

statistical, and niche-based models) have introduced their own uncertainties in terms of 296 

spatio-temporal scaling and specificity, and the inter-related lineage of process-based crop 297 

models complicates assessments of model uncertainty. As a result, an emphasis on 298 

quantifying the uncertainty in projected yields has become prevalent (Iizumi et al., 2009; 299 

Asseng et al., 2013). Crop predictions based on single parameter sets or single model 300 

output values are no longer good enough. 301 

 302 

Consequently, projecting crop responses under future climate scenarios requires careful 303 

treatment of issues related to parameter uncertainty, structural uncertainty (model 304 

discrepancy), algorithmic uncertainty (code uncertainty), parametric variability, 305 

experimental uncertainty (observation error), and interpolation uncertainty (Kennedy and 306 

O’Hagan, 2001; Challinor et al., 2009a). While accounting for all of these uncertainty 307 

sources is critical for the robust use environmental models in general, the tendency for crop 308 

models to be developed using information from one spatial scale, and applied at another, 309 
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means that crop modellers must pay particular attention to parameter, structural, and 310 

interpolation uncertainty. An assessment of 178 published studies on climate change 311 

impacts (sourced by searching the keywords ‘climate change impacts’ in 312 

http://scholar.google.com in June 2014) indicates that field-scale, regional-scale process-313 

based models, and statistical models are used at a variety of spatial scales (Fig. 4). For 314 

field-scale process based models, the fact that ca. 50 % of studies use the models at scales 315 

other than those for which the models were originally designed suggests some potential for 316 

model vs. study scale mismatch or even model misuse (Fig 4A). While mathematically one-317 

dimensional models can be used across different spatial scales, remarkably, virtually no 318 

study using field-scale process-based models at scales beyond individual fields assesses 319 

parameter uncertainty or parameter scaling issues [Fig. 4B, e.g. Iizumi et al. (2014)]. More 320 

importantly, the implications of model misuse, including the use of models that lack key 321 

processes and scale mismatches, may impact further estimates of adaptation (Challinor et 322 

al., 2014a; Lobell, 2014). This is of particular importance since about one in every three 323 

studies does not conduct model evaluation regardless of the type of model used (Fig. 4C). 324 

 325 

[Figure 4 here] 326 

 327 

In the last ten years, the critical task of quantifying and accounting for the full range of 328 

uncertainty sources in models has been recognized by the weather, climate, and 329 

hydrological communities (Stainforth et al., 2005; Beven, 2006). However, there has been 330 

limited applied appreciation for these issues in the crop modelling community besides 331 

quantifying parameter (Iizumi et al., 2009; Tao and Zhang, 2013) and structural uncertainty 332 

in impacts projections (Ruane et al., 2013; Asseng et al., 2013). While many crop-climate 333 
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impact studies include some treatment of modelling uncertainty (e.g. by using various 334 

future climate projections, crop parameters, and crop models), sampling of the entire model 335 

and parameter space is fundamentally incomplete, and is likely to underestimate the 336 

importance of uncertainty in model-based projections of impacts and adaptation. Therefore, 337 

in order for the crop modelling community to move towards ensembles that better sample 338 

the uncertainty space and provide useful information for food security assessments, 339 

platforms that allow model, parameter and input transferability between groups and regions 340 

so as to facilitate ensemble simulations for both site- and regional-scale assessments need 341 

to be developed (also see Sect. 4.2.1). Additionally, characterising the crop model space 342 

[e.g. Angulo et al. (2013)] and better understanding of parameter and process scaling 343 

(Iizumi et al., 2014) will ultimately allow for a better understanding and sampling of the 344 

model and parameter uncertainty space. 345 

 346 

5. Design of genotypic adaptation strategies using crop models 347 

5.1. The importance of genotypic adaptation 348 

Genotypic adaptation is expected to be one of the most important adaptation strategies to 349 

future climate change (Challinor et al., 2009b; Semenov and Stratonovitch, 2013). For 350 

instance, Challinor et al. (2014b) indicated that switching from currently grown to better-351 

adapted varieties that are cultivated elsewhere or stored at genebanks (‘cultivar 352 

adjustment’) is a more effective adaptation strategy than adjusting planting dates, 353 

improving irrigation and enhancing fertilisation (Fig. 5). In addition, increased evidence 354 

exists that climate change stresses can, to a large extent, be managed or completely offset 355 

through the breeding of new “climate-smart” cultivars with improved yield potential and 356 

stability (Ortiz et al., 2008; Semenov and Stratonovitch, 2013). Progress in crop breeding 357 
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demonstrates the scales of potential yield gains. In Africa, two decades of maize breeding 358 

have led to mean genetic gains of 14 kg ha-1 year-1 under drought and 40 kg ha-1 year-1 359 

under optimum conditions (Badu-Apraku et al., 2013). Similarly, global mean wheat 360 

breeding gains in the last 25 years are about 100 kg ha-1 year-1 under drought and 25 kg ha-1 
361 

year-1 under optimum conditions (Gourdji et al., 2013). For rice, genetic gains have been 362 

estimated in 45 kg ha-1 year-1 for Brazilian upland systems in the period 2002-2009 363 

(Breseghello et al., 2011), whereas in irrigated rice in Asia solely the release of the semi-364 

dwarf rice variety IR8 produced an increase of almost 70 % in rice potentials during the 365 

1950s and 1960s (Peng et al., 2008).  366 

 367 

[Figure 5 here] 368 

 369 

Under future climate scenarios, ideotype design appears as key strategy to drive breeding 370 

decisions, since breeding towards a crop ideotype is more efficient than breeding to remove 371 

undesired characteristics one at a time (Peng et al., 2008). Crop ideotypes are idealised 372 

plant types that have the greatest effectiveness in producing dry matter and yield under 373 

given environmental conditions (Donald, 1968). Defining a crop ideotype involves a 374 

definition of the physical-morphological (e.g. height, maximum leaf size, leaf thickness and 375 

positioning) and physiological (e.g. stomatal conductance, photosynthetic efficiency) 376 

characteristics of a given crop plant, that would allow such a plant to respond well under 377 

certain conditions (e.g. in a drought-prone environment). Breeding programmes are 378 

currently challenged with having to set priorities based on climate change impacts 379 

projections [see e.g. Cairns et al. (2013)]. Decisions of which traits to breed and by when 380 

would varieties need to hold such traits are expected to be largely influenced by the type 381 
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(e.g. increase in mean, increase in extreme events), direction (e.g. drier and warmer, wetter 382 

and warmer), and extent (how warmer, how drier) of the projected climatic changes in a 383 

given area (Stamp and Visser, 2012). Many breeding programs, however, already work 384 

towards achieving crop ideotypes for different agro-environmental zones (Berry et al., 385 

2007; Peng et al., 2008). Hence, progress towards better future food security prospects of 386 

increased food availability and stability through breeding better adapted crop varieties 387 

seems, at least in principle, possible to achieve. 388 

 389 

5.2. The potential role of crop models for developing genotypic adaptation options 390 

Process-based crop models can help make informed decisions with regards to genotypic 391 

adaptation options and ideotype design both under current and future climates (Baenziger et 392 

al., 2004; Banterng et al., 2004). The main challenge, however, is to carefully interpret 393 

modelling outcomes so as to provide information that is of use for breeders. Recent 394 

experiences in the use of crop model simulated ideotypes for crop breeding in rice as well 395 

as existing model-based investigations of genotypic adaptation and ideotype design reveal 396 

encouraging results with regards to increasing food availability and stability in the context 397 

of climate change adaptation. 398 

 399 

Under current climates, probably the most notable example of ideotype design for 400 

increasing yield potential is the New Plant Type (NPT) proposed and developed by the 401 

International Rice Research Institute (IRRI) and the subsequent establishment of the super 402 

rice program in China inspired by the NPT (Cheng et al., 2007; Peng et al., 2008). IRRI’s 403 

NPT had its origins on the work of Dingkuhn et al. (1991), who used a process-based 404 

growth simulation model to propose a rice ideotype. Based upon model simulations, they 405 
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hypothesised that 25 % productivity gains could be achieved by increasing the length of the 406 

grain filling phase, maintaining high concentration of nitrogen in the leaves, increasing the 407 

vertical gradient of nitrogen in the foliage (so that top leaves have more N, and lower 408 

leaves have less), enhancing leaf growth in early stages and reduced leaf growth in later 409 

stages, larger panicles but reduced tillering capacity (i.e. lower number of panicles), more 410 

assimilates in the stems and longer life span and larger size of flag leaves (Dingkuhn et al., 411 

1991). Since morphological characteristics are easier to select for in breeding trials, a more 412 

precise definition of these was done in a subsequent study (Khush, 1995) (Fig. 6). Two 413 

breeding cycles then led to the development of NPT varieties that outyielded check 414 

varieties (Peng et al., 2008). Following IRRI’s promising results, the super rice program in 415 

China was established (Cheng et al., 2007). In addition to what had been proposed by 416 

IRRI’s NPT breeding program, a more specific definition of the position and size of the 417 

flag leaves and an optimisation of photosynthetic efficiency were done. Newly developed 418 

super rice varieties reportedly outyielded commonly cultivated rice hybrids by 15-25 % in 419 

many regions of China (Peng et al., 2008). Further research and development of ideotype 420 

rice cultivars and hybrids is currently being pursued both in China and internationally by 421 

IRRI.  422 

 423 

[Figure 6 here] 424 

 425 

Under future climates, on the contrary, to the knowledge of the authors, no breeding 426 

program is currently breeding a model-designed plant type; although the WHEAt and 427 

barley Legacy for Breeding Improvement (WHEALBI) appears as a new (started in eearly 428 

2014) promising initiative. Nevertheless, the number of studies investigating genotypic 429 
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adaptation through introduction of novel traits and ideotype design has been increasing in 430 

the last decade. All these studies point to the same direction: that in most situations 431 

genotypic adaptation can offset climate change-related losses and even boost crop yields. 432 

For instance, studies for wheat indicate that climate-ready varieties would outyield 433 

currently cultivated varieties by 25-65 % under future climates (Semenov et al., 2014), and 434 

similar figures have been reported for other crops such as groundnut, sorghum and maize 435 

(Fig. 7). These figures are, however, contingent on two key modelling aspects: 436 

(i) The ability of the model to correctly simulate processes that are relevant in future 437 

climate scenarios. The fact that all existing models have been subjected to varying 438 

degrees of evaluation mostly against agronomic trial data [e.g. Asseng et al. (2013), 439 

Bassu et al. (2014)] and many individual model components (e.g. water balance, 440 

photosynthesis response) are often assessed independently has increased confidence 441 

on the capabilities of models to simulate crop responses under varying environmental 442 

conditions, including climate change. Recent literature, however, indicates shifting 443 

climate distributions and increased likelihood of extreme events (Battisti and Naylor, 444 

2009; Trnka et al., 2014) and this may result in additional and/or different processes 445 

constraining future crop yields as compared to present-day conditions. Indeed, a 446 

recent review identified that only a handful (≤ 6) of crop models currently used in 447 

impact and adaptation studies simulate CO2 impacts on canopy temperature (by 448 

computing a soil-plant-atmosphere energy balance), a key process under climate 449 

change (White et al., 2011). It is thus not clear whether models already include 450 

sufficient detail so as to simulate any additional processes that may arise from 451 

projected climate change. This has in turn resulted in the need for additional field 452 

experiments in which novel conditions and their interaction are evaluated and then 453 
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tested in multi-model intercomparison frameworks (Rosenzweig et al., 2013). While 454 

these initiatives are clearly a way forward, individual-study assessments of processes 455 

and their interactions in single-model and multi-model ensemble simulations as well 456 

as more complete descriptions of model limitations with respect to key missing 457 

processes are warranted in future genotypic adaptation studies [see e.g. Fig. 1 in 458 

Singh et al. (2014)]. Achieving a better representation of future-climate relevant 459 

processes will ensure that model-based analyses are more realistic. 460 

(ii)  The correct separation between model parameters that influence yield as a function of 461 

crop physiology and those with large impact on simulated yield only due to model 462 

specification. That is, the possibility of relating model parameters to the effect of 463 

alleles on given loci or genes controlling key traits (Luquet et al., 2012). Importantly, 464 

there is a tight link between such a relationship and model complexity –an 465 

overarching issue in climate impacts prediction, because overly simplistic models are 466 

unlikely to capture physiological responses with enough level of detail for use in crop 467 

breeding (Luquet et al., 2012), but overly complex models are more difficult to 468 

constrain at the scales typical of climate prediction frameworks (Challinor et al., 469 

2009a). Work towards linking quantitative trait loci information and process-based 470 

crop growth modelling, however, shows promise. For example, Chenu et al. (2009) 471 

used a gene-to-phenotype modelling approach that included a genetic model and a 472 

process-based crop model to simulate the impact of leaf and silk elongation traits (as 473 

derived from genetic data) on maize yield across different environments. Despite 474 

some success, however, the lack of a more thorough consideration of genetic effects 475 

[beyond those related to crop development (Messina et al., 2006; Challinor et al., 476 

2009b)] on yield and genotype-by-environment interactions in genotypic adaptation 477 
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studies suggests that appropriate frameworks need to be established [e.g. Chenu et al. 478 

(2009); Cooper et al. (2005)].  479 

 480 

[Figure 7 here] 481 

 482 

We suggest that in order to mainstream crop-model based analyses of genotypic adaptation 483 

into breeding programmes, more research as well as a framework on the coupling of crop 484 

and genetic models is needed. Fig. 8, based on the work of Chenu et al. (2009) and Cooper 485 

et al. (2005), is an attempt to such a framework, through which we expect model-based 486 

analyses of genotypic adaptation can incorporate genetic information from breeding 487 

programs and, in turn, retrieve ex-ante assessments of genotypic responses across 488 

environments [also see Yin et al. (2003, 2004)]. As a starting point, traits that have constant 489 

QTLs (and hence constant model parameters) across environments have to be determined. 490 

Modular crop models can then be coupled with ‘plug-and-play’ parameterisations of 491 

relevant characteristics for which genetic information is available, with appropriate 492 

sensitivity testing to ensure realism. Genetic model simulations of crosses between 493 

promising parental lines can then yield crop model parameters and be run through an 494 

ensemble of crop models at one or more environments. The resulting crop model 495 

simulations can then be used to select promising phenotypes and the process repeated for 496 

various steps in the breeding cycle (Fig. 8). 497 

 498 

[Figure 8 here] 499 

 500 
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Additionally, simulation of genotypic adaptation (including ideotype design) for projected 501 

weather conditions of uncertain nature means that additional principles may be needed in 502 

order to develop robust projections of adaptation. In particular, appropriately constraining 503 

processes and parameters in models across scales [cf. Iizumi et al. (2014)] and a shift from 504 

simply quantifying uncertainty to actually quantifying robustness (i.e. the relationship 505 

between uncertainty and the climate change signal) towards modelling choices [cf. 506 

Ramirez-Villegas and Challinor (2014)] are two key aspects that need to be included into 507 

crop model-based analyses of genotypic adaptation. Two key initiatives toward these aims 508 

include the AgMIP (Rosenzweig et al., 2013) and FACCE-MACSUR 509 

(http://www.macsur.eu) projects. 510 

 511 

Conclusions 512 

The challenges ahead with regards of developing genotypic adaptation strategies that can 513 

then be implemented in breeding programs are substantial. On one hand, climate change 514 

impacts are projected to pose significant challenges to agriculture and genotypic adaptation 515 

strategies are critical for responding to such challenges. On the other hand, uncertainties in 516 

climate and crop modelling are substantial and poorly explored in studies of genotypic 517 

adaptation to future climates that use process-based simulation models, particularly at field 518 

scales. While uncertainties need to be better understood and quantified (see Sect. 5), it is 519 

important to note that a shift in focus from solely quantifying output variance to 520 

quantifying robustness is required in order so as to facilitate assessments and interpretation 521 

of confidence levels in crop model-based projections of genotypic adaptation. In addition to 522 

this, it is critical that genotypic adaptation options are grounded in genetic and 523 

physiological knowledge that can be mainstreamed in real-world breeding programs. To 524 
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this aim, while recently published studies have demonstrated the potential of genotypic 525 

adaptation strategies and ideotype design, two main goals need to be pursued in future 526 

studies: (1) a better understanding of driving processes under future climate change; and (2) 527 

a coupling between genetic and crop growth models –perhaps at the expense of number of 528 

traits analysed. Importantly, the latter may imply additional complexity [and likely 529 

uncertainty] in crop modelling studies. Therefore, modularity in crop models as well as 530 

individual component testing against observational data would be critical components in 531 

any attempts to simulate crop breeding strategies under future climate scenarios. 532 
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Figure captions 

Figure 1 Percentage variance in historical crop yields explained by seasonal mean 
temperature and seasonal total precipitation across (A) crops and (B) regions. Variance 
explained is measured using the coefficient of determination (R2) as derived from the 
statistical models in Lobell et al. (2008). Both panels show the same data, but pooled 
differently. Variation for each crop in panel A reflects differences between regions and 
variation for each region in panel B reflects differences between crops. Thick red lines are 
the medians, boxes represent the interquartile range, whiskers extend to 5-95 % of the data, 
and red dots are outliers. 

Figure 2 Responses of (A) net photosynthesis to leaf temperature, (B) development rates to 
mean daily air temperature, and (C) crop yield to temperature during reproductive period. 
Data in panel A have been derived from the study of Nagai and Makino (2009) for wheat 
and rice, and from Bird et al. (1977), Schmitt et al. (1981), Crafts-Brandner and Salvucci 
(2002), and Labate et al. (1990). Solely for illustrative purposes, maize data were fitted to a 
spline curve with 5 degrees of freedom. Rice and wheat data were fitted to 3rd order 
polynomials as in Nagai and Makino (2009). Curves in panel B were plotted following 
Parent and Tardieu (2012). Development rates at each temperature in their models have all 
been normalised by development rates at 20 ºC. Data from panel C were derived from Peng 
et al. (2004) for rice [hence x-axis for rice is minimum growing season temperature], from 
Gibson and Paulsen (1999) for wheat [hence x-axis is mean temperature during grain-
filling], and from Wilhelm et al. (1999) for maize [hence x-axis is mean temperature post-
anthesis]. For panel C all data were linearly scaled so that the maximum yield corresponded 
to a value of 1. Fits in panel C all follow a linear regression except for rice where the 
original 2nd degree polynomial of Peng et al. (2004) was used. 

Figure 3 Ways in which impact assessment is typically approached in projection-based 
frameworks. Red arrows indicate flow of information. The black hollow arrow in the 
bottom shows that as long as more information is derived from climate projections, 
uncertainties are likely to increase, as a result of what is known as “cascade of 
uncertainties”.  

Figure 4 Use and misuse of crop models, based on 178 model results published in climate 
change impacts studies between 1994 and 2014, and disaggregated by model type. (A) 
Fraction of results that perform simulations at the scale for which the model was designed; 
(B) fraction of results (at scales other than field) for each model type that use multiple 
parameter sets (i.e. account for parametric uncertainty); and (C) fraction of studies that state 
model evaluation procedures for their locations or areas of interest. Model types are as 
follows: CSM-FS: field-scale crop growth simulation model; CSM-RS: regional-scale crop 
growth simulation model; E/S: empirical and/or statistical. Note that field scale models are 
used above field scale in roughly 50 % of the cases.  

Figure 5 The benefit of different adaptation practices expressed as percentage change, from 
the baseline, in yield with adaptation minus that without adaptation, adapted from Challinor 
et al. (2014b). Data in this figure consists of yield changes from 32 simulation studies for 
various crops as described in Challinor et al. (2014b). Bars are means for each category and 
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red lines indicate standard error. Note that the vast majority of data in the second category 
come from a single study (Deryng et al., 2011). 

Figure 6 Different plant types of rice. Left: tall conventional plant type. Centre: improved 
high-yielding and high-tillering plant type typical of the green revolution. Right: low-
tillering ideotype (new plant type) with larger sink capacity (larger panicles and grains) and 
sturdier stems. Taken from Khush (2001). 

Figure 7 Simulated future potential benefits from genotypic adaptation (including ideotype 
design) as derived from available modelling studies for four different crops in different 
sites. Studies are as follows: Semenov and Stratonovitch (2013) and Challinor et al. (2010) 
for wheat; Singh et al. (2014) for sorghum; Singh et al. (2012, 2013) and Challinor et al. 
(2007, 2009b) for groundnut; and Lobell et al. (2013) for maize. The benefit of genotypic 
adaptation has been calculated as the difference between yield changes under adaptation 
and that under no adaptation, except in the case of Challinor et al. (2010) for which the 
relative change in crop failure rate between adaptation and no-adaptation results was used. 
Thick red lines are the medians, boxes represent the interquartile range, whiskers extend to 
5-95 % of the data, and red dots are outliers. 

Figure 8 Proposed framework for incorporating genetic information into simulation studies 
of genotypic adaptation. Figure derived from the practical example of Chenu et al. (2009). 
The dashed line that links the genetic portion of the diagram with the environment indicates 
that analyses are needed to identify traits whose QTLs are constant across environments. 

 


















