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Abstract8

Detailed knowledge of the long-term spatial configuration and temporal variabil-

ity of the geomagnetic field is lacking because of insufficient data for times prior

to 10 ka. We use realisations from suitable numerical simulations to investigate

three important questions about stability of the geodynamo process: is the present

field representative of the past field; does a time-averaged field actually exist; and,

supposing it exists, how long is needed to define such a field. Numerical geodynamo

simulations are initially selected to meet existing criteria for morphological similarity

to the observed magnetic field. A further criterion is introduced to evaluate simi-

larity of long-term temporal variations. Allowing for reasonable uncertainties in the

observations, observed and synthetic axial dipole moment frequency spectra for time

series of order a million years in length should be fit by the same power law model.

This leads us to identify diffusion time as the appropriate time scaling for such com-

parisons. In almost all simulations, intervals considered to have good morphological

agreement between synthetic and observed field are shorter than those of poor agree-

ment. The time needed to obtain a converged estimate of the time-averaged field

was found to be comparable to the length of the simulation, even in non-reversing
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models, suggesting that periods of stable polarity spanning many magnetic diffusion

times are needed to obtain robust estimates of the mean dipole field. Long term field

variations are almost entirely attributable to the axial dipole; non-zonal components

converge to long-term average values on relatively short timescales (15− 20 kyr). In

all simulations, the time-averaged spatial power spectrum is characterised by a zigzag

pattern as a function of spherical harmonic degree, with relatively higher power in

odd degrees than in even degrees. We suggest that long-term spatial characteristics

of the observed field may emerge on averaging times that are within reach for the

next generation of global time-varying paleomagnetic field models.

Keywords: Geodynamo models, Secular variation, Geomagnetic frequency9

spectrum, Earth’s core10

1. Introduction11

Earth’s magnetic field of internal origin displays temporal variations spanning12

a vast range of frequencies (Constable and Johnson, 2005; Korte and Constable,13

2006). The field can change quickly as evidenced by so-called geomagnetic jerks,14

abrupt changes manifest on <1 year timescales (Malin and Hodder, 1982; Alexan-15

drescu et al., 1995), and the more moderate but still rather rapid archaeomagnetic16

jerks seen on centennial timescales (Gallet et al., 2009). Larger changes associated17

with geomagnetic excursions and polarity reversals generally occur a few times ev-18

ery million years (Cande and Kent, 1992, 1995; Glatzmaier and Coe, 2007), but the19

time taken for such changes (hundreds to thousands of years) remain a matter of20

some debate. Global time-dependent models of the magnetic field at the core-mantle21

boundary (CMB) now span the past 10 yrs (e.g. Olsen et al., 2010), 400 yrs (Jack-22

son et al., 2000), 3 kyrs (Korte and Constable, 2011), 7 kyrs (Korte and Constable,23

2005), and 10 kyrs (Korte et al., 2011) and display common features such as a pre-24
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dominantly dipolar field, weak flux near the geographic poles, and intense patches25

of magnetic flux at high latitudes. These models have enabled significant advances26

in understanding the geodynamo process.27

On timescales longer than 10 kyr there are not yet any time-varying global models28

of the same quality as for the Holocene time interval, although there is some progress29

in this area. High-quality data have generally been confined to the dipole moment30

(Valet et al., 2005; Ziegler et al., 2011), with time-series spanning the past 2 Myr,31

and detailed well-dated directional data at a few sparse locations such as Hawaii and32

Réunion Island (e.g. Laj et al., 2011); for the longest periods, only the geomagnetic33

polarity timescale (Cande and Kent, 1992, 1995) is well documented. As a conse-34

quence, fundamental questions about the long-term behaviour of the geomagnetic35

field remain unanswered. For example, it is not yet known if the modern field is rep-36

resentative of the past field, which is important for elucidating the role of external37

forcings on the geodynamo (Biggin et al., 2012), or how the field structure changes as38

it is averaged over successively longer periods. Does a time-averaged field exist, such39

that when averaged over sufficient time there are no significant changes upon further40

temporal averaging? If so, what is the structure of this field and what averaging41

time is needed to attain this state? Additional information is needed to answer these42

questions. This paper explores them using numerical geodynamo simulations and43

comparisons with available paleofield models.44

We consider geodynamo simulations as useful tools for investigating long-term45

field behaviour for three reasons. Firstly, they have recovered prominent features46

of the modern and paleomagnetic fields (e.g. Olson and Christensen, 2002; Coe and47

Glatzmaier, 2006; Gubbins et al., 2007; Bloxham, 2000; Christensen and Olson, 2003;48

McMillan et al., 2001; Davies et al., 2008). Secondly, they provide a global repre-49

sentation of the magnetic field at each time point, achieving a spatial resolution50
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that is much higher than in observational field models. Finally, high resolution sim-51

ulations can be run on long timescales, providing a detailed picture of long-term52

processes. However, simulations cannot yet be run with the rapid rotation rates53

and low diffusivities associated with Earth’s core, and reaching this goal in the near54

future seems unlikely (Glatzmaier, 2002; Davies et al., 2011). These parameters55

determine the balance of forces, affecting the dynamics in the simulation and the56

spatio-temporal characteristics of the generated magnetic fields. Indeed, a variety of57

field morphologies have been obtained (Kutzner and Christensen, 2002; Olson and58

Christensen, 2006), which raises the question of how to decide if a given simulation59

exhibits “Earth-like” behaviour.60

Previous studies have quantified the level of agreement between synthetic and61

observed fields using measures based on properties of the observed field (Dormy62

et al., 2000; Kono and Roberts, 2002). Christensen et al. (2010) made significant63

progress in this regard by defining “Earth-like” behaviour based on four quantities,64

derived from global field models, that characterise the spatial structure of the field.65

The defined criteria require that the misfits between synthetic and observed values66

of the four quantities fall below given tolerances; a simulation that meets the criteria67

is considered to be morphologically similar to the observed field. We use these68

definitions to select dynamo simulations that are suitable for further study.69

For the long (> 10 kyr) timescales of interest in this paper we require one further70

criterion that measures the agreement between temporal variations in synthetic and71

observed fields. We use the axial dipole moment as a measure of global changes in72

the field and do not include further complexities. Several time-dependent models73

are available (Constable and Johnson, 2005; Valet et al., 2005; Ziegler et al., 2011),74

but we focus on the more recent 2 Myr model PADM2M of (Ziegler et al., 2011).75

Ziegler et al. (2011) have already established that the power spectral density for76
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PADM2M is compatible with that from Sint-2000 (Valet et al., 2005), and Ziegler77

and Constable (2011) indicate that the spectrum falls off at a rate of about f−7/3,78

where f is frequency, for PADM2M above a corner frequency of about 10 Myr−1
79

in agreement with falloff rate observed in some dynamo simulations. We build a80

power law fit to the frequency spectrum of PADM2M and require that observed81

and synthetic axial dipole moment spectra can be fit by the same power law model,82

within appropriate uncertainty levels for the observations. Simulations that meet83

this criterion are considered to exhibit temporal variations similar to the PADM2M84

model.85

This paper is organised as follows. In §2 we describe the observational and nu-86

merical models used in this study. In §3 we first discuss the problem of scaling di-87

mensionless model time into dimensional units and select two plausible time scalings88

based on intrinsic timescales of the magnetic field. We then compare morphological89

properties of the simulations with global field models using the criteria of Christensen90

et al. (2010)in §3.1, and temporal variations exhibited by the simulations with the91

observed axial dipole moment variation in §3.2. In §4 we use simulations that meet92

all criteria to investigate the length of time required to obtain the mean observed and93

synthetic axial dipole fields. We also investigate how the synthetic fields change when94

averaged over successively longer periods. Discussion and conclusions are presented95

in §5.96

2. Models97

2.1. Global Field Models98

We use three time varying representations of the geomagnetic field: the 400 yr99

historical model gufm1 (Jackson et al., 2000), the 3 kyr model CALS3k.4b (Korte and100

5



Constable, 2011), and the 2 Myr model for axial dipole moment variations PADM2M101

(Ziegler et al., 2011). gufm1 and CALS3k.4b are constructed by expanding the102

spatial dependence of the magnetic field B in spherical harmonics and the temporal103

dependence of B in cubic B-splines. These models are regularised in space and time104

and for the most recent portion of CALS3k.4b departures from the gufm1 model105

are penalised. It should be noted that the quality of the paleomagnetic models106

derived for millennial time scales is vastly inferior to that of gufm1. This is a direct107

consequence of poor data coverage in the southern hemisphere, and lower accuracy108

in the data. Detailed descriptions of the methods and inversion strategy used to109

construct the global models are given in Bloxham and Jackson (1992); Jackson et al.110

(2000); Korte and Constable (2003, 2008, 2011); Constable (2011). For longer time111

periods we use PADM2M which again uses cubic B-splines for temporal dependence112

but only aims to model variations in axial dipole moment. A complete description113

of PADM2M is given in Ziegler et al. (2011).114

2.2. Geodynamo Models115

The model setup and solution method for our convection-driven dynamo models116

is standard and only a brief description is given here. An incompressible, electrically117

conducting Boussinesq fluid with constant thermal diffusivity κ, constant coefficient118

of thermal expansion α, constant viscosity ν, and constant magnetic diffusivity η is119

contained in a spherical shell of thickness d = ro − ri and aspect ratio ri/ro = 0.35120

rotating at a rate Ω. Here, ri corresponds to the inner boundary and ro to the outer121

boundary. The nondimensional parameters are the Ekman number E, the Prandtl122

number Pr, the magnetic Prandtl number Pm, and the Rayleigh number Ra given123

by124

E =
ν

2Ωd2
, P r =

ν

κ
, Pm =

ν

η
, Ra =

αgβd4

νκ
, (1)
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where g is gravity and β is the temperature gradient at the outer boundary.125

The parameters that define the dynamo simulations used in this study are sum-126

marised in Table 1. Some of these models have been reported before (Davies et al.,127

2008; Davies and Gubbins, 2011) and some are new. All simulations employ a no-128

slip outer boundary that is electrically insulating with the heat-flux fixed. On the129

inner boundary a no-slip condition is imposed in all models, while both conducting130

and insulating magnetic boundary conditions and temperature and heat-flux ther-131

mal boundary conditions are included. Five models employ a spatially non-uniform132

heat-flux pattern on the outer boundary. The heat-flux pattern is derived from maps133

of shear-wave anomalies in the lowermost mantle (Masters et al., 1996) and is dom-134

inated by spherical harmonic degree and order two. The amplitude of the lateral135

variations is measured by ǫ, the ratio of peak-to-peak boundary variations and mean136

outer boundary heat-flux. Further details of the numerical model can be found in137

Willis et al. (2007) and Davies et al. (2011).138

Previous studies have found that the value of the magnetic Reynold’s number,139

Rm, is important for obtaining Earth-like dynamos (Christensen et al., 2010; Olson140

et al., 2012). Rm is an output of the simulation and is given by141

Rm =
Ud

η
, (2)

where U is a characteristic velocity. Estimating U based on the RMS velocity just142

below the CMB obtained from core flow inversions gives U = 3.8 − 5 × 10−4 ms−1
143

(Holme, 2007). Together with η = 0.7 m2s−1 (Pozzo et al., 2012, 2013), Rm ≈144

1200− 1500. In geodynamo simulations U is usually estimated as the RMS velocity145

averaged over the whole shell. With this definition Christensen and Tilgner (2004)146

obtained Rm ≈ 1000 from a scaling analysis of a suite of geodynamo simulations.147
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Obtaining numerical dynamos with such high values of Rm is a significant challenge,148

requiring high Ra and hence high numerical resolution. This inevitably leads to149

short run times. The highest values of Rm used in this study are ∼600 (Table 1),150

which is a necessary compromise when investigating long-term dynamo behaviour.151

Figure 1 illustrates our suite of simulations (details are in Table 1), which follows152

Christensen et al. (2010) by plotting Eη = E/Pm against Rm. Dashed lines delineate153

the region found by Christensen et al. (2010) to contain Earth-like simulations as154

defined in Section 3. Most of the model runs exhibit a stable dipolar field and do155

not reverse, although the suite does include some in the reversing dipole-dominated156

regime and reversing multipolar regimes identified by Olson and Christensen (2006).157

The run times in some cases are so short that the simulations cannot be expected158

to exhibit reversals. In §3 we compare these simulations to the geomagnetic field at159

appropriate timescales.160

3. Comparing Geodynamo Simulations and Geomagnetic Data161

To compare simulation outputs with data the synthetic timestep must be rescaled162

into dimensional units. We are interested in the evolution of the magnetic field so it163

is natural to consider the two timescales that characterise diffusion and advection of164

magnetic field, each representing fundamental physical process in Earth’s core, and165

given respectively by166

τ d =
d2

η
, and τa =

d

U
, (3)

The ratio of these two timescales is the magnetic Reynold’s number, Rm = τ d/τa. In167

our simulations dimensionless time t∗ is measured in units of the magnetic diffusion168

time, t∗ = t/τ d where t is dimensional time, which may be converted to advective169

time units by t∗ = t/(Rmτa).170
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Both advective (Lhuillier et al., 2011, 2013) and diffusive (e.g. Bloxham, 2000;171

Davies et al., 2008; Driscoll and Olson, 2009; Olson et al., 2013) scaling have been172

used in the past. Previous works that compared the relative merits of both scalings173

have advocated the advective scaling when studying relatively short term field vari-174

ations. Olson et al. (2012) also noted particularly good agreement with advective175

scaling in the high frequency regime, but found that “there is little to choose between176

the two scalings at low frequencies”. In the following subsections we scale time in177

our suite of numerical simulations using both the diffusive and advective timescales:178

td = τ d
Et∗ diffusive scaling (4)

ta = τ d
Et∗

Rmm

RmE

advective scaling (5)

We take τ d
E = 2 × 105 yrs (Pozzo et al., 2013) and RmE = 103 (Christensen and179

Tilgner, 2004).180

3.1. Morphological Comparisons with Historical and Millennial Observational Field181

Models182

In this section we compare our suite of numerical simulations with global time-183

dependent geomagnetic field models using the four quantities proposed by Chris-184

tensen et al. (2010) (hereafter CAH). The first three are derived from the spatial185

power spectrum at the CMB,186

R(l, ro) = (l + 1)
l

∑

m=0

(

re

ro

)2l+4

[(gm
l )2 + (hm

l )2], (6)

where gm
l and hm

l are Gauss coefficients of degree l and order m, re is the radius of187

the Earth , ro is the CMB radius, and L is maximum harmonic degree. The fourth188
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measures the extent to which magnetic flux on the CMB is concentrated into patches.189

The four quantities are:190

1. AD/NAD: the ratio of power in the axial dipole, AD (l = 1, m = 0), to the191

rest of the field, NAD;192

2. O/E: the ratio of the power in equatorially antisymmetric nondipole compo-193

nents, O (coefficients with l − m odd) to the power in equatorially symmetric194

nondipole components, E (l − m even);195

3. Z/NZ: the ratio of power in nondipole zonal, Z (m = 0), to nondipole nonzonal,196

NZ (m 6= 0), components;197

4. FCF: (< B4
r > − < B2

r >2) / < B2
r >2, where Br is the radial component of the198

magnetic field and angled brackets denote the average over a spherical surface.199

The choice of quantities reflect the special significance of the axial dipole field, the200

equatorial symmetry properties of a magnetic field generated in a spherical shell201

(Gubbins and Zhang, 1992), and the prominence of intense patches of magnetic flux202

in historical (Jackson et al., 2000) and archeomagnetic (Korte and Holme, 2010; Amit203

et al., 2011) field models.204

CAH measure the agreement between a simulated field and the geomagnetic field205

through the normalised squared logarithmic deviation of each simulated quantity Pi206

from its value derived from an observational field model, PE
i :207

χ2 =
4

∑

i=1

[(ln Pi − ln PE
i )/ ln σi]

2, (7)

where i represents the criteria (1)–(4) and σi is the standard deviation of quantity i.208

PE
i and σi are calculated from Gauss coefficients of the gufm1 and CALS3k.4b models209

averaged over 400 and 3000 yrs respectively. The agreement between a simulation210
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and an observational field model is defined as “excellent” if χ2 < 2, “good” if χ2 < 4,211

and “poor” otherwise.212

To compute the quantities (1)–(4) Gauss coefficients for the numerical simula-213

tions are calculated by upward continuing the radial component of the poloidal field214

from ro to re. It is well-known that rescaling the dimensionless coefficients is non-215

unique. We choose to keep the synthetic coefficients in dimensionless form and in-216

stead nondimensionalise the observational field models. The scaling factor
√

2ρΩµ0η217

we use is the same as that used to nondimensionalise the simulation equations, where218

ρ = 104 kg m−3 is the average outer core density and Ω = 7.272× 10−5 s−1 is the ro-219

tation frequency. Note that the quantities (1)–(4) are all relative and do not depend220

on any choice of scaling for the Gauss coefficients.221

We compare simulations to the 400 yr gufm1 model and the 3000 yr CALS3k.4b222

model using the following strategy. We first rescale time in the dimensionless series223

for each simulation using both the diffusive scaling (equation (4)) and the advective224

scaling (equation (5)). We then split the dimensional time-series into bins of length225

400 yrs or 3000 yrs and average the Gauss coefficients over each bin. The new time-226

series of coefficients gm
l and hm

l , each averaged over 400 or 3000 yr intervals, are used227

in (6). For gufm1 the series in (6) is truncated at L = 8, as in CAH. For CALS3k.4b228

the series is truncated at L = 4, reflecting the lower resolution of this model (Korte229

and Constable, 2008). Because the starting time in each simulation is arbitrary230

we require that each model contain a minimum of one interval with χ2 < 4 to be231

judged compatible with the observed field; such intervals, obtained independently232

when comparing to gufm1 and CALS3k.4b, must also overlap.233

Figure 2 shows time-series of χ2 for three geodynamo simulations using the diffu-234

sive scaling (4). Each of the criteria vary significantly with time. The first simulation235

(model B3 in Table 1) has Eη = 5× 10−5 and Rm = 475 and plots inside the wedge-236
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shaped region in Figure 1. The simulation spans 440 kyrs, but we found no time237

interval with χ2 < 4 when comparing to gufm1 or CALS3k.4b. This is because238

magnetic flux is concentrated into many small-scale patches, while the axial dipole239

is generally much weaker than the observed field. This result is independent of po-240

sitions for the boundaries of the averaging intervals. The second simulation (model241

C4 in Table 1) has Eη = 1.2 × 10−5 and Rm = 130 and plots outside the wedge-242

shaped region in Figure 1. Nevertheless, agreement between this simulation and243

gufm1 (CALS3k.4b) was classed as excellent in 11 (8) intervals and good in 92 (36)244

intervals. The final simulation in Figure 2 (model F2 in Table 1) has Eη = 2× 10−5
245

and Rm = 500, plots inside the wedge-shaped region in Figure 1 and displays low246

values of χ2 across the course of the simulation. Excellent agreement with gufm1247

and CALS3k.4b is obtained at a number of intervals.248

Table 1 shows for each simulation the number of intervals with χ2 < 4 expressed249

as a percentage of the total number of intervals. These quantities, denoted %(χ2),250

are shown for both the diffusion and advective time scalings and for comparisons251

with gufm1 and CALS3k.4b. For the diffusive scaling only two of the 31 simulations252

achieve a χ2 < 4 in more than half the intervals when compared to gufm1; comparing253

with CALS3k.4b reduces this to one. Values of %(χ2) are systematically lower when254

the advective time scaling (equation (5)) is used. This is not surprising because all255

of our models have a lower Rm than the Earth. With the advective time scaling256

only one model achieves a χ2 < 4 in more than half the intervals when compared257

to gufm1; comparing for CALS3k.4b reduces this to zero. In our simulations the258

generated fields are generally morphologically different from the modern observed259

field.260

We find that a wide range of simulations comply with the CAH criteria in at261

least one interval for both diffusive and advective timestep scalings. Results for the262
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diffusive scaling are summarised in Figure 1. The majority of simulations with χ2 < 4263

plot inside the wedge-shaped region. Other simulations, such as C4 in Figure 2,264

plot outside the wedge but still achieve χ2 < 4. Four of the five simulations with265

heterogeneous outer boundary heat-flux are in this category; χ2
AD/NAD and χ2

O/E266

vary significantly over time in these models, while χ2
FCF and χ2

Z/NZ are persistently267

low because the heterogeneous boundary condition tends to concentrate magnetic268

flux into pairs of equatorially symmetric patches. We did not find any interval in269

each of the 5 simulations with E > 10−4 that agreed with the CALS3k.4b field. A270

shorter interval with χ2 < 4 may exist somewhere in the time-series or might emerge271

if the simulations were run for longer; however, we choose not to study these models272

further given the present evidence. For now we regard all 19 simulations with χ2 < 4273

(shown by the grey and open symbols in Figure1) as candidates for further analysis.274

3.2. Comparisons based on Frequency Dependence of Variations in the Axial Dipole275

Moment276

We now introduce a new criterion that measures the agreement between temporal277

variations in the simulations and the geomagnetic field on long timescales. As already278

noted we compare to the model PADM2M, which describes the temporal evolution279

of the axial dipole moment over the past 2 Myr (Ziegler et al., 2011); results are280

also presented for the 800 kyr model Sint-800 (Guyodo and Valet, 1999) and the281

2 Myr Sint-2000 model (Valet et al., 2005). We first convert to a time-series of g0
1282

by multiplying the axial dipole moment (ADM) of each model by µ0/(4πre), where283

µ0 is the permeability of free space. We then nondimensionalise g0
1 as described in284

§3.1 for comparison with the dimensionless g0
1 output from geodynamo simulations.285

Our criterion for agreement between simulations and data is based on a comparison286

of the power spectral density (PSD) of g0
1.287
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As in Constable and Johnson (2005) our spectral estimates are computed using288

the code PSD written by Robert L. Parker (http://igppweb.ucsd.edu/~parker/Software/index.htm289

which is based on an adaptively smoothed sine multitaper method (Riedel and290

Sidorenko, 1995) designed to minimize local bias in the spectrum. Several tunable291

parameters influence the results: 1) whether to prewhiten (pw) the spectra; 2) the292

spline used for interpolation (Akima or Natural); 3) the smoothness of the PSD, S,293

which affects the number k of tapers used at each frequency. k also varies with fre-294

quency depending on the amount of structure present in the spectrum. Prewhitening295

is recommended for red spectra (such as the ADM) as it suppresses spectral leakage296

and this was used to compute the spectra in this paper. We tested how the different297

choices affect the PSD. The spline choice makes little difference, while the primary298

impact of the smoothing factor is to improve frequency resolution at the expense299

of greater uncertainty in spectral amplitude. Prewhitening also changes the low-300

frequency part of the spectrum, introducing stronger smoothing in that region (and301

thereby greatly limiting the frequency resolution) and softening the sharpness of the302

corner transition, while leaving the intermediate- and high-frequency parts relatively303

unaffected as it should. The basic shape of the spectrum and transition frequencies304

do not depend strongly on these choices.305

Following Olson et al. (2012) we divide the PADM2M spectrum into three fre-306

quency ranges: a low frequency (LF) range characterised by a flat spectrum with307

amplitude a; an intermediate frequency (IF) range where the spectrum follows a308

power law bf−nb with nb = 2.1 ± 0.2, where f is frequency; a high frequency (HF)309

range where the spectrum follows a power law cf−nc with nc = 6.1 ± 0.5 (see Fig-310

ure 3). Our criterion for agreement is that the PSD of g0
1 in a geodynamo simulation311

can be fit by a power law model with exponents that fall within the errors of the312

PADM2M spectrum, a reasonable measure of the uncertainties.313
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The corner frequencies are determined by first inspecting the individual spectra314

to establish frequency ranges that contain the transitions from LF to IF and from315

IF to HF. In each range the frequency corresponding to the maximum curvature316

(d2(PSD)/df 2) is taken as the corner frequency. Error estimates on the fitting317

parameters for PADM2M are obtained by refitting the data with corner frequencies318

corresponding to the maximum curvature ±max(d2(PSD)/df 2)/tol where tol =319

2, 5, 10, 100 is a tolerance. We then obtain power law fits to the PSD between the320

corner frequencies using least squares (the least squares errors are much smaller than321

the errors obtained by refitting the spectra). This procedure is repeated for each322

simulation using first the advective time scaling (5) and then the diffusive scaling323

(4). Values of a, b, c, nb, nc and the corner frequency cfli between LF and IF parts324

of the spectrum obtained with the diffusive time scaling are given in Table 2 for325

simulations that meet the criteria in §3.1.326

The parameters used to fit the PSD are subject to various sources of uncertainty.327

Estimates of the low-frequency parameters a and cfli are influenced by tunable pa-328

rameters in the spectral estimation (see above), the length of the available time-series329

and differences between ADM models. Table 2 shows that these factors cause es-330

timates of a to vary by over an order of magnitude between Sint-800, Sint-2000331

and PADM2M. Moreover, if the available time-series are not long enough to capture332

the low frequency behaviour of the geodynamo the amplitude a will differ by some333

unknown amount from the expected value for a longer time-series. The frequency334

resolution of cfli in PADM2M and Sint-2000 is around 30–40 Myr−1, all other fac-335

tors being equal; prewhitening increases the uncertainty to ∼200 Myr−1. Frequency336

resolution can be reduced to about ∼4 Myr−1 by adjusting the smoothing parameter337

at the expense of greater uncertainty in a and a more complex spectrum. We prefer338

the relatively smooth prewhitened estimate because of the simplicity of the spectral339
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shape and reduced spectral leakage, despite the poorer frequency resolution. These340

considerations mean that we do not use the values of a and cfli to define a criterion341

for temporal agreement between geodynamo simulations and the geomagnetic field342

(although we note that all dynamo models in Table 2 have values of cfli within the343

observational errors, while only one model (C5) has a value of a outside the observed344

range).345

Table 2 shows that the HF regions of observational ADM models are not in good346

agreement, reflecting the different methods by which they were constructed and poor347

age resolution for paleomagnetic records in the 100 - 1000Myr−1 range. However,348

PADM2M, Sint-800 and Sint-2000 all provide a good sampling of the IF range and349

we obtain similar fits to the models in this region. We therefore require that our350

models fit the IF range of the observed ADM models. This amounts to requiring351

that values of nb for the geodynamo simulations fall within the range of errors for the352

observed models. Also, as we are interested in long timescale behaviour, we require353

that the PSD from simulations contain LF and IF regions.354

Figure 3 shows the frequency spectrum of g0
1 for selected models using respectively355

the advective and diffusive scalings. These Figures show the result established by Ol-356

son et al. (2012) that the advective scaling does the best job of collapsing the spectra357

in the high-frequency range. [Note that our spectra based on the advective time scal-358

ing are shifted towards higher frequencies compared to those based on the diffusive359

scaling, the opposite to the results in Olson et al. (2012), because we use dimen-360

sional time while Olson et al. (2012) use dimensionless time]. At low (O(103 − 100))361

frequencies the dispersion of the spectra are comparable for both scalings. The spec-362

tra for both scalings show energy at higher frequencies than those in PADM2M.363

This is expected from the limited temporal resolution achieved by PADM2M. How-364

ever, the advective spectra are also systematically offset towards higher frequencies365
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with respect to PADM2M but, as is to be expected, the spectral slopes remain un-366

changed. For the diffusive scaling the spectra plot closer to PADM2M; in particular,367

the spectra for models with Rm = 130 and Rm = 261 lie very close to the PADM2M368

spectrum. Power-law fits, shown by black solid lines, demonstrate that the models369

in Figure 3 conform to the basic shape of the PADM2M spectrum. This analysis370

also indicates that the diffusive time scaling is an appropriate choice for making371

comparisons involving temporal variations at timescales of 10kyr or longer.372

Table 2 shows that ADM spectra from 12 of the 19 remaining simulations provide373

a satisfactory fit to the PADM2M spectrum. Models C1-5, D1, F1 and G1 are too374

short to fit the LF part of the PADM2M spectrum. In the following sections we375

focus on the four geodynamo simulations in Figure 3; results for all simulations are376

listed in Table 2. To simplify the presentation we now focus on results obtained with377

the diffusive time scaling. We note that this choice does not affect our conclusions378

regarding the long-term behaviour of our geodynamo models.379

4. Long-term variations in geodynamo simulations380

We are now in a position to investigate the existence of a time-averaged field (a381

field that does not change upon further averaging) and to attempt to determine the382

length of time required to obtain a stable average. We do this for both PADM2M383

and the simulated fields, first defining the running average of the sum of Gauss384

coefficients, g(t), as385

g(t) = g(t − 1)
(t − 1)

t
+

1

t

L,M
∑

l,m

[gm
l (t) + hm

l (t)] , t = 1, 2, . . . , n (8)

17



where M is the maximum harmonic order. We define g0
1(t) by setting L = 1, M =386

0 in (8), while gz(t) and gnz(t) are defined by retaining respectively the zonal or387

nonzonal coefficients in (8) as described in §3.1. To define a time-average, the graph388

of g(t) should tend to a horizontal line as t increases. Small fluctuations will always389

arise as the length of the time-series is extended. To estimate the time needed to390

obtain the mean dipole field we define the parameter τave as the time after which391

fluctuations in g0
1(t) do not exceed 1% of the final value of g0

1. This strategy will392

yield an underestimate for short runs.393

Figure 4 shows the time variation of g0
1 and g0

1 for PADM2M. Field reversals394

cause a sudden change in g0
1, leading to a lack of stability from 2.0 − 0.78 Ma when395

the field reverses regularly. Since the most recent reversal g0
1 appears to flatten out;396

fluctuations reduce to < 1% of the final value after τave = 1.8 Myr of averaging. If397

the running average is started following the most recent reversal, τave = 600 kyr of398

averaging is required to obtain the mean value of g0
1. However, as noted by Ziegler399

et al. (2011) there are differences in the 0.78 Myr and 2 Myr averages, indicating400

that the power spectrum for the actual field is not flat at long periods.401

Figure 5 shows the time variation of g0
1 for four geodynamo simulations. The402

starting time has been picked arbitrarily, but further calculations verify that it does403

not change the results. In most cases the value of τave (see Table 2) is comparable404

to the length of the simulation (compare to Table 1 with one time unit equal to405

2×105 yrs for the diffusive scaling). The long-term variations in the running averages406

shown in Figure 5 suggest that larger values of τave may be obtained if the simulations407

were run for longer. Indeed, it is expected based on the running average for PADM2M408

that future reversals in models C8 and C10 (which are in the dipole reversing regime)409

will destabilise the running average, while the values of τave obtained for the non-410

reversing models C1-4 and C4 are already longer than any period of stable polarity411
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covered by PADM2M. Making the assumption that the values of τave in Table 2 are412

robust gives 0.3 ≤ τave ≤ 2.2 Myr, which exceeds the magnetic diffusion timescale413

and amounts to many dipole decay times (magnetic diffusion time divided by π2
414

(Olson et al., 2012)).415

Figure 5 also shows that the nonzonal component, gnz, reduces to less than 2% of416

|g| within ∼400 kyr of averaging in all simulations except the model with Rm = 564.417

The magnitude and variation of gnz is much less than gz. After an initial transient418

period at the start of the running average (not associated with the start of the419

dynamo simulation) the variations in g tend to be reflected in gz. By far the biggest420

contribution to gz is from g0
1.421

We now consider the spatial CMB power spectrum, obtained by averaging the422

entire time-series of Gauss coefficients for each simulation (Figure 6). Power in equa-423

torially antisymmetric modes, REA, is much greater than power in equatorially sym-424

metric modes, RES, in all simulations. REA is characterised by a zigzag pattern with425

peaks at odd l . This pattern has been found in other dynamo simulations (Dormy426

et al., 2000; Christensen and Olson, 2003; Coe and Glatzmaier, 2006; Christensen427

and Wicht, 2007; Driscoll and Olson, 2009). The zonal spectrum, Rz, has a very428

similar shape to REA and further investigation shows that the zonal modes make the429

dominant contribution to REA, as could be anticipated from Figure 5. Energy in RES430

and Rnz increases with Rm, except for the simulation with Rm = 130, which includes431

lateral variations in outer boundary heat-flux. Nevertheless, because power in REA432

is greater than power in RES, the overall spectrum is dominated by EA modes and433

retains the zigzag pattern. All of our models with a homogeneous outer boundary434

heat-flux and a zigzag time-averaged spatial spectrum generate time-averaged fields435

that are axial-dipole dominated with very little non-axisymmetric structure.436

A simple measure of the zigzag spectrum is obtained by dividing the sum of odd437
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l components of the time-averaged nondipole (l > 1) power spectrum by the sum of438

even l components up to degree L = 10. This quantity, EA/ES is provided in Table 2439

for all models and is generally ≫ 1, as expected for a spectrum characterised by a440

zigzag shape. Exceptions to this are model F1, which has been run for less than one441

time unit, and models C4 and C5, which both incorporate a laterally-varying outer442

boundary heat-flux. The significance of the outer boundary condition is discussed443

further below.444

The running averages in Figure 5 suggest that the zigzag spectrum may emerge for445

averaging times much shorter than those required to obtain stable mean fields because446

the nonzonal and equatorially symmetric contributions average out relatively quickly.447

Figure 7 shows power spectra averaged over successively longer time periods for448

four geodynamo simulations. Average spectra are very different from instantaneous449

spectra because nonzonal and equatorially symmetric terms average out. Surface450

spectra for model C1-4 (Rm = 261) show that the zigzag pattern emerges after451

15 kyr and remains thereafter. In this model l = 7 is anomalous in the sense that452

it is low compared to the adjacent even values of l = 6 and l = 8 modes, while all453

other odd l up to l = 10 are higher than the adjacent even l. The surface spectrum454

for model C1-4 averaged over 1000 kyr looks very similar to that averaged over 15455

kyrs. Models C8 (Rm = 356) and C10 (Rm = 500) display spectra with the zigzag456

pattern after 10 and 15 kyr respectively. Model C4 (Rm = 130), which includes457

lateral variations in outer boundary heat-flux, displays the zigzag spectrum in the458

3 kyr average but not in the 10, 15 and 20 kyr averages. In this case the h1
2 and g2

3459

Gauss coefficients are much larger than in the homogeneous geodynamo simulations460

and make significant contributions to the average spectra (Davies et al., 2008).461
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5. Discussion and Conclusions462

We have used a suite of geodynamo simulations to investigate long-term geomag-463

netic field behaviour. Simulations were selected based on agreement between the464

synthetic and observed magnetic fields in terms of five quantities. Four of these were465

defined by Christensen et al. (2010) and relate to the field morphology. We em-466

ployed a fifth quantity describing temporal field variations by a power law fit to the467

frequency spectrum of the axial dipole moment and required that synthetic spectra468

follow the same power law to within the observationally-determined errors. Seven of469

19 models were rejected based on this criterion, indicating a sensitivity that is not470

overly restrictive.471

Our application of the morphological criteria differs from that of Christensen472

et al. (2010): instead of dealing with the average we treated gufm1 and CALS3k.4b473

separately and divided all simulation time-series into intervals 400 and 3000 years474

long, applying the criteria to each interval separately. The misfit ratings vary signifi-475

cantly over time in our simulations. Short term averages can meet the morphological476

criteria for being Earth-like, leading to conclusions that might not be supported by477

longer term averages. We also found that some simulations display markedly differ-478

ent levels of agreement for gufm1 and CALS3k.4b. This suggests that each global479

field model should be treated separately when compared to geodynamo simulations.480

Similar issues may pertain to comparisons of the dipole moment. We chose to con-481

duct a detailed analysis based on the PADM2M axial dipole moment model (Ziegler482

et al., 2011); this lengthy process could be attempted for other such models.483

Over half of the models rejected on the basis of morphological comparisons, to-484

gether with the additional criterion for temporal agreement based on the power spec-485

tra, lie inside the wedge-shaped region (Figure 1) defined in terms of magnetic Ekman486
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number and magnetic Reynold’s number that Christensen et al. (2010) found to con-487

tain Earth-like dynamo models (models satisfying the criteria) for their extensive488

suite of simulations. The region where Earth-like dynamo models exist in Eη − Rm489

space must be bounded from below because there is a minimum Rm for dynamo490

action; it is likely bounded from above because multipolar fields are generally ob-491

tained when the dynamo is strongly driven. Whether there exists a single region of492

parameter space where simulations exhibit similar spatio-temporal characteristics to493

the Earth seems to require more work.494

It is interesting to note that three of the four simulations with an imposed hetero-495

geneous outer boundary heat-flux and relatively low Rm ( 125 − 137) achieve good496

morphological similarity (χ2 < 4 at some time) with the observed field. Of these497

three models, two also pass our temporal criterion. These models do not reverse, but498

can produce long-term fluctuations associated with the partial locking of convec-499

tive structures to the boundary anomalies (Davies et al., 2008). It would be highly500

desirable to explore heterogeneous boundary conditions at higher Rm to establish501

whether the excellent morphological agreement persists.502

The majority (16/19) of our simulations that successfully match the morphology503

of the modern field in at least one interval exhibit poor morphological agreement with504

the observed field over more than half their duration. Extrapolating these results505

to the geomagnetic field comes with the usual caveats that the simulations operate506

with parameters that are very different to those pertaining to Earth’s core. By507

selecting simulations based on the five criteria described above we have confidence508

that the spatio-temporal characteristics of the models resemble those of the data,509

even if the physics in the model is not completely faithful to the core. Assuming the510

simulation results can be extrapolated to the Earth, the past field may often have511

been morphologically different from the modern field.512
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Simulations satisfying the five criteria were used to investigate the field behaviour513

on timescales where the nondipole part of the field is poorly constrained by obser-514

vations. We found that the length of time needed to obtain a converged estimate515

of the dipole field strength was comparable to the length of the simulation in the516

majority of cases, including models that did not reverse polarity. Reversals tend to517

destabilise the running average. These results suggest that long periods of stable po-518

larity spanning many magnetic diffusion times are needed to obtain robust estimates519

of the mean dipole field strength.520

We find that long-term fluctuations in the simulated magnetic fields are due al-521

most entirely to the axial dipole, with the running average of the non-axial dipole522

field stabilising after only a few tens of kyrs. Furthermore, we find that, in all simu-523

lations, the spatial power spectrum at the CMB is characterised by a zigzag pattern524

with high power in odd harmonic degrees. Our results suggest that this spectral525

pattern may emerge after as little as 15− 20 kyr of averaging. The numbers depend526

on the choice of scaling for the dimensionless numerical timestep. An alternative527

scaling based on the advection timescale will give smaller averaging times than the528

diffusive scaling if Rm in the simulation is smaller than Rm in the Earth (as is the529

case here), equal if the two values of Rm are equal, and larger otherwise.530

Changes in the shape of the CMB power spectrum with increasing averaging531

time may yield important insights into the long-term morphology of the geomagnetic532

field. Figure 8 shows surface power spectra for the observational model CALS10k.1b,533

the longest global model currently available, averaged over several different time534

intervals. Zigzag patterns in the spectra with dominance by odd degrees can be seen535

in 1 kyr and 5 kyr averages over some windows but not others; the same is true536

of the dynamo simulations for these window sizes. However, the 10 kyr-averaged537

spectrum for CALS10k.1b does not display such a pattern. There are hints that538
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this is due to decreasing model resolution as the model extends further back in time539

where the inherent lack of resolution with limited data quality and poor coverage in540

the southern hemisphere is especially pronounced. Alternatively, it may reflect an541

interesting property about the structure of the geomagnetic field . An observational542

geomagnetic field model spanning a period of 15 − 20 kyr with resolution up to543

harmonic order 5 would be the ideal test of the predictions made in this work.544
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Label E Pm Pr RaE H ǫ BC Rm T Reg %(χ2)d
g %(χ2)d

c %(χ2)a
g %(χ2)a

c

A1 1 1 0.1 40 B 0 TF 78 100 DN 0.04 0.0 0.0 0.0

B1 0.5 1 0.1 150 B 0 TF 278 9 DR 1.3 0.0 2.5 0.0

B2 0.5 10 1 200 B 0 TF 326 2 DN 0.3 0.0 0.5 0.0

B3 0.5 10 1 400 B 0 TF 475 1.2 DR 0.0 0.0 0.0 0.0

B4 0.5 5 1 300 B 0 TF 227 8 MR 0.0 0.0 0.0 0.0

C1-2* 0.12 2 1 20 B/I 0 TF 126 8 DN 73.9 39.2 57.4 14.9

C1-3* 0.12 2 1 50 B/I 0 TF 199 8 DN 58.7 0.1 39.4 0.0

C1-4* 0.12 2 1 100 B/I 0 TF 261 4.2 DN 36.8 13.5 22.0 2.3

C1-5* 0.12 2 1 200 B/I 0 TF 650 0.3 DR 7.5 10.3 9.1 5.0

C2-2* 0.12 2 1 20 B/I 0 TF 78 10 DN 0.1 43.3 0.0 6.3

C2-3* 0.12 2 1 50 B/I 0 TF 105 3 DN 39.5 52.9 6.2 16.7

C2-5* 0.12 2 1 200 B/I 0 TF 269 0.6 DN 41.4 19.7 30.0 5.0

C3-2* 0.12 2 1 20 B 0 TF 72 12 DN 28.5 39.9 4.7 15.2

C3-3* 0.12 2 1 50 B 0 TF 102 10 DN 25.0 7.9 14.1 5.9

C3-4* 0.12 2 1 100 B 0 TF 153 2 DN 46.0 14.6 34.7 7.7

C3-5* 0.12 2 1 200 B/I 0 TF 427 1 MR 0.0 0.0 0.0 0.0

C4 0.12 10 1 34.9 I 0.3 TF 130 10 DN 2.1 4.9 0.9 0.0

C5 0.12 10 1 34.9 I 0.6 TF 125 6.5 DN 3.1 5.9 1.9 2.9

C6 0.12 10 1 57.5 I 0.6 TF 192 1.4 DN 0.3 0.0 0.0 0.0

C7 0.12 10 1 34.9 I 0.9 TF 137 10 DN 5.3 3.0 3.5 0.0

C8 0.12 10 1 150 B 0 TF 356 2 DR 4.5 3.4 5.2 2.9

C9 0.12 10 1 150 B 0.9 TF 353 2 DN 0.0 0.0 0.0 0.0

C10 0.12 10 1 300 B 0 TF 564 1.8 DR 11.6 15.2 12.8 14.8

D1 0.10 3 1 350 B 0 FF 154 0.5 - 2.1 1.1 0.8 0.0

D2 0.10 3 1 255 B 0 TF 192 0.1 - 5.9 0.0 3.0 0.0

E1 0.06 3 1 765 B 0 FF 264 0.1 - 14.3 0.0 8.4 0.0

E2 0.06 3 1 380 B 0 FF 164 0.2 - 7.8 0.0 3.9 0.0

E3 0.06 2 1 765 B 0 FF 184 0.2 - 15.4 0.0 8.5 0.0

F1 0.02 1 0.1 60 I 0 TF 198 1 DN 47.0 29.1 40.0 16.7
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F2 0.02 1 0.1 240 B 0 TF 500 0.5 - 27.3 21.1 27.9 18.2

G1 0.005 1 0.1 120 B 0 TF 401 0.1 - 22.0 7.1 8.3 16.7

Table 1: Geodynamo simulations used in this work. E = Ekman number (×10−3);

Pm = magnetic Prandtl number; Pr = Prandtl number; Ra = Rayleigh number.

H= heating mode used to drive the dynamo: bottom heating (B) or internal heating

(I). ǫ = amplitude of thermal anomalies imposed at the outer boundary; ǫ = 0 refers

to a homogeneous outer boundary, otherwise the pattern is derived from seismic to-

mography. BC= thermal boundary condition with the first letter referring to the

inner boundary and the second letter referring to the outer boundary: T=fixed tem-

perature; F=fixed heat-flux. Rm =
√

(2EK/Vs), the magnetic Reynolds number,

where EK is the time-averaged nondimensional kinetic energy and Vs = 14.59 is the

nondimensional volume of the fluid shell. T= length of the simulation in units of

d2/η. Reg= dynamo regime following Olson and Christensen (2006): DN=dipole-

dominated, non-reversing; DR=dipole-dominated, reversing; MR=multipolar, re-

versing. %(χ2) indicates the percentage of windows with χ2 < 4 when comparing

to gufm1 (subscript g) and CALS3k.4b (subscript c) using the diffuse time scaling

(superscript d) and advective time scaling (superscript a). Simulations denoted by

an asterisk are driven by buoyancy profiles described in Davies and Gubbins (2011)

where the formulation for the basic heating model can be found. Further description

of the simulations can be found in the text.
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Label Rm a b nb c nc cfli τave EA/ES
C1-2 126 0.4 0.03 -2.0 80 -6.4 9 0.6 (0.08) 148
C1-3 199 0.3 0.009 -1.6 80 -6.0 9 0.8 (0.2) 193
C1-4 261 1.4 0.07 -2.2 80 -5.8 6 0.9 (0.3) 156
C1-5 650 - 1.72 -2.3 60 -5.5 - - -
C2-2 78 1.2 0.04 -2.2 52 -4.6 2 1.2 (0.1) 125
C2-3 105 1.2 0.03 -2.3 80 -6.7 4 0.5 (0.06) 21
C2-5 269 0.2 0.006 -1.6 80 -5.9 9 0.3 (0.1) 14
C3-2 72 0.5 0.03 -2.0 80 -6.5 2 2.2 (0.2) 71
C3-3 102 0.5 0.07 -2.1 80 -6.5 11 0.3 (0.03) 65
C3-4 153 0.3 0.11 -2.0 80 -6.2 19 0.4 (0.07) 38
C4 130 2.8 0.19 -2.1 80 -6.3 8 1.9 (0.2) 6
C5 125 130 0.06 -1.9 9 -6.0 2 2.2 (0.3) 2
C7 137 1.0 0.01 -1.8 80 -6.4 3 0.7 (0.1) 7
C8 356 0.9 3.51 -2.2 80 -6.5 27 0.3 (0.1) 114
C10 564 0.1 1.00 -1.9 950 -6.5 38 0.3 (0.2) 77
D1 154 - 0.94 -3.8 3 -7.0 - - -
F1 198 - 3.10 -2.2 80 -5.4 - - -
F2 500 0.7 3.44 -2.2 200 -5.6 52 0.07 (0.04) 7
G1 401 - 0.20 -2.9 70 -4.9 - - -
Sint-800 0.39 0.07 -1.9 500 -6.0 14.1
Sint-2000 1.35 0.27 -2.3 4.2 × 10−9 -3.0 9.8
Sint-2000+ 1.63 0.07 -1.9 2.3 × 10−10 -2.1 8.3
PADM2M 0.99 0.08 -2.1 3 -6.2 7.7 0.6 (Brunhes)

±0.2 ±0.5 ±210 1.8 (2 Myr)
PADM2M+ 0.58 0.07 -2.1 4 -6.3 10.1 0.6 (Brunhes)

±0.2 ±0.5 ±53 1.8 (2 Myr)

Table 2: Fitting parameters a (×10−6), b (×10−3), c (×105), nb and nc that give the
best-fitting power-law spectrum to PADM2M for each simulation. cfli (Myr−1) de-
notes the corner frequency between low-frequency and intermediate-frequency parts
of the power spectrum. τave (Myr) denotes the time after which fluctuations in g0

1

did not exceed 1% of the final value of g0
1. τave is given for the both diffusive and

advective (in brackets) scalings of the model time. EA/ES denotes the ratio of total
power in equatorially antisymmetric to equatorially symmetric components of the
time-averaged nondipole power spectrum up to degree L = 10. Dashes indicate that
the quantity was not calculated because the model did not fit the power law model
for PADM2M based on the criterion described in §3.2, while models highlighted in
green are deemed successful based on this criterion. + indicates that the spectrum
was not prewhitened.
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Figure 1: Dynamo models used in this study plotted as a function of magnetic
Ekman number Eη and magnetic Reynold’s number Rm following Christensen et al.
(2010). Open symbols denote models where the morphological agreement between
a simulated field and the fields of both gufm1 and CALS3k.4b was either good or
excellent (χ2 < 4) and where the synthetic dipole moment power spectrum provided
a satisfactory fit to the spectrum of PADM2M. Models with black symbols were
found to give poor morphological compliance, while models with grey symbols gave
either good or excellent morphological compliance but did not provide a satisfactory
fit to the PADM2M dipole moment spectrum. The dashed lines delineate the wedge-
shaped region found by Christensen et al. (2010) to contain simulations with χ2 < 4.
The large asterisk denotes the values of Rm and Eη estimated for the Earth.
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Figure 2: χ2 rating (left column) for three numerical geodynamo simulations. Black
lines show the final rating for each model when compared to gufm1; red dashed
lines for CALS3k.4b; horizontal lines indicating excellent (χ2 = 2) and good (χ2 =
4) agreement. The right column shows the radial magnetic field Br at the outer
boundary for a single interval of 400 yrs plotted to spherical harmonic degree L = 12.
The three dynamo simulations are: model B3 (top), C4 (middle) and F2 (bottom).
The diffusion time scaling τ d has been used to scale the time axis. Further details of
the models can be found in Table 1.
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Figure 3: Dimensionless power spectral density (PSD) of the axial dipole magnetic
field plotted against frequency f in Myr−1 for the geodynamo simulations C4 (Rm =
130), C1-4 (Rm = 261), C8 (Rm = 356) and C10 (Rm = 564) in Table 1, which
satisfy the criteria of Christensen et al. (2010). In the top panel the simulation time
has been scaled by the advection timescale, τa. In the bottom panels simulation
time has been scaled by the diffusive timescale, τ d, and solid black lines show best-fit
power-law models based on the spectrum of PADM2M. See text for further details.
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Figure 4: Time-series of g0
1 (blue line) and the running average of g0

1, g0
1 (black

line), for the model PADM2M (Ziegler et al., 2011). The green line shows g0
1 for

the last 780 kyr with a running average started following the most recent field rever-
sal. Reversals indicated by vertical red lines. Note that PADM2M is derived from
measurements of the squared field strength (Ziegler et al., 2011) and so the g0

1 we
determine from PADM2M must be bounded below by zero. g0

1 does not go to zero
when the field reverses due to uncertainties in timescales of the individual records
combined to generate PADM2M and the smoothing applied in generating PADM2M
via regularized inversion.
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Figure 5: Running averages for the geodynamo simulations C4 (Rm = 130), C1-4
(Rm = 261), C8 (Rm = 356) and C10 (Rm = 564) in Table 1. Top left: the

axial dipole coefficient, g0
1; top right: the sum of all coefficients, g; bottom left: the

sum of zonal (m = 0) coefficients, gz; bottom right: the sum of nonzonal (m 6= 0)
coefficients, gnz. See text for details of model selection criteria.
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Figure 6: Components of the core surface power spectrum for the geodynamo sim-
ulations C4 (Rm = 130), C1-4 (Rm = 261), C8 (Rm = 356) and C10 (Rm = 564)
in Table 1. Top left: equatorially antisymmetric (l −m odd) power, REA; top right:
equatorially symmetric (l −m even) power, RES; bottom left: zonal (m = 0) power,
Rz; bottom right: nonzonal (m 6= 0) power, Rnz. Gauss coefficients are averaged
before calculating the spectra using (6) with the averaging time given in Table 1.
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Figure 7: Core surface power spectra R(l, ro) averaged over increasing time periods
(pink lines) with some averages highlighted. Models are C4 (Rm = 130, top left),
C1-4 (Rm = 261, top right), C8 (Rm = 356, bottom left) and C10 (Rm = 564,
bottom right).
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Figure 8: Radial component of the average magnetic field in µT at the CMB (top)
and surface power spectra for different time-averages for the observational model
CALS10K.1b (Korte et al., 2011). Dashed lines represent spectra from the early
part of the model (5–10 ka) which has generally poorer spatial resolution.
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