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WEIGHTED COMPOSITION OPERATORS ON THE DIRICHLET

SPACE: BOUNDEDNESS AND SPECTRAL PROPERTIES

I. CHALENDAR, E. A. GALLARDO-GUTIÉRREZ, AND J. R. PARTINGTON

Abstract. Boundedness of weighted composition operators Wu,ϕ acting on the clas-

sical Dirichlet space D as Wh,ϕf = h (f ◦ϕ) is studied in terms of the multiplier space

associated to the symbol ϕ, i.e., M(ϕ) = {u ∈ D : Wu,ϕ is bounded on D}. A promi-

nent role is played by the multipliers of the Dirichlet space. As a consequence, the

spectrum of Wu,ϕ in D whenever ϕ is an automorphism of the unit disc is studied,

extending a recent work of Hyvärinen, Lindström, Nieminen and Saukko [13] to the

context of the Dirichlet space.

1. Introduction and Preliminaries

Let D denote the open unit disc in the complex plane C. The Dirichlet space D consists

of analytic functions f on D such that the norm

‖f‖2D = |f(0)|2 +

∫

D

|f ′(z)|2 dA(z)

is finite. Here A stands for the normalized Lebesgue area measure of the unit disc.

Observe that for a univalent function f , the integral above is just the area of f(D).

It is well known that D ⊂ H2 ⊂ A2, where H2 and A2 denote respectively the Hardy

and Bergman spaces on D, and that f ∈ D if and only if f ′ ∈ A2. The recent monograph

[8] is an excellent source to learn about the Dirichlet space and its particular issues.

If ϕ is an analytic function on D with ϕ(D) ⊂ D, then the equation

Cϕf = f ◦ ϕ

defines a composition operator Cϕ on the space of all holomorphic functions on the unit

disc H(D). On the Dirichlet space D, a necessary condition for Cϕ to be bounded is

that ϕ ∈ D. Nevertheless, not all the Dirichlet functions induce bounded composition

operators on D. Such functions were characterized in 1980 by C. Voas [21] in his Ph.D.

thesis.

In this work, we shall be concerned with weighted composition operators on D: for

u ∈ D and ϕ a holomorphic self-map of D we define the weighted composition operator
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2 I. CHALENDAR, E. A. GALLARDO-GUTIÉRREZ, AND J. R. PARTINGTON

Wu,ϕ on D by

(Wu,ϕf)(z) = u(z)f(ϕ(z)),

noting that Wu,ϕ is not, in principle, a bounded operator on D. It is clear that if Cϕ

is a bounded operator on D and u is a multiplier of D, that is, the Toeplitz operator

Tu : f 7→ uf is defined everywhere on D and hence bounded, the weighted composition

operator Wu,ϕ on D is obviously bounded.

A well known fact about the Dirichlet space is that the algebra M(D) consisting of the

multipliers of D is not that easy to describe. Indeed, their elements were characterized

by Stegenga [20] in a remarkable paper in terms of a condition involving the logarithmic

capacity of their boundary values. In particular, the strict inclusion M(D) ⊂ D ∩ H∞

holds. Here H∞ denotes the space of bounded analytic functions in D endowed with the

sup-norm. A straightforward reformulation in terms of Carleson measures for D (that is,

there is a continuous injection from D into L2(D, µ)), yields the fact that u ∈ M(D) if and

only if u is bounded and the measure µ defined by dµ(z) = |u′(z)|2 dA(z) is a Carleson

measure for D. We refer to [22] for multipliers and Carleson measures in Dirichlet spaces

(and to [1, 8] for more on the subject of multipliers).

Concerning boundedness of weighted composition operators on D, let us remark that

one may construct self-maps of the unit disc ϕ such that ϕ 6∈ D and a multiplier u ∈

M(D) such thatWu,ϕ is bounded in the Dirichlet space. For instance, let u(z) = (1−z)2

and let ϕ be the infinite Blaschke product with zeroes (1− 1/n2)n≥1. Now ϕ 6∈ D, so Cϕ

is clearly unbounded. However, for f ∈ D we have

((1− z)2(f ◦ ϕ))′ = −2(1− z)(f ◦ ϕ) + (1− z)2(f ′ ◦ ϕ)ϕ′;

now the first term is clearly in the Bergman space A2, while for the second term we

observe that (1− z)2ϕ′ is a bounded analytic function in D and (f ′ ◦ ϕ) ∈ A2, so that it

also lies in A2 (with control of norms), showing that Wu,ϕ is bounded on D.

Therefore, facing the problem of describing the weighted composition operators taking

D boundedly into itself deals not only with the multipliers of D but also with those self-

maps of the unit disc that may induce unbounded composition operators in D.

At this regards, for a self-map ϕ of the unit disc D, we define the multiplier space

M(ϕ) associated to ϕ by

M(ϕ) = {u ∈ D :Wu,ϕ is bounded on D}.

It is clear that if Cϕ is bounded on D, then M(D) ⊆ M(ϕ) ⊆ D. Moreover, if ϕ induces

an unbounded Cϕ in D, then M(D) is no longer contained in M(ϕ) since, in such a case,

this latter space does not contain the constant functions.

The aim of this work is twofold. On one hand, we are interested in identifying the

multiplier space M(ϕ) for self-maps ϕ of D. Indeed, we will be able to characterize

the extreme cases whenever ϕ is a self-map of D belonging to D. Let us remark here

that in the case of the Hardy space H2, where Cϕ is automatically bounded and the

multiplier space is M(H2) = H∞, Gallardo-Gutiérrez, Kumar and Partington proved
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that MH2(ϕ) = H2 if and only if ‖ϕ‖∞ < 1 (see [9]) and MH2(ϕ) = H∞ if and only if

ϕ is a finite Blaschke product; this latter statement was showed previously in a different

way in [5] and [17].

Let us also point out that in the course of our findings, we will prove a Decomposition

Theorem for the Dirichlet space (cf. Theorem 2.1), which is interesting in its own and

whose proof is based on the theory of model spaces for the shift operator in the Hardy

space (see [18] for more information about model spaces). As far as we know, this is the

first time model spaces come into play with the Dirichlet space.

On the other hand, we are interested in the spectral properties of weighted composition

operators in D. In [12], Higdon computed the spectrum of composition operators in D

induced by linear fractional self-maps of D. The techniques developed there were quite

different from those carried over by Cowen in [6] in the corresponding case of the Hardy

space H2 (see also [7, Chapter 7]), due to the particular nature of D.

In a very recent work, Hyvärinen, Lindström, Nieminen and Saukko [13] have described

the spectra of invertible weighted composition operators Wu,ϕ acting on a large class of

analytic function spaces including the weighted Bergman and the weighted Hardy spaces;

generalizing previous results obtained in [11]. Nevertheless, as they also remark, their

results do not apply directly to the Dirichlet space since they rely on the fact that

the algebra of the multipliers of the spaces considered is H∞. Our aim is to extend

Hyvärinen, Lindström, Nieminen and Saukko’s results to the context of the Dirichlet

space D, pointing out that their techniques are no longer working in D.

The last section of the paper gives a description of the spectra of invertible weighted

composition operators. We first note (see Proposition 3.1) that a bounded weighted

composition operator Wu,ϕ in the Dirichlet space D is invertible if and only if u is a

multiplier bounded away from zero in D and ϕ is an automorphism of the unit disc.

Consequently, three separate cases are considered, depending on the nature of the disc

automorphism ϕ: elliptic, parabolic or hyperbolic. When ϕ is parabolic, causal operators

will play a prominent role in order to determine explicitly the spectrum of Wu,ϕ.

2. Boundedness of weighted composition operators

In this section, we study boundedness of weighted composition operators in the Dirich-

let space. In order to show the results at this respect, we prove a Decomposition Theorem

for D based on model spaces.

Let B be a finite Blaschke product and write KB for the model space KB = H2⊖BH2,

which is finite-dimensional; indeed dimKB = degB. Observe that if gk ∈ KB , then it

does not matter which norm we use, since KB is finite-dimensional and all norms are

equivalent. We proceed to state the Decomposition Theorem in its full generality, since

the main arguments of the proof also work for the Bergman space.

Theorem 2.1 (Decomposition Theorem). Let B be a finite Blaschke product such

that B(0) = 0. Then
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(1) f ∈ H2 if and only if f =
∑∞

k=0 gkB
k (convergence in H2 norm) with gk ∈ KB

and
∑∞

k=0 ‖gk‖
2 <∞.

(2) f ∈ D if and only if f =
∑∞

k=0 gkB
k (convergence in D norm) with gk ∈ KB

and
∑∞

k=0(k + 1)‖gk‖
2 <∞.

(3) f ∈ A2 if and only if f =
∑∞

k=0 gkB
k (convergence in A2 norm) with gk ∈ KB

and
∑∞

k=0 ‖gk‖
2/(k + 1) <∞.

Statement (1) is included for the sake of completeness since it is a standard fact that

H2 = KB ⊕BKB ⊕B2KB ⊕ ... as an orthonormal direct sum.

A word about notation. Throughout this work, a . b will denote that there exists

an independent constant C such that a ≤ C b; this constant may be different in each

instance.

Proof. We proceed to prove (2) and (3). We claim that for finite sums

‖
N∑

k=0

gkB
k‖2D .

N∑

k=0

(k + 1)‖gk‖
2 and ‖

N∑

k=0

gkB
k‖2A2 .

N∑

k=0

‖gk‖
2/(k + 1)

with the implied constants independent of N .

Let e1, . . . , en be a basis of the space KB . Then, writing gk =
∑n

ℓ=1 akℓeℓ we have,

since CB is a bounded composition operator in D, that
∥∥∥∥∥

N∑

k=0

n∑

ℓ=1

akℓeℓB
k

∥∥∥∥∥
D

=

∥∥∥∥∥

n∑

ℓ=1

eℓ

N∑

k=0

akℓB
k

∥∥∥∥∥
D

≤

n∑

ℓ=1

‖eℓ‖M(D)

∥∥∥∥∥

N∑

k=0

akℓB
k

∥∥∥∥∥
D

.

n∑

ℓ=1

(
N∑

k=0

(k + 1)|akℓ|
2

)1/2

.

(
n∑

ℓ=1

N∑

k=0

(k + 1)|akℓ|
2

)1/2

, by equivalence of norms on C
n,

.

(
N∑

k=0

(k + 1)‖gk‖
2

)1/2

,

where the notation ‖eℓ‖M(D) represents sup{‖eℓf‖D : ‖f‖D ≤ 1}. A similar calculation

can be made in A2.

To obtain the converse inequality, we use the dual pairing between D, equipped with

the equivalent norm ‖
∑∞

k=0 akz
k‖2X =

∑∞

k=0(k + 1)|ak|
2 and A2, equipped with the

equivalent norm ‖
∑∞

k=0 akz
k‖2Y =

∑∞

k=0 |ak|
2/(k + 1), namely

〈
∞∑

k=0

akz
k,

∞∑

k=0

bkz
k

〉
=

∞∑

k=0

akbk.
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For a finite sum
∑N

k=0 gkB
k we take hk ∈ KB with hk = (k+1)gk for each k. Now we

use the H2 orthogonality of BrKB and BsKB for positive integers r and s with r 6= s,

to deduce that 〈
N∑

k=0

gkB
k,

N∑

k=0

hkB
k

〉
=

N∑

k=0

(k + 1)‖gk‖
2
H2 .

Since ∥∥∥∥∥

N∑

k=0

hkB
k

∥∥∥∥∥

2

Y

.

N∑

k=0

‖hk‖
2/(k + 1) =

N∑

k=0

(k + 1)‖gk‖
2,

it follows that ∥∥∥∥∥

N∑

k=0

gkB
k

∥∥∥∥∥

2

X

&

N∑

k=0

(k + 1)‖gk‖
2,

and so we have a uniform equivalence of the Dirichlet norm and the quantity

(
N∑

k=0

(k + 1)2‖gk‖
2

)1/2

,

at least for finite sums. Since the Dirichlet space is contained in the Hardy space we may

make the obvious extension to the whole of D using infinite sums.

The argument for the Bergman space is analogous: once more we have an equivalence

of norms, and since the Hardy space is dense in the Bergman space we obtain the required

result. �

Recall that if Cϕ is bounded thenM(D) ⊆ M(ϕ) ⊆ D. For ϕ a finite Blaschke product

the space of weighted composition operators is as small as possible, as the following result

shows.

Theorem 2.2. Let ϕ be an inner function. Then M(ϕ) = M(D) if and only if ϕ is a

finite Blaschke product.

Proof. If ϕ is inner but not a finite Blaschke product, then ϕ 6∈ D, and so Cϕ is un-

bounded. Thus, taking u(z) ≡ 1, we have that u ∈ M(D) but u 6∈ M(ϕ).

Now suppose that ϕ = B, a finite Blaschke product. Let Tu denote the map f ∈ D 7→

uf . We must show that TuCB is bounded if and only if u ∈ M(D). It is clear that if

u ∈ M(D) then TuCB is bounded on D, since both Tu and CB are bounded.

For the converse, note that without loss of generality we may take B(0) = 0, since if

for some a we have B(a) = 0, then, setting

ϕa(z) =
a− z

1− az

we have B ◦ ϕa(0) = 0 and

Cϕa
TuCB = Tu◦ϕa

CB◦ϕa
.

Now TuCB is bounded if and only if Tu◦ϕa
CB◦ϕa

is bounded, and showing that u ∈ M(D)

is equivalent to showing that u ◦ ϕa ∈ M(D).



6 I. CHALENDAR, E. A. GALLARDO-GUTIÉRREZ, AND J. R. PARTINGTON

Now, given that TuCB is bounded, let f ∈ D. By Theorem 2.1 we may write

f =

∞∑

k=0

gkB
k =

∞∑

k=0

n∑

ℓ=1

akℓeℓB
k,

where each gk ∈ KB , {e1, . . . , en} is a basis of KB , and for each ℓ the scalars (akℓ)

satisfy

∞∑

k=0

(k + 1)|akℓ|
2 .

∞∑

k=0

(k + 1)‖gk‖
2 . ‖f‖2D.

Write fℓ(z) =
∑∞

k=0 akℓz
k so that ‖fℓ‖D . ‖f‖D. Then

∥∥∥∥∥u
∞∑

k=0

akℓB
k

∥∥∥∥∥
D

= ‖TuCBfℓ‖D . ‖TuCB‖‖f‖D.

Now e1, . . . , en lie in M(D) and we conclude that

‖uf‖D =

∥∥∥∥∥

n∑

ℓ=1

eℓTuCBfℓ

∥∥∥∥∥
D

. ‖TuCB‖‖f‖D,

so that u ∈ M(D) and the Theorem is proved. �

Next example shows that the assumption about ϕ being inner cannot be relaxed; even

if ‖ϕ‖∞ = 1 and Cϕ is bounded in D.

Example 2.1. We can have M(ϕ) 6= M(D) even if ‖ϕ‖∞ = 1 and Cϕ is bounded in D.

Let us consider

ϕ(z) =
1− z

2
and u(z) =

∞∑

k=2

zk

k(log k)3/4
.

Note that u ∈ D \M(D) (see [8, Thm. 5.1.6]). Nonetheless, TuCϕ is bounded; that is,

u ∈ M(ϕ).

In order to show that, let f ∈ D. We have

(u(f ◦ ϕ))′ = u′(f ◦ ϕ) + u(f ′ ◦ ϕ)ϕ′.

It suffices if we prove that each of these terms lies in the Bergman space A2.

Let us split the disc into disjoint measurable sets D = D1 ∪D2, where D1 is a small

neighbourhood of 1, mapped by ϕ into a small disc about 0.



WEIGHTED COMPOSITION OPERATORS 7

D2 D1

A partition of the unit disc.

On D1 both u and u′ are square-integrable with respect to Lebesgue measure, while

f ◦ ϕ and f ′ ◦ ϕ are uniformly bounded by constants depending only on the norm of f .

Likewise, on D2, u and u′ are bounded, while f ◦ϕ and f ′ ◦ϕ are square-integrable. Our

conclusion is that TuCϕ is bounded on the Dirichlet space D.

At the other extreme, we have the following result.

Theorem 2.3. Let ϕ be an analytic self-map of D. Then M(ϕ) = D if and only if

(1) ‖ϕ‖∞ < 1, and

(2) ϕ ∈ M(D).

Proof. Suppose first that ϕ satisfies conditions (1) and (2). Let u be a Dirichlet function.

In order to prove that TuCϕ is a bounded operator on D, let f ∈ D and consider

(u(f ◦ ϕ))′ = u′(f ◦ ϕ) + u(f ′ ◦ ϕ)ϕ′.

It suffices to show that each of these terms lies in the Bergman space A2.

We have that ‖f ◦ ϕ‖∞ . ‖f‖D since, for w ∈ D,

(f ◦ ϕ)(w) = 〈f, kϕ(w)〉D,

where kϕ(w) denotes the reproducing kernel at ϕ(w) in D, which is bounded in norm

independently of w since ‖ϕ‖∞ < 1. Hence, since u ∈ D, we have

(1) ‖u′(f ◦ ϕ)‖A2 . ‖f‖D.

Also, ‖f ′ ◦ ϕ‖∞ . ‖f‖D, since the derivative kernels k′ϕ(w) satisfying

f ′(ϕ(w)) = 〈f, k′ϕ(w)〉D

are also uniformly bounded in norm when ‖ϕ‖∞ < 1. Now by means of condition (2),

ϕ ∈ M(D), and therefore the measure |ϕ′(z)|2 dA(z) is a Carleson measure for D. Thus,

it follows that

(2) ‖u(f ′ ◦ ϕ)ϕ′‖A2 . ‖f‖D.
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From (1) and (2), one gets that TuCϕ is a bounded operator for all u ∈ D.

Conversely, if TuCϕ is bounded for all u ∈ D, then by the Closed Graph Theorem Cϕ

maps D boundedly into M(D) and hence into H∞. Suppose that ‖ϕ‖∞ = 1; then we

may find an unbounded f ∈ D, and by considering functions fn(z) = f(eiθnz) for suitable

angles θn, obtain a sequence of normalized functions fn in D and (zn) ⊂ D with |zn| → 1

such that |fn(ϕ(zn))| → ∞. This is a contradiction, so we conclude that ‖ϕ‖∞ < 1.

We now see that, for f ∈ D fixed, we have ‖u(f ′ ◦ ϕ)ϕ′‖A2 . ‖u‖D. So let f(z) = z.

We conclude that Tϕ′ : D → A2 is bounded, or equivalently |ϕ′(z)|2dA(z) is a Carleson

measure for D. Given that ϕ is bounded, this condition implies that ϕ ∈ M(D), as

mentioned in the introduction. This concludes the proof of the Theorem. �

3. Spectral properties

In this section, we are interested in describing the spectra of invertible weighted com-

position operators in the Dirichlet space. As we pointed out in the introduction, the

techniques in [13] depends strongly on the fact that the algebra of the multipliers con-

tains H∞.

The next result identifies invertible weighted composition operators in the Dirichlet

space. It can be found, for example, in [3, Thm 3.3] and [23, Cor. 11].

Proposition 3.1. Let Wh,ϕ be a bounded weighted composition operator in the Dirichlet

space D. Then Wh,ϕ is invertible in D if and only if h ∈ M(D), bounded away from

zero in D and ϕ is an automorphism of D. In such a case, the inverse operator of

Wh,ϕ : D → D is also a weighted composition operator and

(Wh,ϕ)
−1 =

1

h ◦ ϕ−1
Cϕ−1 .

Recall that an automorphism ϕ of D can be expressed in the form

ϕ(z) = eiθ
p− z

1− pz
(z ∈ D),

where p ∈ D and −π < θ ≤ π. Recall that ϕ is called hyperbolic if |p| > cos(θ/2) (thus,

ϕ fixes two points on ∂D); parabolic if |p| = cos(θ/2) (so, ϕ fixes just one point, located

on ∂D) and elliptic if |p| < cos(θ/2) (therefore, ϕ fixes two points, one of them in D and

the other in the exterior of D). See [19, Chapter 0], for instance.

Notation. Assume ϕ is a self-map of the unit disc D. In what follows, ϕn will denote the

n-th iterate of the map ϕ, that is,

ϕn = ϕ ◦ ϕ ◦ · · ·ϕ (n times),

for any n ≥ 0, where ϕ0 is the identity function. It is clear that Cn
ϕ = Cϕn

for any n ≥ 0.

If Wh,ϕ is a bounded weighted composition operator in D, it is rather straightforward

that

Wn
h,ϕf(z) = h(z) · · ·h(ϕn−1(z)) f(ϕn(z))
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for any f ∈ D and z ∈ D. Following [13], we will denote

h(n) =

n−1∏

k=0

h ◦ ϕk;

where h(0) = 1 for convenience.

In what follows, we restrict our attention to weighted composition operators Wh,ϕ

acting on D induced by disc automorphisms ϕ. By Theorem 2.2, this implies that h is a

multiplier of D.

3.1. Elliptic case. In [13, Section 4.3], the authors describe the spectrum ofWh,ϕ acting

on a large class of spaces of analytic functions whenever h is in the disc algebra A(D)

and ϕ is an elliptic automorphism. Our hypotheses on h in the context of D is rather

more general, since Wh,ϕ is bounded if and only if h ∈ M(D) (and the spaces M(D) and

A(D) are not contained in each other). Nevertheless, it is possible to take a bit further

some of the ideas developed in [13] and show the following result in a similar way.

Theorem 3.1. Suppose that ϕ is an elliptic automorphism of D with fixed point a ∈ D

and Wh,ϕ a weighted composition operator on D. Then

(1) either there exists a positive integer j such that ϕj(z) = z for all z ∈ D, in which

case, if m is the smallest such integer, then

σ(Wh,ϕ) = {λ : λm = h(m)(z), z ∈ D},

(2) or ϕn 6= Id for every n and, if Wh,ϕ is invertible, then

σ(Wh,ϕ) = {λ : |λ| = |h(a)|}.

Proof. The proof of (1) goes as in [13, Theorem 4.11]. The only minor change concerns

the inclusion

σ(Wh,ϕ) ⊂ {λ : λm = h(m)(z), z ∈ D},

where a similar argument applies taking into account the fact that if g ∈ M(D) and it

is bounded away from zero, then 1/g is also in M(D). With respect to (2), just observe

that W−1
h,ϕ = 1

h◦ϕ−1Cϕ−1 is bounded, and hence 1/(h ◦ ϕ−1) is in M(D) since ϕ−1 is a

disc automorphism (see Theorem 2.2). Therefore, we refer the reader to [13] once more.

�

3.2. Parabolic case. Now, let us assume that Wh,ϕ is an invertible weighted composi-

tion operator on D, where ϕ is a parabolic disc automorphism. The previous ideas in [13]

to determine the spectrum of Wh,ϕ made an extensive use of the fact that the sequence

orbit {ϕn(z0)} of a point z0 ∈ D is an interpolating sequence for H∞, a space which is

assumed to be contained in the multipliers of the spaces considered (see condition (C3)

in [13], for instance). In the case of the Dirichlet space, the interpolating sequences for

the multiplier spaces M(D) were characterized by Marshall and Sundberg [16], and in-

dependently by Bishop [2]. Nevertheless, {ϕn(z0)}, z0 ∈ D, is no longer interpolating in
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M(D) and therefore, our proof completely differs from the previous ones. Likewise, the

work in [11] made use of inner functions, which are inappropriate in the context of D.

Theorem 3.2. Suppose that ϕ is a parabolic automorphism of D with fixed point a ∈ T

and Wh,ϕ a weighted composition operator on D, determined by an h ∈ M(D) that is

continuous at a. If Wh,ϕ is invertible, then

σ(Wh,ϕ) = {λ ∈ C : |λ| = |h(a)|}.

Proof. We begin by showing that the spectrum of Wh,ϕ is contained in the circle {λ :

|λ| = |h(a)|}. Recall that h ∈ M(D) implies that h ∈ H∞ and that |h′|2 dA is a Carleson

measure for D; that is, that there exists a constant K > 0 such that
∫

D

|h′(z)|2|f |2 dA(z) ≤ K2‖f‖2D

for all f ∈ D. We write ‖h′‖C for the least such K. Moreover, we see that 1/h ∈ M(D)

since Wh,ϕ is invertible, which implies that h(a) 6= 0.

Recalling that (Wh,ϕ)
n = Wh(n),ϕn

= Th(n)
Cϕn

, we estimate its norm. Since the

spectral radius of Cϕ is 1 (see [12]) so that for each ε > 0 we have ‖Cϕn
‖ ≤ (1 + ε)n for

n sufficiently large, it will be sufficient to consider the operator of multiplication by h(n).

For f ∈ D we have

(h(n)f)
′ = h(n)f

′ + h′(n)f.

The A2 norm of the first term can be estimated using the fact that for each ε > 0 there

is an m such that

(3) ‖h(n)‖∞ ≤ ‖h‖m∞[(1 + ε)|h(a)|]n−m

for all n ≥ m, which is given in the proof of [13, Lem. 4.2].

Also

‖h′(n)‖C ≤

n−1∑

j=0

‖h(n),j(h ◦ ϕj)
′‖C ,

where h(n),j = h(n)/(h ◦ ϕj).

Hence, as in (3) we have for j < m

‖h(n),j‖∞ ≤ ‖h‖m−1
∞ [(1 + ε)|h(a)|]n−m,

while for j ≥ m we have

‖h(n),j‖∞ ≤ ‖h‖m∞[(1 + ε)|h(a)|]n−m−1.

Also

‖(h ◦ ϕj)
′‖C = ‖ϕ′

j(h
′ ◦ ϕj)‖C ≤ ‖ϕ′

j‖∞‖h′‖C .

Now, we estimate ‖ϕ′
j‖∞ for any j. Let us suppose without loss of generality that a = −1.

Hence

ϕn(z) =
(2− niy)z − niy

niyz + 2 + niy
,
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where y ∈ R \ {0} (see, for instance, [10] for a similar computation when a = 1). For a

Möbius map ψ(z) = z−α
1−αz we have

|ψ′(z)| =
1− |α|2

|1− αz|2
,

and in the case of ϕn we have α = 1 +O(1/n), so that ‖ϕ′
n‖∞ = O(n).

Putting all this together we conclude that

‖h′(n)‖C ≤ Cn2[(1 + ε)|h(a)|]n,

where C does not depend on n, and hence (since we have this for all ε > 0)

lim sup
n→∞

‖Th(n)
‖1/n ≤ |h(a)|.

Having bounded the spectral radius of Wh,ϕ by |h(a)|, we may similarly bound the

spectral radius of its inverse by 1/|h(a)|, using Proposition 3.1. Thus the spectrum of

Wh,ϕ is contained in the circle of radius |h(a)|.

We now prove that the spectrum of Wh,ϕ is the entire circle, by showing that for each

λ with |λ| = |h(a)| the spectral radius ρ(Wh,ϕ−λI) is at least 2|h(a)|. This technique was

also used in [13], but there are extra complications in our case. As we already assumed,

we may choose the fixed point a of ϕ to be −1.

There is a unitary mapping J from D = D(D) onto D(C+), the Dirichlet space of the

right half-plane, induced by the conformal involution

M : z 7→
1− z

1 + z
;

an easy calculation shows that JWh,ϕJ
−1 = W̃h◦M,τ , the weighted composition operator

on D(C+) induced by a parabolic automorphism τ = M ◦ ϕ ◦M , which takes the form

τ : s→ s+ ic for some c > 0 since it fixes ∞.

The following is a straightforward Corollary of [4, Thm. 3.2], given that the operator

Z := (W̃h◦M,τ − λI)n is causal (which may be most easily stated by saying that if the

inverse Laplace transform of a function u is supported on (T,∞) for some T > 0, then

so is the inverse Laplace transform of its image Zu).

• Let h̃ : C+ → C be holomorphic and τ : C+ → C+ a causal holomorphic function

such that the weighted composition W̃h̃,τ is bounded on D(C+). Then for all λ ∈ C and

n ≥ 1 the inequality

‖(W̃h̃,τ − λI)n‖H2(C+) ≤ ‖(W̃h̃,τ − λI)n‖D(C+)

holds, and hence ρ(W̃h̃,τ − λI)H2(C+) ≤ ρ(W̃h̃,τ − λI)D(C+).

Now consider the operator W̃h◦M,τ on H2(C+), and note that it is unitarily equivalent

to the weighted composition operator W 1+ϕ

1+z
h,ϕ on H2(D) (see, for example, [15]). We
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then have

ρ(Wh,ϕ − λI)D = ρ(W̃h̃,τ − λI)D(C+)

≥ ρ(W̃h̃,τ − λI)H2(C+)

= ρ
(
W 1+ϕ

1+z
h,ϕ − λI

)
H2(D)

≥ 2

∣∣∣∣
1 + ϕ(z)

1 + z

∣∣∣∣
z=−1

|h(−1)| = 2|h(−1)|,

where the last assertion is a direct consequence of an observation made in the proof of

[13, Thm. 4.3] and the fact that

1 + ϕ(z)

1 + z
→ 1 as z → −1,

since ϕ is parabolic. Since ρ(Wh,ϕ − λI)D ≥ 2|h(−1)|, we have

σ(Wh,ϕ) = {λ ∈ C : |λ| = |h(−1)|},

as required. �

3.3. Hyperbolic case. The same method as we adopted for the parabolic case can be

used to show that the spectrum of Wh,ϕ is contained in an annulus, in the case that ϕ is

a hyperbolic automorphism.

Theorem 3.3. Suppose that ϕ is a hyperbolic automorphism of D with attractive fixed

point a ∈ T and repelling fixed point b ∈ T. Let Wh,ϕ be a weighted composition operator

on D, determined by an h ∈ M(D) that is continuous at a and b. If Wh,ϕ is invertible,

then

ρ(Wh,ϕ) ≤ max{|h(a)|, |h(b)|}/µ,

where ϕ is conjugate to the automorphism

ψ(z) =
(1 + µ)z + (1− µ)

(1− µ)z + (1 + µ)
,

with 0 < µ < 1. Hence σ(Wh,ϕ) is contained in the annulus with radii max{|h(a)|, |h(b)|}/µ

and min{|h(a)|, |h(b)|}µ.

Proof. For each ε > 0 there is an m such that the estimate

‖h(n)‖∞ ≤ ‖h‖m∞[(1 + ε)max{|h(a)|, |h(b)|}]n−m

holds, as in [13].

Similarly, for the derivative, we have

‖h′(n)‖C ≤

n−1∑

j=0

‖h(n),j(h ◦ ϕj)
′‖C ,

where h(n),j = h(n)/(h◦ϕj), and where ‖·‖C has been defined in the proof of Theorem 3.2.

Now, however,

‖(h ◦ ϕj)
′‖C = ‖ϕ′

j(h
′ ◦ ϕj)‖C ≤ ‖ϕ′

j‖∞‖h′‖C ,
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where ‖ϕ′
j‖∞ = O(µ−j), using the fact that

ψj(z) =
(1 + µj)z + (1− µj)

(1− µj)z + (1 + µj)
,

as in [10, p. 38]. Also

‖h(n),j‖∞ ≤ ‖h‖m−1
∞ [(1 + ε)max{|h(a)|, |h(b)|}]n−m

for j < m and

‖h(n),j‖∞ ≤ ‖h‖m∞[(1 + ε)max{|h(a)|, |h(b)|}]n−m−1

for j ≥ m.

By similar arguments to those used in the proof of Theorem 3.2, we conclude that

lim sup
n→∞

‖Th(n)
‖1/n ≤ max{|h(a)|, |h(b)|}/µ.

The final assertion follows on considering the spectral radius of W−1
h,ϕ. �

A final remark. Finally, regarding Theorem 3.3, we would like to pose the following

open question:

If ϕ is a hyperbolic automorphism of D with attractive fixed point a ∈ T and repelling fixed

point b ∈ T conjugated to the automorphism ψ(z) = (1+µ)z+(1−µ)
(1−µ)z+(1+µ) , with 0 < µ < 1 and

Wh,ϕ is a weighted composition operator on D, determined by an h ∈ M(D) continuous

at both a and b, does it follow that

σ(Wh,ϕ) = {z ∈ C : min{|h(a)|, |h(b)|}µ ≤ |z| ≤ max{|h(a)|, |h(b)|}/µ}

whenever Wh,ϕ is invertible?
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Facultad de Ciencias Matemáticas,

Plaza de Ciencias 3

28040, Madrid (SPAIN)

E-mail address: eva.gallardo@mat.ucm.es

School of Mathematics,

University of Leeds,

Leeds LS2 9JT, U.K.

E-mail address: J.R.Partington@leeds.ac.uk


