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Long-Distance Trust-Free Quantum Key Distribution

Nicoló Lo Piparo1 and Mohsen Razavi1

1School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK

Abstract

The feasibility of trust-free long-haul quantum key distribution (QKD) is addressed. We combine

measurement-device-independent QKD (MDI-QKD), as an access technology, with a quantum re-

peater setup, at the core of future quantum communication networks. This will provide a quantum

link none of whose intermediary nodes need to be trusted, or, in our terminology, a trust-free QKD

link. As the main figure of merit, we calculate the secret key generation rate when a particular

probabilistic quantum repeater protocol is in use. We assume the users are equipped with imperfect

single photon sources, which can possibly emit two single photons, or laser sources to implement

decoy-state techniques. We consider apparatus imperfection, such as quantum efficiency and dark

count of photodetectors, path loss of the channel, and writing and reading efficiencies of quantum

memories. By optimizing different system parameters, we estimate the maximum distance over

which users can share secret keys when a finite number of memories are employed in the repeater

setup.
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I. INTRODUCTION

Future quantum communications networks will enable secure key exchange among re-

mote users. They ideally rely on user friendly access protocols in conjunction with a reliable

network of core nodes [1–3]. For economic reasons, they need to share infrastructure with

existing and developing classical optical communication networks, such as passive optical

networks (PONs) that enable fiber-to-the-home services [4, 5]. The first generation of quan-

tum key distribution (QKD) networks are anticipated to rely on a trusted set of core nodes

[6, 7]. This approach, although the only feasible one at the moment, may suffer from secu-

rity breaches over the long run. In the future generations of quantum networks, this trust

requirement can be removed by relying on entanglement in QKD protocols [8, 9]. This can

be facilitated via using the recently proposed measurement-device-independent QKD (MDI-

QKD) [10–13] at the access nodes of a PON [14] and quantum repeaters at the backbone of

the network, as we consider in this paper. The former enables easy access to the network via

low-cost optical sources and encoders, whereas the latter may rely on high-end technologies

for quantum memories and gates. Both systems, however, rely on entanglement swapping,

which makes them naturally merge together. More importantly, in neither systems would we

need to trust the intermediary nodes that perform Bell-state measurements (BSMs). In this

paper, we study the feasibility of such a trust-free hybrid scheme by finding the relationship

between the achievable secret key generation rate as a function of various system parame-

ters. We remark that this setup does not provide full device-independence but it removes

the trust requirement from the intermediary network nodes that perform measurement op-

erations. Our work provides insights into the feasibility of such systems in the future. The

system proposed in [15] combines MDI-QKD with quantum repeaters by using time reversed

all photonic quantum repeaters. However, [15] requires single photon sources as well as large

cluster states. Instead, our scheme relies on conventional quantum repeaters, where entan-

gled quantum memories are used to store qubits which are teleported to large distances

through entanglement swapping. Moreover, users can use imperfect single-photon sources

or lasers. MDI-QKD is an attractive candidate for the access part of quantum networks.

First, it provides a means to secure key exchange without trusting measurement devices.

This is a huge practical advantage considering the range of attacks on the measurement

tools of QKD users [16–19]. Moreover, at the users’ ends, it only requires optical encoders
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driven by weak laser pulses. That not only makes the required technology for the end users

much simpler, but also it implies that the costly parts of the network, including detectors

and quantum memories, are now shared between all networks users, and are maintained by

service providers. One final advantage of MDI-QKD is its reliance on entanglement swap-

ping, which makes its merging with quantum repeaters, also relying on the same technique,

straightforward. This will help us develop quantum networks in several generations, where

the compatibility of older, e.g. trusted-node, and newer, e.g., our trust-free, networks can

be easily achieved.In

Quantum repeaters are the key ingredients to trust-free networks. They traditionally rely

on quantum memories (QMs) to store entangled states. In order to avoid the exponential

decay of rate with channel length, in quantum repeaters, entanglement is first distributed

over shorter distances and stored in QMs. Once we learn about the establishment of this

initial entanglement, we can perform BSMs to extend entanglement over longer distances

[20]. Considering the complexity of joint operations needed for BSMs, as well as possible

purification thereafter, quantum repeaters are anticipated to be developed in several stages.

The first generation of quantum repeaters may rely on probabilistic approaches to BSMs,

which can be implemented using linear optics devices [21–24]. These systems expect to cover

moderately long distances up to around 1000 km without the need for purification. In order

to go farther we need to develop efficient tools for purification and deterministic BSMs

as was initially envisaged in [25]. Such deterministic quantum repeaters will replace the

probabilistic setups once their technology is sufficiently mature. Finally, the most advanced

class of repeaters are the recently proposed no-memory ones [15, 26, 27], in which, by

using extensive error correction, one can literally transfer quantum states from one point to

another.

In this paper, we focus on the probabilistic setups for quantum repeaters, and, among all

possible options, we use the protocol proposed in [28], which relies on single-photon sources

(SPSs). In an earlier work [29], we compared the performance of this protocol, which we

refer to as the SPS protocol, in the context of QKD, with several other alternatives, once

imperfections in the SPSs are accounted for. We found that under realistic assumptions,

this protocol is capable of providing the best (normalized) key rate versus distance behavior

as compared to other protocols considered in [29]. The particular setup that we are going to

consider in this paper is then a phase-encoded MDI-QKD setup, whose reach and rate are
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FIG. 1. A general scheme for trust-free QKD links. Entangled states are created between internal

nodes of the core network using quantum repeaters. The two BSMs will then enable an end-to-end

MDI-QKD protocol.

improved by incorporating a repeater setup, as above, in between the two users. It is worth

noting that the easiest way to improve rate-vs-distance behavior is to add two quantum

memories in the MDI-QKD setup [30–32]. This approach will almost double the distance

one can exchange secret keys without trusting middle nodes, but it is not scalable the same

way that quantum repeaters are. It, nevertheless, provides a practical route toward building

scalable quantum-repeater-based links.

The paper is structured as follows. In Sec. II, we describe the main ingredients of our

setup including the phase encoding MDI-QKD and the SPS-based quantum repeaters. In

Sec. III, we present our methodology for calculating the secret key generation rate for our

hybrid system, followed by numerical results in Sec. IV. We draw our conclusions in Sec. V.

II. SETUP DESCRIPTION

In this section we first introduce the general idea behind our trust-free architecture and,

then, explain particular MDI-QKD and quantum-repeater protocols considered for its im-

plementation. Let us first consider the ideal scenario considered in Fig. 1. In this scheme, by

using quantum repeaters, we distribute (polarization) entanglement between two memories

apart by a distance Lrep. This operation is part of the core network and is facilitated by

the service provider. On the users’ end, each user is equipped with a BB84 encoder, which

sends polarization-encoded single photons to a BSM module at a short distance Ls from its

respective source. This resembles the access part of the network, where the BSM module is

located at the nearest service point to the user. For each transmitted photon by the users,

we need an entangled pair of memories to be read, i.e., their states need to be transferred

into single photons. These photons will then interact with the users’ photons at the two

BSMs in Fig. 1.
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FIG. 2. Schematic diagram for a trust-free QKD link based on phase encoding. Memories are

entangled using the SPS repeater protocol. Here, PBS stands for polarizing beam splitter and PM

stands for phase modulator.

The setup of Fig. 1 effectively enables an enlarged MDI-QKD scheme. In MDI-QKD,

the two photons sent by Alice and Bob are directly interacting at a BSM module [10].

Here, by the use of entangled memories, it is as if the Alice’s photon is being teleported

to the other side, and will interact with the Bob’s photon at the second BSM. The overall

effect is, nevertheless, the same, and once Alice and Bob consider the possible rotations

in the memory states corresponding to the obtained BSM results, they can come up with

correlated or anti-correlated bits for their sifted keys. Post processing is then performed to

convert these sifted keys to secret keys.

The same idea as in Fig. 1 can be implemented via phase-encoding techniques as shown

in Fig. 2. Here, for simplicity, we have considered the dual-rail setup. The equivalent,

and more practical, single-rail setup can also be achieved by time multiplexing as shown

in [11]. In Fig. 2, the quantum repeater ideally leaves memories Ai-Bi, for i = 1, 2, in the

state |ψent〉AiBi
= |0〉Ai

|1〉Bi
+ |1〉Ai

|0〉Bi
, where we have neglected normalization factors, and

|n〉K represents n excitations in memory K. The implicit assumption is that the memory

is of ensemble type so that it can store multiple excitations [33]. The phase encoding that

matches this type of entangled states is as follows. Alice and Bob encode their states either

in the z or in the x basis. Alice encodes her bits in the z basis by sending, ideally, a photon in

the r or in the s mode. This can be achieved by sending horizontally or vertically polarized

pulses to the polarizing beam splitter (PBS) at the encoder. The same holds for Bob and

his u and v modes. As for the x basis, we can send a +45◦-polarized signal through the

PBS to generate a superposition of r (u) and s (v) modes for Alice (Bob) state. Alice (Bob)

encodes her (his) bits by choosing the phase value of the phase modulator (PM), φA (φB),

to be either 0 or π.
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Basis Alice BSM Bob BSM Bit assignement

z type I/II type I/II Bob flips his bit

x type I (II) type I (II) Bob keeps his bit

x type I (II) type II (I) Bob flips his bit

TABLE I. Bit assignment protocol depending on the results of the two BSMs.

The BSMs used in the scheme of Fig. 2 are probabilistic ones. They will be successful

if exactly two detectors, one from the top branch, and one from the bottom one, click. We

recognize two types of detection. For the Alice’s side (and, similarly, for the Bob’s side),

type I refers to getting a click on r0-s0 or on r1-s1. Type II refers to the case when r0-s1 or

r1-s0 click. In order to get one bit of sifted key, Alice and Bob must use the same basis and

both BSMs in Fig. 2 must be successful. Depending on the results of these BSMs and the

chosen basis by the two parties, Alice and Bob may end up with correlated or anti-correlated

bits, where in the latter case, Bob will flip his bit. Table I summarizes the bit assignment

procedure for our scheme. Note that these BSMs can be performed by untrusted parties.

The repetition rate for our scheme is a function of several factors. In order to do a proper

BSM, for each photon sent by the users, there must be two entangled pairs of memories

ready to be read. In principle, the fastest that we can repeat our scheme is the minimum of

the maximum source repetition rate, RS, and half the entanglement generation rate of the

quantum repeater, Rrep/2. The latter is a function of the number of memories in use [34].

We therefore consider two regimes of operation. If RS > Rrep/2, we then run our encoders

at a rate equivalent to Rrep/2 and will look at the achievable key rate per QM used. If

RS < Rrep/2, i.e., when for every photon sent, there will be more than two entangled pairs

ready, then we run our scheme at the rate RS and will look at the key rate per transmitted

pulse as a figure of merit.

In the following, we describe the quantum repeater protocol used in our scheme as well

as different types of (imperfect) sources that users may use. Later, we look at the above

achievable key rates once certain imperfections are considered in our setup.
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FIG. 3. The SPS protocol for entanglement distribution.

A. Source Imperfections

In our work, we consider two types of sources for the end users. The first type, which

we will use as a point of reference for comparison purposes, is an imperfect SPS, with the

following output state

ρ
(SPS)
j = (1− p) |1 〉jj〈 1|+ p |2 〉jj〈 2|, j = A, B (1)

where p is the probability to emit two, rather than one, photons. In practical regimes

of operation, p ≪ 1, hence, in our analysis, we neglect the simultaneous emission of two

photons by both sources. The second type of source considered is a phase-randomized

coherent source, which will be used in the decoy-state version of the protocol. In this case,

Alice (Bob) will send µ = |α|2 (ν = |β|2) photons on average for her (his) main signal states.

Other values will be used for decoy pulses. Our analysis here only considers the case when

there are infinitely many decoy states in use, although in practice we expect to achieve the

same performance by using just a small number of decoy states [12].

B. SPS Repeater Protocol

The SPS protocol, proposed in [28], attempts to reduce the contribution of multi-photon

errors by using single-photon sources. The SPS setup for its initial entanglement distribution

is shown in Fig. 3. In order to entangle two QMs at a distance L0, corresponding to the

shortest segment of the repeater setup, we send single photons through identical beam

splitters with transmission coefficients η. The photons can be reflected and stored in the

QM or go through the quantum channel and be coupled at a 50:50 beam splitter. If exactly

one of the two photodetectors in Fig. 3 clicks, the memories are left in a mixture of an
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FIG. 4. Multi-memory configuration for quantum repeaters.

entangled state and a spurious vacuum term, where the latter can be selected out in later

stages. For the entanglement swapping stage, we again use the 50:50 beam splitter followed

by two single-photon detectors to perform a partial BSM. In [29], we calculate the secret

key generation rate for the SPS protocol assuming that, instead of perfect SPSs, we are

equipped with imperfect sources as in Eq. (1). This is particularly a fundamental source of

error, if one uses ensemble-based memories and the partial readout technique for generating

single photons [28]. Without loss of generality, we assume ensamble-based QMs with Λ−
level configuration and infinite decoherence time. The effect due to a finite decoherence

time has been already considered in a previous paper [32]. By considering writing and

reading efficiencies for the QMs in use, respectively, denoted by ηw and ηr, here we use

the results of [29] to find the relevant density matrices, ρAiBi
for i = 1, 2, for memories

entangled by the SPS protocol for different values of p and for different nesting levels n.

Other sources of imperfections considered throughout the paper are the path loss given by

ηch(l) = exp(−l/Latt) with Latt being the attenuation length of the channel, photodetectors’

quantum efficiency, ηd, and photodetectors’ dark count per pulse given by dc.

In order to improve the entanglement generation rates in probabilistic quantum repeaters,

it is essential to make use of multiple memories and/or multi-mode memories. Here, we

assume a multi-memory structure as shown in Fig. 4 with N memories per node, and employ

the cyclic protocol proposed in [20]. In this protocol, at each cycle of duration L0/c where

c the speed of light in the channel, we try to entangle, here using the SPS protocol, all the

unentangled pairs of QMs at distance L0. At each cycle, we also perform as many BSMs as

possible at the intermediate nodes. The main requirement for such a protocol is that, at the

stations that we perform BSMs, we must be aware of establishment of entanglement over

links of length l/2 before extending it to distance l (informed BSMs). We use the results of
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FIG. 5. BSM module with generic transmission coefficient represented by fictitious beam splitters.

In our setup, ηa is the path loss; ηb is the reading efficiency and ηd is the detection efficiency.

[20] to calculate the generation rate of entangled states per memory used, which is given by

Rent(L) = NPS(L0)P
(1)
M P

(2)
M ...P

(n)
M /T0N2n+1

= PS(L0)P
(1)
M P

(2)
M ...P

(n)
M /(2L/c)

(2)

where T0 is the duration of each cycle and PS (L/2
n) is the probability that the entangle-

ment distribution protocol succeeds over a distance L0, P
(i)
M , i = 1...n, is the BSM success

probability at nesting level i for a quantum repeater with n nesting levels. In our analysis,

we use the expressions for PS and P
(i)
M up to two nesting levels as found in [29]. Finally, the

total generation rate of entangled states in the limit of NRent(L)L/c≫ 1 is given by

Rrep(L) = NQMRent(L), (3)

where NQM = 2n+1N is the total number of logical memories in Fig. 4.

III. SECRET KEY GENERATION RATE

In this section, we find the secret key generation rate, RQKD, per logical memory used, for

the scheme of Fig. 2 under the normal mode of operation when no eavesdropper is present.

We consider two types of sources as discussed in Sec. IIA.

A. Imperfect SPSs

Here, Alice and Bob each use an SPS with the output state as given by Eq. (1) in their

encoder. In the limit of an infinitely long key and a sufficiently large number of QMs, their

normalized secret key generation rate per employed memory is lower bounded by

RQKD = min(RS ,Rrep/2)

NQM

×max
{

Qz
11 (1− h (ex11))−Qz

ppf h
(

Ez
pp

)

, 0
}

(4)
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where Qz
11 = (1− p)2Y z

11, with Y
z
11 being the probability of a successful click pattern in the

z basis when Alice and Bob send exactly one photon each; ex11 is the quantum bit error

rate (QBER) in the x basis, provided that Alice and Bob are each sending exactly a single

photon; Qz
pp is the probability of a successful click pattern in the z basis when Alice and Bob

use sources with outputs as in Eq. (1), with the corresponding QBER given by Ez
pp; f is the

error correction inefficiency, and h (x) = −x log2 (x) − (1 − x) log2 (1− x) is the Shannon

binary entropy function.

Appendix A provides us with the full derivation of the relevant terms in Eq. (4). Our

general approach to find these terms is as follows. For any basis Φ = x, z and any possible

encoded state ρΦenc = ρrs⊗ρuv by Alice and Bob, the initial state of the system for memories

A1-B1 and A2-B2 is given by

ρΦin = ρΦenc ⊗ ρA1B1
⊗ ρA2B2

(5)

where ρAiBi
has been obtained in [29]. Once memories are read, their states will be trans-

ferred to photonic states, which we denote by the same label as their original memories. In

that case, optical fields corresponding to modes r and A1, as well as the other three pairs

of modes in Fig. 2, would undergo through the setup shown in Fig. 5, where ηa = ηrηd and

ηb = ηch(Ls)ηd. The equivalent sub-module in Fig. 5 is what we refer to as an asymmetric

butterfly module, whose operation is denoted by Bab
ηaηb

when it acts on two incoming modes

a and b. In [32], we have derived the output states of a butterfly module for relevant number

states at its input. Using those results, we can then find the pre-measurement state right

before the photodetection at the BSM modules by

ρΦout = BrA1

ηaηb
⊗ BsA2

ηaηb
⊗ BuB1

ηaηb
⊗ BvB2

ηaηb
(ρΦin). (6)

Note that we have already accounted for the quantum efficiency of photodetectors in our

butterfly modules. The probability for a particular pattern of clicks on detectors ri, sj, uk,

and vl, for i, j, k, l = 0, 1, is given by

Prisjukvl(ρ
Φ
enc) = tr

(

ρΦoutMri
Msj

Muk
Mvl

)

, (7)

where for x = r, s, u, v

Mx0
= (1− dc) [(Ix0

− |0〉x0x0
〈0|)⊗ |0〉x1x1

〈0|
+dc|0〉x0x0

〈0| ⊗ |0〉x1x1
〈0|]

(8)
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is the measurement operator to get a click on detector x0 but not on x1. Here, Ix0
denotes

the identity operator for the mode entering detector x0. One can define a similar operator

Mx1
by swapping subscripts 0 and 1 in the above equation. Hence, for example, looking at

Fig. 2 the measurement operator corresponding to a click on detector r0 and no click on r1

is given by

Mr0 = (1− dc) [(Ir0 − |0〉r0r0〈0|)⊗ |0〉r1r1〈0|
+dc|0〉r0r0〈0| ⊗ |0〉r1r1〈0|]

(9)

The relevant terms in Eq. (4) can now be calculated by using Eq. (7) as shown in Appendix

A.

B. Coherent sources

In this section we replace the SPSs with lasers sources and use the decoy-state technique

to exchange secret keys. This is a more user friendly approach as the complexity of the

required equipment for the end users would be minimized. In the limit of infinitely many

decoy states, infinitely long key, and sufficiently large number of memories, the secret key

generation rate per logical memory used is lower bounded by

RQKD = min(RS ,Rrep/2)

NQM

×max
{

Qz
11 (1−H (ex11))−Qz

µνf H
(

Ez
µν

)

, 0
}

,
(10)

where Qz
µν is the probability of a successful click pattern in the z basis when Alice and Bob

send phase-randomized coherent pulses, respectively, with mean photon number µ = |α|2

and ν = |β|2 and Ez
µν is the QBER in the z basis in the same scenario.

The procedure to find Qz
µν and Ez

µν is the same as what we outlined in Eqs. (5)-(8). The

only difference here is that in our butterfly modules, we now need to know the output of

the module to coherent states in one input port, for the signal coming from the users, and

number states in the other, representing the state of QMs. Table III in Appendix A provides

us with the input-output relations for a range of relevant input states. We can then find the

relevant terms of the key rate, as shown in Appendix A.

11



Memory writing efficiency, ηw 0.78

Quantum efficiency, ηd 0.93

Memory reading efficiency, ηr 0.87

Dark count per pulse, dc 10−9

Attenuation length, Latt 25 km

Speed of light in optical fiber, c 2× 105 km/s

Double-photon probability, p 10−4

Access network length, Ls 5 km

Error correction inefficiency, f 1.16

TABLE II. Nominal values used in our numerical results.

IV. NUMERICAL RESULTS

In this section, we present numerical results for the secret key generation rate of our

long-haul trust-free QKD link versus different system parameters. We look at two regimes

of operation; the source-limited regime when memories are abundant and we are slowed down

by source rates, i.e., 2RS < Rrep, versus the repeater-limited regime when the rate limitations

come from the quantum repeater side, i.e., 2RS > Rrep. In the latter case, we should still

satisfy the condition NRent(L)L/c ≫ 1 in order that Eqs. (2)-(3) remain valid. We have

used Maple 15 to analytically derive expressions for Eqs. 4 and 10. Unless otherwise noted,

we use the nominal values summarized in Table II.

The first thing to obtain is the optimum intensity for our decoy-state scheme. Let us

assume that in the symmetric scenario, as considered in this paper, Alice and Bob both use

the same intensity value µ = |α|2 = ν for their coherent signal states. Figure 6 shows the

secret key generation rate per pulse versus |α| for (a) different values of dc and (b) different

values of p of the quantum repeater at Lrep = 100 km. We assume that 2RS < Rrep and

the plotted curves represent RQKDNQM/RS in Eq. (10). It can be seen in both figures that

|α| = 1 almost gives us the maximum rate in most scenarios. The optimal value is to some

extent a function of dc as can be seen in Fig. 6(a). By increasing dc, the optimal intensity

slightly decreases. Dark count represents the main source of error in the z basis, therefore,

when dc increases, the tolerance for the multiple-photon terms in a coherent state decreases,

12
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FIG. 6. Secret key generation rate per pulse versus |α| = |β| for different values of (a) the dark

count and (b) the repeater’s double photon probability. Here, Lrep = 100 km and the other values

are as in Tab. II.

hence the maximum allowed value of |α| will go down as well. This leads to a slightly shifted

curve and therefore lower values for the optimal values of |α|. On the contrary, Ez
µν is not

affected much by the double-photon probability p and there is not much difference in the

optimal intensity when p increases as shown in Fig. 6(b). We also obtain the same optimal

values of |α| for nesting levels one and two in the repeater-limited regime. Throughout this

section, we then use |µ| = |ν| = 1 in our calculations.

A. Rate versus distance

Figures 7 and 8 show the secret key generation rate, at the optimal value of intensity,

versus the total distance, L = 2Ls + Lrep, between Alice and Bob. In both figures, we

assume Ls is a fixed short distance resembling the length of the access network. We vary

Lrep then to effectively increase the link distance. Figure 7 shows the secret key generation

rate per transmitted pulse in the source-limited regime, whereas Fig. 8 represents the key

rate per logical memory used in the repeater-limited regime. In both cases we consider

SPSs at p = 10−4 as well as coherent decoy states. The difference in the performance

of the systems relying on these sources, as expected, is low, and that again confirms the

possibility, and practicality, of using the decoy-state technique for end-user devices. The

cut-off security distance, i.e., the distance beyond which secure key exchange is not possible,
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FIG. 7. Secret key generation rate per transmitted pulse, in the source-limited regime, versus distance

when (a) imperfect SPSs and (b) decoy coherent states are used.

almost doubles every time we increase the nesting level so long as memories decoherence

rates are correspondingly low. This distance at n = 0 is about 800 km, similar to the no-

memory case for the parameter values used and at n = 1 and n = 2, respectively, reaches

around 1500 km and 2500 km. Security distances are slightly higher for the SPSs than

coherent-state sources.

The slope of the curves in Fig. 7 is different than that of Fig. 8. In Fig. 7 curves are

almost flat until they reach their cut-off distances. That has two reasons. First, in the

source-limited regime, RQKD is proportional to the constant RS, whereas, it scales with

Rent, which exponentially decays with L0 [29], in the repeater-limited regime. Second, and

this is common in both figures, in the absence of the decoherence, the fidelity of the entangled

states generated by our probabilistic repeater effectively reaches a constant value once we

increase the distance [22]. That means that the double-photon-driven error terms in the key

rate are almost fixed until dark count becomes significant and the rate goes down.

The implications on the achievable key rate is also different in the two figures. In Fig. 7,

at a nominal distance of L = 1000 km and a source rate of RS = 1 GHz, the key rate is in

the region of Mb/s. The assumption 2RS < Rrep, however, implies that we need something

on the order of 1015 QMs in our core network to work in the source-limited regime, which

seems, at the moment, quite impractical. In the repeater-limited regime, we still need many

memories to obtain a decent rate. For instance, at L = 1000 km, we would need around 1

billion QMs to get a key rate on the order of kb/s. This is still a huge number of resources
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coherent states are used.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

C
ro

s
s
o
v
e
r

d
is

ta
n
c
e

(k
m

)

Memory reading efficiency,
r

decoy state

imperfect SPS

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

O
p
ti
m

u
m

L
0

r
= 0.3

0 -->1 nesting level

1 -->2 nesting level

Total distance, L (km)

FIG. 9. (a) Crossover distance versus QM’s recall efficiency in the repeater-limited regime. (b) Optimum

spacing L0 between adjacent nodes of a quantum repeater at ηr = 0.3.

for the current technology of QMs. This is in fact the same number of memories in use in

our classical computers, which was perhaps inconceivable a few decades ago. Progress in

solid-state QMs is much needed to meet the above requirements.

B. Crossover distance

The different slopes in Figs. 7 and 8 result in appreciably different values for crossover

distances, i.e., the distances where one nesting level outperforms its previous one. In the

source-limited regime, in Fig. 7, the curve for n = 1 outperforms that of n = 0 for L greater
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than around 750 km. The crossover distance to nesting level 2 is then around 1400 km.

These are quite large distances, which imply that L0, the spacing between adjacent nodes in

our quantum repeater, could be as large as 700 km. This sparse location of memories in the

system has some advantages in the sense that resources are more or less centralized, rather

than distributed, but at the same time it imposes harder conditions on maintaining phase

and polarization stability over such long distances. In the repeater-limited regime of Fig. 8,

the nodes are much closer as now the crossover distance is around/below 500 km. This

implies that the optimum architecture of our core network relies on, among other things,

how many QMs are available at the time of development.

The crossover distance is also a function of the efficiency of various system parameters. In

Fig. 9(a), we have looked at the crossover distance as a function of the recall efficiency, ηr, in

the repeater-limited regime. This is particularly important, because ηr implicitly accounts

for the amplitude decay in memories. As expected, the crossover distance decreases with

the recall efficiency as there would be less of rate reduction because of the BSM operation.

Figure 9(b) shows this effect on the optimal value of L0. It can be seen that at ηr = 0.3

the optimal spacing is much wider than what can be obtained from Fig. 8 at ηr = 0.87. It

can be seen that the curve for optimal L0 is non-continuous as we have limited our study to

the case when the number of segments in a repeater setup is a power of 2. By developing

new repeater protocols for arbitrarily number of segments, one can get a smoother curve for

optimal L0. At ηr = 0.3, L0 is on average around 250 km for the set of parameters as in

Table II.

V. CONCLUSIONS

In this paper we combined MDI-QKD with a quantum repeater setup in order to obtain

a long-distance key exchange scheme without the need to trust any of the intermediate

nodes or measurement tools. This trust-free network could be used in future generations of

quantum networks, where the easy cost-efficient access to the network would be facilitated

by laser-based encoders and the repeater technology, at the backbone, would be maintained

by the service provider. We considered a particular entanglement distribution scheme for our

quantum repeater, which relied on imperfect single-photon sources. We merged memories

entangled by this probabilistic repeater setup with photons sent and phase encoded by the
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two users via two BSM modules. We showed that it would be possible to exchange secret

keys up to over 2500 km using repeaters with two nesting levels. It turned out that in order

to get a key rate on the order of 1 kb/s, one may need to employ and control billions of

memories at the core network. We also showed that the network architecture depends on the

number of memories at stake. In the limit of infinitely many memories, the repeater nodes

would be sparsely located, although each node may contain a large number of memories.

Our results showed how challenging it would be to build trust-free quantum communication

networks.

Appendix A: Derivation of key rate terms

In this Appendix, we derive the key rate terms in Eqs. (4) and (10) under the normal

mode of operation when no eavesdropper is present. We use the formulation developed in

Eqs. (5)-(8) to obtain Γz
11 = Y z

11, ǫ
x
11 = ex11, Γ

z
pp = Qz

pp, ǫ
z
pp = Ez

pp, Γ
z
µν = Qz

µν , and ǫ
z
µν = Ez

µν ,

where new unifying notations Γ and ǫ are used in this section.

Let ρΦenc(mn) denote the output state of Alice and Bob’s encoders for, respectively, sending

bits m and n, for m,n = 0, 1, in basis Φ. With the above notation, the probability that an

acceptable click pattern occurs in basis Φ, ΓΦ
γδ, is given by

ΓΦ
γδ =

∑

i,j,k,l,m,n=0,1

Prisjukvl(ρ
Φ
enc(mn))/4, (A1)

where γ = δ = 1 refers to the case when Alice and Bob are sending exactly one photon each;

when γ = δ = p, imperfect SPSs are used and when γ = µ and δ = ν coherent states with

mean photon number µ and ν, are, respectively, in use. In above, some of the successful

click patterns would result in errors in the end, while the other in correct sifted key bits.

By separating these two components, we obtain

ΓΦ
γδ = ΓΦ

γδ;C + ΓΦ
γδ;E, (A2)

where ΓΦ
γδ;C(E) represents the click terms that result in correct (erroneous) inference of bits

by Alice and Bob. In the z basis,

Γz
γδ;C =

∑

i,j,k,l,m,n=0,1;m+n=1

Prisjukvl(ρ
z
enc(mn))/4 (A3)
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ρAB tr
(

Mx0
BAB

ηaηb
(ρAB)

)

|α0 〉〈α0| (1− dc)
[

e−
ηa
2
µ
(

1− e−
ηa
2
µ
)

+ dce
−ηaµ

]

|α1 〉〈α1| (1− dc)
[

ηb
2 e

−
ηa
2
µ
(

1 + ηa
2 µ

)

+e−
ηa
2
µ (1− ηb)

(

1− e−
ηa
2
µ
)

+dc (1− ηb) (1− e−ηaµ)]

|α2 〉〈α2| (1− dc)
{

η2
b

4 e
−

ηa
2
µ [1+

+η2a
4 µ

2
(

1
2 − 8 e−

ηa
2
µ
)

+ηaµ]

+ηbe
−

ηa
2
µ (1− ηb)

(

1 + ηa
2 µ

)

+e−
ηa
2
µ (1− ηb)

2
(

1− e−
ηa
2
µ
)

+dc

[

η2aη
2
b

2 e−ηaµµ2 + e−ηaµ (1− ηb)
2
]}

|α1 〉〈α0| (1− dc)
(

1
2

√
ηaηbαe

−
ηa
2
µ
)

|α0 〉〈α1| (1− dc)
(

1
2

√
ηaηbαe

−
ηa
2
µ
)

|α1 〉〈α2| (1− dc)
(√

ηaηb
2 α

(ηb
2 − ηaηb

8 − 1
)

)

|α2 〉〈α1| (1− dc)
(√

ηaηb
2 α

(ηb
2 − ηaηb

8 − 1
)

)

TABLE III. The input-output relationship for a butterfly module with coherent states in one input and

number states in the other. The column on the right represents the probability that the output state causes

a click on detector x0, but not x1, assuming that detector x0 measures the left output port and x1 the right

one. The expression tr
(

Mx1
BAB

ηa,ηb
(ρAB)

)

will give the same results as above for symmetrical input states;

a minus sign correction is needed for asymmetrical input states. Here, µ = |α|2.

and ΓΦ
γδ;E = ΓΦ

γδ − ΓΦ
γδ;C . In the x basis,

Γx
γδ;C =

∑

i,k,m,n=0,1;m⊕n=0

(Prisiukvk(ρ
x
enc(mn))/4

+Prisi⊕1ukvk⊕1
(ρxenc(mn))/4

)

+
∑

i,k,m,n=0,1;m⊕n=1

(

Prisiukvk⊕1
(ρxenc(mn))/4

+Prisi⊕1ukvk(ρ
x
enc(mn))/4

)

,

(A4)

where ⊕ denotes addition modulo two. Finally, all QBER terms can be obtained from the

following.

ǫΦγδ =
ΓΦ
γδ;E

ΓΦ
γδ

. (A5)
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