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Analytical tools for single-molecule 

fluorescence imaging in cellulo 

M.C. Leake 
a
 

Recent technological advances in cutting-edge ultrasensitive 

fluorescence microscopy have allowed single-molecule imaging 

experiments in living cells across all three domains of life to become 

commonplace. Single-molecule live-cell data is typically obtained in 

a low signal-to-noise ratio (SNR) regime sometimes only marginally 

in excess of 1, in which a combination of detector shot noise, sub-

optimal probe photophysics, native cell autofluorescence and 

intrinsically underlying stochasticity of molecules result in highly 

noisy datasets for which underlying true molecular behaviour is non-

trivial to discern. The ability to elucidate real molecular phenomena 

is essential in relating experimental single-molecule observations to 

both the biological system under study as well as offering insight 

into the fine details of the physical and chemical environments of the 

living cell. To confront this problem of faithful signal extraction and 

analysis in a noise-dominated regime, the ‘needle in a haystack’ 
challenge, such experiments benefit enormously from a suite of 

objective, automated, high-throughput analysis tools that can home 

in on the underlying ‘molecular signature’ and generate meaningful 
statistics across a large population of individual cells and molecules. 

Here, I discuss the development and application of several analytical 

methods applied to real case studies, including objective methods of 

segmenting cellular images from light microscopy data, tools to 

robustly localize and track single fluorescently-labelled molecules, 

algorithms to objectively interpret molecular mobility, analysis 

protocols to reliably estimate molecular stoichiometry and turnover, 

and methods to objectively render distributions of molecular 

parameters. 

 

Introduction 

Ernest Rutherford, the father of modern nuclear physics who 

was awarded the 1908 Novel Prize in Chemistry, is attributed to 

have commented prior to this that all science was either 

‘physics or stamp collecting’. What Rutherford lacked at this 

time was a clear insight into the enormous future extent of 

modern interdisciplinary research between the physical and life 

sciences that would emerge in the century to follow and 

beyond; there is currently now a furious energy of cutting-edge 

research activity at this interface which only the truly naïve 

would label as ‘stamp collecting’. Experimental single-

molecule biology research in its most modern and exciting form 

essentially combines state-of-the-art ‘wetlab’ approaches from 

the life sciences with cutting-edge technology and intellectual 

insight and rigor from the physical, mathematical, 

computational and engineering sciences, in challenging assays 

that aim to preserve the underlying physiological context, 

namely to perform experiments on living cells. In vivo single-

molecule approaches, arguably better termed  ‘in cellulo’ 
approaches if one is observing single individual cells to 

discriminate from investigations on multicellular organisms 

(excepting single-celled organisms such as bacteria which can 

be described in both contexts), add significant insight not only 

into the native biochemistry of the living cell, but also the 

important physical chemistry and chemical physics of the 

cellular environment – the ionic strength, pH, viscosity, 

microrheological features, phase transition behaviour, 

osmolarity, as well as a breadth of information concerning free 

energy landscapes of observed molecular components.1-4

 The primary importance of single-molecule live-cell data is 

due to often highly heterogeneous behaviour in such physical 

parameters both as a function of localization in the cell and of 

history-dependent effects in the cell cycle. Namely, there are 

both spatial and temporal dependencies in the internal 

environment of cells, which therefore require not only a 

functioning cell as an experimental specimen but also a probe at 

the molecular length scale of the nanometre to offer a level of 

spatial precision sufficiently high to probe the highly local 

fluctuations in physical chemistry that can potentially occur on 

the nanoscale – even the most basic of living cells from the 

prokaryotic domain, such as bacteria, are far more than just 

static bags of chemicals, but rather are dynamic structures 

which have distinctly defined molecular architectures at the 

sub-cellular level affecting the physical chemistry of the 

internal cellular environment.5 

 Single-molecule data is intrinsically stochastic in nature, 

which can lead to potential ambiguity in interpretation in the 

absence of robust analytical tools. Fluorescence imaging data at 

the single-molecule level from living cells also suffers from 

further detection challenges since they are compounded with 

the effects from a variety of sources of noise, including shot 

noise at the level of the camera detectors, photophysical 

spectral shifts  and broadening of the fluorescent reporter dyes, 

native cellular autofluorescence  and out-of-focus contributions 

of fluorophores, in addition to nearest-neighbour issues in 

situations of  high molecular concentrations making definitive 

continuous detection of the same fluorescently-labelled 

molecule over extended time scales challenging.  

 Furthermore, the majority of in cellulo single-molecule 

fluorescence imaging utilizes fluorescent protein labelling at 

the level of fusion of the encoding DNA5,6 and these naturally 

occurring dye molecules in general have poor absorption cross-

sections and low photostability compared to synthetic organic 

dyes, manifest in comparatively low fluorophore brightnesses 

and short photoactive lifetimes. In essence, typical single-

molecule fluorescence imaging datasets have a poor equivalent 

signal-to-noise ratio (SNR) in reference to the typical pixel 

intensities registered on camera detectors, and are often 

relatively short in duration, for example consisting of 10 or less 

consecutive image frames.7,8  

 However, it is also not uncommon to acquire significant 

quantities of such datasets during experimental runs, essential 

in constructing the underlying probability distribution of 

heterogeneous and stochastic molecular behaviour. The need 



for objective, robust, automated high-throughput and 

computationally efficient analysis tools is imperative to 

determine the underlying molecular properties that are markers 

of biochemical, physical chemical and chemical physics 

features of the internal cellular environment.  

 The use of single particle tracking (SPT) techniques to 

investigate biological processes is a well-characterized and 

popular approach, especially so in the context of monitoring 

fluorescent reporters, either single molecules or nanoscale 

particles such as fluorescent beads or quantum dots, that, in the 

case of fluorescent protein molecules, can be tagged at the level 

of the encoding DNA to protein molecules of interest in a living 

cell.9-15 These methods have been applied to, for example, 

estimates of the diffusion coefficient of individual protein 

complexes in the cellular membrane16 and investigating the 

molecular stoichiometry and turnover of molecular machines in 

vivo.17,18 While green fluorescent protein (GFP) and its variants 

offer enormous potential for increasing our understanding of 

biological processes in large data sets, automatic tools with 

efficient techniques for analyzing time-lapse microscopy 

images from real dynamic cell processes are essential for 

objective and systematic quantization.19-24 

 

Analytical tools for interrogating single-molecule data in cellulo  

 

1. Automated segmentation of cellular images from light 

microscopy 

The dependence of spatial localization of physical and chemical 

properties in living cells necessitates objective methods to 

determine the true spatial extent of cells from light microscopy 

images. However, light microscopy images of cells, even when 

acquired using contrast enhancement methods such as phase 

contract or differential interference contract, result in a blurring 

of the true cellular boundary due to convolution by the point 

spread function (PSF) of the imaging system, necessitating 

software tools to determine the precise position of the cellular 

boundary.  

 Many recent image processing techniques have been 

proposed to determine the precise boundaries of cells with the 

external environment. Image segmentation approaches can 

extract the cellular characteristics of size and shape. Pixel 

intensity thresholding methods are useful and fast if the cell 

body intensity is homogenous and easily distinguished from the 

non-cellular background, but typically produce jagged edges 

that do not accurately represent the smooth cellular boundary.25 

There exist more recent advanced approaches that are more 

robust, including Region Growing methods,26 often generating 

better results when the pixel intensity in foreground cell objects 

of the microscope image are homogenous, but arguably are of 

more limited use for noisy experimental fluorescence imaging 

data of the type typical for imaging of fluorescent protein 

constructs. Watershed methods utilize ‘flooding’ strategies 
along the intensity baseline, being particularly sensitive to 

distinct gradient changes at object boundaries; varied 

algorithms of this type have proved to be effective and have 

been used in several successful software applications, including 

CellProfiler (http://www.cellprofiler.org). Level Set algorithms 

offer a good option in cellular image segmentation by creating 

higher dimensional space from the multiple image parameter 

set typically used, and find optimal solutions to this using 

multi-parameter minimization algorithms; the quality of output 

that results is often high when the input information utilizes 

multiple experimental data from intensity, cell boundary 

position and prior cell shape knowledge.27  

 Recent image segmentation methods developed in my own 

laboratory have obtained more reliable results through the 

Maximum a Posteriori (MAP) method28-31 by minimizing an 

objective energy function obtained from the raw image data.32 

The foreground image intensity and geometrical boundary of 

each cell can be modelled, and the compactness and 

smoothness can be estimated. Simulated Annealing (SA)33,34 

can help estimate parameters, and our approach is to apply this 

method to generate a sub-pixel precision of the cell boundary 

position. The method exploits a generative model to determine 

the shape based only upon pixel intensity, so it is comparatively 

robust. 

 A significant number of cell types have well-defined shapes 

and sizes, seen for example in the rod-like Escherichia coli 

bacteria used in a number of recent in cellulo fluorescence 

imaging studies to investigate both internal cell process and 

those integrated in the cell membrane. In such cases of 

investigating cell membrane processes the cell shape may be 

characterized relatively easily allowing global Cartesian 

coordinates on the camera detector plane to be transformed 

onto the local membrane surface coordinates relevant to single 

imaged cell. For biological membrane protein systems, sub-

pixel changes in position may occur over a time scale of 

milliseconds. These can potentially be quantified accurately 

using a local coordinate representation in combination with 

superresolution localization imaging for even nanoscale 

movements of fluorescent protein reporters, for example 

detecting tiny gene expression bursts at the single-molecule 

level the appearance of membrane protein reporters.35  

 There is common agreement on a canonical shape for 

E. coli bacteria, namely that of a cylindrical body capped by 

hemispheres, with a typical diameter width of ~1 m and end-

to-end length in the range ~2-5 m, depending primarily on 

stage in the cell cycle.7,8,16-18 Here, we define a local coordinate 

system from each bacterium’s position, orientation, length and 

width, as estimated from the non-fluorescence brightfield 

imaging data. Through observations using light microscopy we 

can characterize the size and shape of each detected E. coli cell 

individually, with its characteristic ‘stubby’ object shape32 

shown in Fig. 1.  



 

Fig. 1 Brightfield microscopy image of a single E. coli cell (greyscale) 

modelled as cylinder with hemispherical caps, with parameter set to 

reconstruct cell body perimeter projected onto the two-dimensional 

plane of the camera detector. 

 

Each E. coli cell shape can be fitted to an observed cell object 

image by estimating parameters from within a sensibly defined 

region of parameter space. The match between cell object and 

characteristic shape quantifies the particular manner in which 

the parameter set is chosen by estimating optimal parameter 

sets from an object energy function.  

 For constructing a local coordinate system relevant to  

single E. coli cells, four parameters characterize the two-

dimensional cell boundary: (i) a local origin – O{x,y} unique to 

each cell with respect to the global (camera) coordinate system; 

(ii) long axis orientation of the cell with x-axis of the camera 

{Ө}; (iii) length – {l} which is cylinder long axis length; (iv) 

radius – {r} which is the radius of hemispherical cap and equal 

to half the cylinder diameter. To estimate these properties we 

adopted a stochastic framework within a multivariate statistical 

model.  

 The parameter set of {x,y,Ө,l,r} allows us to compute 

several other relevant attributes, e.g. total length of the cell 

body parallel to the long-axis as the sum of l+2×r, the width is 

2×r, the centre position of the two hemispherical caps O1 and 

O2 are computed by {x±l/2·cosӨ, y±l/2·sinӨ}. The origin of the 

local coordinate system can be defined as either O or O1 on the 

different applications depending on the specific application 

desired.  

 For the microscopy images, we need to consider the PSF, 

which accounts for the blurred cell boundary appearance and 

resultant ambiguity over the precise boundary location. We 

introduce a variable {f} to indicate the PSF in the above defined 

parameter space Ω. This parameter is not required to directly 

determine the standard shape, but it is important to deconvolve 

the raw blurred cell image in the pattern matching process, so it 

is a latent variable in Ω = {x,y,Ө,l,r,f}. The task of determining 

the local coordinate system of a given shape representation is 

an optimal parameter estimation problem 

Ω* = {x*,y*,Ө*,l*,r*,f*}.  

 A light microscopy live-cell image can be modelled as a 

‘foreground’ object of interest, on top of an image 
‘background’. The foreground object can be represented as a 
two-dimensional matrix which can in turn be rendered into a 

one-dimensional vector to be processed. Let I be the observed 

two-dimensional matrix image with size N×N pixels, resulting 

from an uncontaminated, noise-free foreground image I* plus a 

zero-mean Gaussian noise image C, which can be expressed as 

I = I*+C, where C~N(0,σc), with σc image noise standard 

deviation. Similarly, the parameter set representing a given 

image can be represented by the idealized optimal parameter set 

with the addition of some parameter perturbation. Considering 

the parameter vector space Ω with size M, we model each 

estimated parameter element as an individual random variable 

consisting of real value Ω* plus zero mean Gaussian 

distribution as Ω = Ω*+D, where D is zero-mean Gaussian 

distribution N(0,σd) which reports the noise associated with the 

given parameter element. The conditional probability 

distribution of these estimated parameter variables can be 

formulated as:  

     
M
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Using Bayesian inference, p(Ω|I)=p(I|Ω)×p(Ω))/p(I). A point 

estimate Ω* may be determined by maximizing the conditional 

distribution p(Ω|I). The main challenge lies in estimating the 

unknown shape coefficients Ω* obtained only from the original 
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distribution to rewrite Equation 1, and Ω* can be obtained as 
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Here, I is the recorded microscopy image on the camera 

detector, φ is the candidate set for estimating parameters and ΩT 

is a uniformly spaced set of points in the parameter space. In 

this formulation, we assume that the experimental images I are 

consistent with the model Ω with prior distribution p(Ω).  
 The maximum a posteriori estimate for a given set of the 

shape model parameters is dependent on the sum of both 

ln(p(I|Ω)) and ln(p(Ω)). The ln(p(I|Ω))  component is a 

measure of the likelihood of the original image given 

parameters Ω. We characterize the variation in this model space 

by a Gaussian distribution N(0,σ2). 



 We use the spatial intensity distribution inside the boundary 

of each individual E. coli cell as the equivalent likelihood 

function, and the precise detected cell boundary edge of each 

cell image provides additional information for matching a well-

defined template shape to modify the bias from the maximum 

likelihood formulation. In noisy, complex live-cell microscopy 

images there may be non-trivial ambiguity as to where this 

precise cell image edge is located. Previous studies in image 

analysis have shown that the cell image edge may be modelled 

using a monotonically decreasing intensity function36 on top of 

a Markov random field (MRF),37,38 consistent with empirical 

observations from raw images. An MRF provides a method to 

model the joint probability distributions of the image sites in 

terms of local spatial correlations, which can be expressed by 

the energy function U(I), which is a measure of the spatial 

connection of pixels across the image, known as the ‘clique’ c. 

The energy from c is defined as E(po,pi)=β, where p0 is the 

pixel of interest, and neighbouring pixels are signified as pi 

(i=1,..,n), to construct pair-wise clique values with n elements 

in total. β is a positive number describing the strength. For non-

neighbouring pixel elements, the clique energy is assumed to be 

zero. 

 The prior distribution of shape parameters can be regarded 

as a penalty to control the bias from the intensity likelihood 

method, which can be treated as a regularized selection in 

MAP. Using knowledge from a prior distribution of image 

shape can generate an improved estimate of the cell image edge 

than considering just likelihood component alone. Empirical 

microscopy observations indicate that in the case of E. coli cells 

their width is relatively constant to within ~10%.7,8 Thus we 

can give a sharp prior statistical distribution for cell width and 

use the uniform function as prior distribution for the other 

variables. Starting from the MAP-based formulation, our 

method combines three key features from the image object for 

parameter estimation: pixel intensity p(Ω|I), edge penalty p(I) 

and prior distribution p(Ω). 
 The SA method is a standard optimization tool, and has 

proved to be an effective method for MAP optimization in 

particular. This problem can be resolved by using an optimal 

searching strategy to get the best candidate, which will match 

the observed object accurately by generating a standard shape. 

We use the SA algorithm to find the global optimal resolution 

Ω*. 
 To test the performance of our cell shape reconstruction 

algorithm we simulated images containing bacterial cells randomly 

distributed over the sample surface with their long axes assumed 

parallel to the surface, with cells having variable end-to-end lengths 

and diameters over a physically sensible range typical of real 

bacteria. Background noise levels were increased systematically to 

give a signal-to-noise ratio (SNR) from 2 to 5. Here, SNR is defined 

as NSSSNR  , where S and N are the mean foreground signal 

pixel intensity, and mean background noise pixel intensity 

respectively. Because the bacterium observed in light microscopy 

has an indefinite boundary from the background, the estimated shape 

may not fit the boundary of object accurately in the case of low 

SNR.   

Simulated datasets were analyzed using our bespoke software 

and the real values recorded before the convolution of PSF and 

pixel sub-sampling (Fig. 2). 

   

Fig. 2 Sub-sampling technique from (a) large scale image to small scale 

image is used for simulating a bacterial cell image obtained from an 

EMCCD camera detector; (b) The imaging system’s point spread 
function is used in the deconvolution of cell boundary from the 

foreground; (c) Simulated E. coli with exact boundary (cyan) 

controlled to sub-pixel accuracy. 

To evaluate the performance of this shape reconstruction 

approach, we compared the results from several reference 

methods. Of the conventional segmentation tools currently 

available we found that the marker-controlled watershed 

transformation segmentation algorithm,39 which relies on 

defining quantitative measurement of the intensity gradient 

transform, gave the most promising results using our brightfield 

experimental data of live E. coli cells, which could in many 

cases be used to determine the location of the cellular boundary 

to a sub-pixel precision.  

 The basic watershed transformation works in the following 

way. Firstly, any greyscale image can be modelled as a 

topographical surface. If we then flood this surface from its 

lowest point, and prevent any water combining from different 

sources, then ‘watershed lines’ between ‘catchment basins’ can 
be defined marking out the lines of image segmentation. An 

improvement to this involves the uses of pre-selected markers 

from which to initiative the flooding, which minimizes the risk 

of over-segmentation in the image.  

 In Fig. 3 we compare the results of simulated noisy 

brightfield cell images using our generative MAP shape 

reconstruction algorithm with the marker-controlled watershed 

method.  



 

Fig. 3 Comparison of performance of cell body segmentation methods using the watershed method or  our generative MAP method  for different 

categories of cell body shape for (a) ‘half fat’, (b) ‘elongated thin’, (c)  ‘short fat’, (d)  ‘banana’, (e) ‘lotus’, (f) ‘cluster fat’ categories; in lower two 
panels simulated cell body perimeter (cyan) and the predicated perimeter from the respective segmentation algorithm (magenta) are indicated. 



The figure shows a series of example shapes with the simulated 

cell boundary which having several varying length and width 

combinations. The most commonly observed category of E. coli 

cell shape, the standard rod type shape with an l/r value of ~2, 

we denote as the ‘half fat’ shape. However, sometimes bacteria 

are not distributed uniformly flatly over the surface of the 

microscope coverslip parallel to the cells’ long axis, in addition 
cells will elongate during the cell cycle prior to cell division 

and may have slightly curved appearances, these factors 

resulting in some cells appearing closely together as a cluster of 

bacteria, sometimes with cell bodies projecting above the 

coverslip surface, so the inferred cell length from the two-

dimensional image may be artefactually low. To characterize 

these effects we could also simulate such clusters/overlaid cells, 

as well as elongated and curved variants. All of our synthetic 

shapes consist of six underlying categories: {‘half fat’, 
‘elongated fat’, ‘short fat’, ‘curved fat’, ‘lotus fat’, ‘cluster 

fat’}, shown in Fig. 3 with these simulated examples all having 

the same SNR of 6.  

 To estimate the objective measure of the accuracy in the 

reconstruction method we calculated the residual mean-square 

error (MSE) to compare the simulated with the measured 

parameters. This indicates that our MAP approach has an 

intrinsic accuracy in the absence of noise of MSE ~0.01 pixel. 

The MSE in the presence of noise, using an SNR of 6 typical 

for our real brightfield microscopy images, is a measure of the 

effectiveness of the shape reconstruction method under 

experimental conditions, indicating that our generative MAP 

segmentation algorithm generates an output typically within 1-2 

pixels of the true cell boundary position, superior to the 

watershed method by a factor typically greater than 2.  

 

2. Pinpointing fluorescently-labelled molecules 

The first step in pinpointing where exactly a fluorescently-

labelled molecule is in a living cell is to attempt to restore the 

uncontaminated noise-free image, since a key practical 

challenge  of dynamic fluorescence microscopy in cellulo is 

often extremely noisy data due to several reasons, e.g. dark 

states of the fluorescent reporter tag, especially blinking of 

quantum dots and fluorescent proteins, background 

fluorescence due to parental  autofluorescence from cells, shot 

noise for the camera pixel readout in the background, as well as 

Poisson signal noise and pixilation noise (the latter is 

essentially due to uncertainty as to where fluorescence photons 

originated from if detected within a single pixel whose length 

scale when projected onto the level of the image is typically 50-

150 nm).  

 Microscopy image data consists typically of background 

fluorescence and cellular structures with fluorescence levels of 

intensity close to the peak intensity emitted from fluorescent 

particles. The image of a fluorescent particle being tracked, 

with intensity consists of a real fluorescence photon component 

associated with each particle, plus possible noises contributing 

the sum of a final observed fluorescence peak.40  

 For any observed fluorescent particle in the image, the 

number of detected fluorescence emission photons from an 

observed fluorophore image on the camera detector is unknown 

but can be represented as a random variable with a probability 

distribution including the phenomena of photon noise, 

bleaching and blinking. The Expected Maximum (EM) 

algorithm41 can be applied to estimate the background mean 

and variance based on the intensity distribution of an averaged 

version of intensity. A Laplace of Gaussian (LoG) filter first 

provides particle recognition by template matching particle.42 

Then, a morphological filter is used to find the local intensity 

centroid for each candidate particle to be tracked. Each 

particle’s pixel intensity distribution is then fitted by a two-

dimensional Gaussian model to refine the estimate of intensity 

centroid to within sub-pixel precision, better than the standard 

optical resolution limit of our imaging system of 200-300 nm 

by a factor of ~10 (Fig. 4).7,8,16,17  

 
 

Fig. 4  Particle spot detection (a) Original fluorescence microscopy image with dynamical particle; (b) Smoothing filter image from template filter by 

Laplace of Gaussian (LoG); (c) Greyscale image based on successive geodesic morphological operations; (d) Final detection image with marker on 

each particle. 



In a low SNR regime typical of live-cell single-molecule experiments not all fluorescently-labelled molecules may be detected. 

However, the detection likelihood can be characterized using stochastic simulated images with values of signal and noise typical of 

experimental data, with a detection probability of ~80% being typical for a single fluorescent protein of GFP under typical video-

rate in cellulo imaging conditions from cell membrane studies of bacteria (Fig. 5a, red arrow trace), which improves dramatically 

with brightness of the observed fluorescent spot (for example, the presence of more GFP molecules in higher stoichiometry 

molecular complexes). Molecular mobility potentially affects detection likelihood however since it results in a blurring effect of 

the observed PSF fluorescent spot on the images, which typically can reduce the real detection probability by a further facto r of ~2 

(Fig. 5b, blue arrow trace). 

 



Fig. 5 Monte Carlo simulation to indicate the (a) detection probability and 

(b) localization precision as a function of stoichiometry (assuming a 

molecular complex is labelled here with typical GFP molecules 

observed using video-rate imaging typical of the studies used 

previously in my laboratory), with zero diffusion (red arrow trace) 

and a diffusion coefficient of 0.4m2/s (blue arrow trace), s.d. error 

bars. The probability of chance co-localization using an analytical 

Poisson model is indicated in (c) for zero diffusion, and (d) for a 

diffusion coefficient of 0.4m2/s, for the same imaging conditions as 

(a) and (b). 

 

The spatial precision of pinpointing the intensity centroid of an 

observed fluorescent spot scales roughly with the reciprocal of 

the square-root of the number of photons sampled, simply due 

to Poisson sampling statistics. Realistic simulated images 

indicate that a lateral precision of 50-150 nm is typical for a 

single GFP molecule imaged at video-rate in the cell membrane 

of a living bacterial cell under our in vivo, video-rate conditions 

(compared with 15-20 nm lateral precision for many typical 

fixed-cell PALM studies), but as expected higher stoichiometry 

complexes would have improvements to this precision (Fig. 5b, 

red arrow trace). Again, molecular diffusion results in 

reductions to the observed localization precision due to the 

effect of image blurring (Fig. 5b, blue arrow trace). 

 Reliable detection of fluorescently-labelled single molecule 

also depends on their local density, namely the nearest 

neighbour separation distance; if this distance is comparable or 

less than the optical resolution limit as set by the PSF of the 

imaging system then there is a higher probability fluorophores 

will no longer be resolved individually as distinct molecules. 

The effect of increasing concentration of photoactive molecules 

on nearest-neighbour distance can be characterized analytically 

by using a Poisson nearest-neighbour model function8,43 to 

generate maps for dependence of the likelihood of ‘chance’ co-

localization (i.e. that two particles in a live cell will be 

separated randomly by less than the optical resolution limit) as 

a function of both the stoichiometry of diffusing particles (i.e. 

the number of fluorescent dye molecules per particle) and the 

number of diffusing particles per cell (Fig. 5c). Once again, 

non-zero molecular mobility has an effect here in reducing the 

probability of observing single distinct molecules by a factor of 

~1.5 for typical diffusion rates observed in the cell membrane 

for protein complexes (Fig. 5d). 

 Once a candidate fluorescently-labelled molecule has been 

detected then the challenge lies in reliably linking together the 

same molecules in subsequent images to form a track.  Single 

particle tracking (SPT) trajectories of fluorescently-labelled 

molecules in living cells are conventionally measured with 

respect to the global Cartesian camera detector coordinate 

system. However, in studies involving the investigation of 

membrane processes, fluorescent particles may be constrained 

to move over the non-planar cell membrane surface, so the 

conventional Cartesian tracking analysis may be inadequate for 

detailed studies of intracellular dynamics.44,45 This is 

particularly relevant to observations made throughout different 

points of the cell cycle, since cell shape displays marked 

morphological changes. Conversely, in transforming the 

coordinate system of each two-dimensional diffusing particle in 

the membrane into a local cellular coordinate system, such that 

the coordinate plane in the immediate local vicinity of the 

particle is always parallel to its motion, the observed particle 

trajectory becomes independent of the translation and 

orientation of the cell.  

 Tracking of fluorescently-labelled membrane proteins 

involves fluorescent particle detection, nearest-neighbour 

linkage and fragment integration. A common problem is that 

some particle trajectories are only observed in fragments due to 

photophysics such as blinking or stochastic noise, so 

trajectories might not be linked due to missing image frames. In 

my laboratory, we have developed robust methods to link 

tracking segments into complete pseudo-three-dimensional 

trajectories at sub-pixel resolution by searching over minimum 

energy curves along the temporal axis using global 

combinatorial parameter optimization. We validate the 

performance of our algorithms using simulated data and apply 

it to experimental data obtained from live cells using a single-

molecule fluorescence microscope, indicating a new, robust 

approach applicable to many different biological systems. 

 For SPT, traditional approaches depend on locally 

correlated information by linking particle feature points in 

images directly. Tracking fluorescent particles in a cell 

membrane is complicated because the trajectories may be 

interpreted based on different biological phenomena and 

particle diffusion models, such as Brownian or normal diffusion 

via a two-dimensional random walk, directed motion, confined 

diffusion, or anomalous or sub-diffusion.46 Similarly, 

photophysics of the fluorescent reporter tag on the particle 

being tracked may add complications resulting in, for example, 

particle blinking manifest as truncated particle trajectories. 

Nearest-neighbour methods are simple to implement but very 

sensitive to noise.35,47 Statistical methods, for example using 

probability density functions such as Multiple Hypothesis 

Trackers and NP-Hard methods have been applied with varying 

degrees of success.40,48 Multiple Hypothesis Trackers (MHT) 

introduce probabilistic knowledge, but can be difficult to apply 

from matching a variable number of image feature points in 

global optimization both in space and time, while NP-Hard 

methods prohibit fast computation. Heuristic methods can be 

used to identify putative tracks from qualitative descriptions, 

but suffer the disadvantage of relying critically on the accuracy 

in the detection stage and easily fail when ambiguities 

occur.48,49  

 To overcome many of the shortcomings of existing tracking 

methods, my laboratory has developed a new automated multi-

particle tracking algorithm based on minimal path optimization, 

similar to those used previously but extended in application to 

native cell membranes of living bacterial cells. After detecting 

candidate particles and linking image feature points frame-by-

frame, some segmented trajectories are obtained initially. SPT 

trajectory data from time-lapse TIRF microscopy are combined 



from individual truncated tracks to create much larger 

trajectories using a pseudo-three-dimensional volume, and then 

the track in this pseudo-volume space from each moving 

particle is obtained using a combination of a minimal energy 

path approach mediated through a Fast Marching method,50 a 

Dynamic Programming approach,51 and the Linear Assignment 

Solution.52  

 To extract a particle trajectory, our method consists of three 

modules. Considering the particle intensity models from 

fluorescence microscopy, first a set of filters are applied to the 

image data to suppress noise and enhance the contrast of 

moving particles in each image frame.  Then these particles are 

linked based on a nearest-neighbour principle between 

successive frames. However, a combination of high noise and 

complex particle movement often generates many truncated 

fragments of particle trajectories. The Grey Weighted Distance 

Transform (GWDT) method can group and complete such 

truncated tracks to form re-annealed trajectories using 

probabilistic criteria.53 The final segmented pseudo-3D curve is 

linked by pairs of points from the tail of one trajectory to the 

head of another trajectory.   

 These methods are comparatively robust in dealing with 

ambiguities due to particle image fusion, missing detection 

events and appearance/disappearance of multiple targets in 

fluorescent particle tracking. The trajectories are then generated 

from the minimal energy path as defined by the solution of the 

time-dependent partial differential equation from the GWDT 

method. This approach offers a resilient tracking technique for 

the study of sub-cellular single-molecule dynamics in cell 

membranes.  

 Such localization and tracking methods may also be 

extended to new forms of so-called ‘four-dimensional’ 
microscopy that monitor fluorescently labelled molecules in 

three spatial dimensions as a function of the fourth dimension 

of time.54-56 A simple but yet robust method is to introduce an 

asymmetry in the fluorescence emission optical pathway prior 

to imaging on a camera detector. In my laboratory we use a 

cylindrical lens component in tandem with the final imaging 

lens that projects the image onto an EMCCD detector via a 

dual-view filter that separates the image into two wavelength 

regimes for dual-colour imaging. The astigmatism induced 

deforms the image projected on the camera in a very specific 

way: if a point source is located in the microscope specimen 

focal plane then the image will be essentially identical to that of 

a non-astigmatic system, but when the source moves out of the 

focal plane a distinct deformation of the image occurs. The 

effect is that the symmetric image of a point source in the focal 

plane elongates in either the x or y direction depending on 

whether the fluorophore is moving closer or further away from 

the objective lens (Fig. 6). Using iterative unconstrained 

Gaussian fitting to these deformed PSF images allows the 

precise width in x and y to be determined, which then can be 

used in conjunction with prior calibration to determine the z 

position, typically to within a precision of 50-100 nm for 

single-molecule fluorescence imaging. 

 

Fig. 6. Four-dimensional fluorescence microscopy (three spatial 

dimensions plus time) using astigmatism imaging (a) in the focal 

plane of fluorescent 200nm diameter beads, and (b) +500nm from the 

focal plane in z. 

 

Putative molecular interaction may be quantified using dual-

colour single-molecule fluorescence imaging. Here, the ability 

to robustly quantify if two molecules are definitively in the 

same region of space at the same time in the same living cell, 

namely that they are ‘co-localized’, is critical. In an ideal world 
one would potentially use Förster resonance energy transfer 

(FRET), however for live-cell applications at the single-

molecule level this has proved particularly challenging 

technically due primarily to the poor photophysics of 

fluorescent protein FRET pairs used in monitoring the 

intercellular environment. However, significant information can 

still be obtained by using robust methods of co-localization 

analysis.  

 A method developed in my laboratory which has proved 

robust involves the use of fluorescence correlation. Firstly, to 

overcome the grainy quality of the raw images resulting mainly 

from the shot noise associated with low photon intensity and 

readout noise associated with the camera detector the graininess 

is smoothed out using a low-pass filter of a two-dimensional 

Gaussian kernel of width comparable to PSF of our imaging 

system (200-300 nm), which dramatically reduces noise 

associated at the level of individual camera pixels (Fig. 7). 

 

Fig. 7. Raw image of a fluorescent cell expressing fluorescent protein 

tagged OXPHOS complexes in the cytoplasmic membrane of E. coli 

(left panel) with low-pass two-dimensional Gaussian convolution 

(right panel), white 1 m, strains developed in ref. 43. 

 

To enable comparison of cell images from different colour 

channels used in dual-colour imaging the pixel intensity ranges 

are first normalised to be from zero to one in each channel.  

This step results in a loss of information on absolute intensity, 



but enables comparison of feature location in images with 

differing total intensities. To produce initial insight into spatial 

correlation, the channels of each (monochromatic) frame are 

combined into a single RGB image.  As well as the intensity 

variation present in the monochromatic images, these images 

include the dimension of ‘hue’.  The channel correlation at each 

pixel can be identified by the hue resulting from mixing of the 

green and red components.  While retaining all information of 

relative pixels values within each cell image, the combined 

colour images are difficult to interpret due to the multiple 

gradations in hue and intensity.  A single quantitative metric for 

correlation is required.  Alternative statistical measures of 

correlation exist such as Pearson's correlation coefficient and 

Spearman's rank correlation coefficient,57 and with further 

techniques the precision of co-localization can be accurately 

calculated.58  Our complementary approach has the beauty of 

computational simplicity and efficiency to implement and gives 

a very immediate indicator of the extent of co-localization 

across a whole population of individual cells.   

 The highest value pixels in each cell are first distinguished 

from the rest.  The images can then be compared based on the 

proportion of overlap between the high value pixels.  A 

‘binarization threshold’ is set as the upper quartile pixel value 

within each cell image, resulting in binary images with 25% of 

the pixels in each cell having the high value.  When cell images 

of each channel are overlaid, putative co-localization is 

identified through the location and total number of overlapping 

high-value pixels.  The approach loses information on relative 

pixel intensity, but can produce a single and consistent metric 

on cell correlation.   

 Our fluorescence correlation technique is based on the 

realisation that in past and future frames, ‘realistically 
redistributed’ fluorescence is observable. So as well as 

comparing the channel images of one frame, channel images 

should be compared between frames from different times.  The 

knowledge of what pseudo-independent (time displaced) co-

localization looks like can then be used in the analysis of the 

co-localization in a single frame.  This technique produces 

information on the motion of fluorescence from frame to frame 

which is used in interpretation of the correlation information. 

 For a given image sequence, either a colour channel is 

evaluated against itself  (for example, green-green or red-red 

correlation) for information on realistic localisation and 

mobility, or one channel is evaluated against the other (green-

red correlation) for information on molecular correlation.  To 

explain the technique, a grid can be formed in which the rows 

and columns are associated with the sequence of frames of the 

two channels under analysis.  For example, the rows (top to 

bottom) could be associated with the frames of the green 

channel and columns (left to right) the frames of the red 

(Fig. 8).  The correlation of images associated with the row and 

column for each position in the grid is calculated.  This means 

that a correlation measure is determined not only for images 

taken at the same time point, but also between frames displaced 

in time.  The hue of each element signifies the colour channels 

that have been compared, and the brightness indicates the 

correlation value. 

 To infer a high likelihood of co-localization, values along 

the main diagonal are compared to the rest.  If brighter than 

average, this indicates that the spatial distribution of intensity in 

both channels is correlated.  If the intensity can be shown to be 

from the fluorescently labelled proteins, this indicates co-

localization of the labelled molecules.  There is total co-

localization when one channel is compared with itself (as in 

Fig. 8 left and centre) where the diagonal elements have the 

maximum brightness.  This is not necessarily the case when 

images of different channels are compared (as in Fig. 8 right). 

 
 

Fig. 8 Using fluorescence correlation to determine molecular co-localization. Arrays illustrating level of correlation between each image frame of five 

frame video sequences.  (Left) Green-green correlation, (centre) red-red correlation, and (right) green-red correlation.  Brighter colour corresponds to 

higher correlation. Cell strains developed in ref. 43. 

 

  



3. Measuring molecular mobility 

The mobility behavior of fluorescently-labelled single 

molecules in live cells may have several modes that deviate 

from simple Brownian motion, including directed 

diffusion, sub-diffusion also known as anomalous 

diffusion, as well as potential confinement effects. 

Diffusion analysis has until very recently been most 

popularly performed using relatively simple analysis of 

the mean-squared displacement (MSD) of tracked 

particles, but these heuristic measures rely on particle 

tracks of relatively large numbers of data points. However, 

due mainly to inferior photophysics in live cell studies only 

short tracks are typically obtained implying that stochastic 

effects become dominant. To counter this, my laboratory has 

developed a novel method called Bayesian Analysis to 

Ranking Diffusion (BARD) that uses propagator functions of 

diffusive processes directly to discriminate different modes 

that is capable of working on short fluorescent tracks.46  

 Brownian motion represents ‘normal’ diffusion 
characterized by a linear relation between time interval in the 

molecular trajectory and MSD. However, a tracked protein 

trajectory for which the MSD plateaus at large values of time 

interval indicates confinement suggesting that the protein is 

trapped by its local environment; such corrals may be important 

to forming nano-chambers for reactions thereby greatly 

enhancing the physical chemical efficiency. Directed diffusion 

has a typically parabolic MSD versus time interval trace, seen 

during active diffusive processes such as those of translocating 

molecular motors.59,60 Anomalous or sub-diffusive behavior61  

is usually modeled as MSD proportional to time interval to the 

power of an exponent  where  is a coefficient between 0 and 

1, indicative of percolation through the disordered media of the 

cell as well as a putative hopping motion between different 

confinement domains in the cell across corrals or interactions 

with specialized domains.62-65  

 Bayesian inference quantifies the present state of 

knowledge and refines it on the basis of new data. This 

posterior distribution incorporates any prior understanding 

on the set of parameters that comprise that model. Such 

priors embody our initial guess of the system, such as the 

expected order of magnitude or distribution of the 

parameters. The prior probability is independent of data of 

the system. The results of this inference are summarized by 

the most probable parameter values and their associated 

distributions, embodied in the posterior distribution of the 

parameter. After this stage, model comparison takes place 

in which diffusion models are ranked, conditioned by the 

observed data to assign a probability-based preference 

between the distinct models.  If the model priors are flat (no 

particular a priori preference), the result of model evaluation 

is by simply ranking the marginal likelihood of each 

individual diffusion mode. This is also known as the 

evidence or the marginal likelihood and is given by 

integrating the data over the parameter  space. 

 To implement the BARD diffusion analysis algorithm, 

firstly all the microscopic diffusion coefficients  from the 

dataset are estimated from the initial gradient of the MSD 

trace of each molecular trajectory. Then the distribution of 

all microscopic diffusion coefficients is constructed and 

modelled by Gamma distribution. The shape parameters of this 

Gamma distribution are used to estimate the equivalent 

propagator function for each candidate diffusion mode, 

allowing a normalized marginal likelihood to be estimated for 

each individual track for each candidate diffusion mode, which 

can then be ranked and an inference thus made as to the most 

probabilistic diffusion mode to account for the individual 

trajectory data. 

 The use of the diffusion propagator functions in this way 

permits robust discrimination between Brownian, directed, 

confined and anomalous diffusion, even for relatively sparsely 

sampled data tracks as short as ~10 data points, relevant 

therefore to the truncated trajectories typically obtained from 

single-molecule live-cell fluorescence imaging. Separating 

molecular mobility characteristics into different categories 

offers enormous insight into several important physical 

chemistry questions concerning the living cell internal 

environment: how do proteins partition dynamically in different 

regions of the cell, how are signalling events linked to local 

sub-cellular architecture, how does the heterogeneous internal 

cell environment affect the mobility of  motor proteins, and the 

extent to which interacting proteins rely upon random collisions 

or are part of putative confinement nano-reaction zones.66,67  

 

4. Counting molecules in fluorescently-labelled complexes to 

quantify stoichiometry and turnover 

If subunits within a molecular complex can be fluorescently 

labelled then the observed integrated fluorescence intensity 

from such a complex, when summed over all corresponding 

camera pixels within the diffraction-limited PSF fluorescent 

spot image, can be correlated to the total number of subunits 

present, namely the subunit stoichiometry of the complex, 

provided the brightness of a single fluorescent probe is known. 

In general this can be measured by utilizing the phenomenon of 

step-wise photobleaching of fluorophores, such that the size of 

the step in intensity between the light and dark states of a 

fluorophore is simply equivalent to the mean average brightness 

of that particular dye molecule. For complexes containing 

fewer than ~6 subunits these step-wise changes can be observed 

individually from a typical photobleach trace from a single 

molecular complex, and so the number of steps in the trace can 

be counted simply by eye, or by using some relatively trivial 

analysis routine, to indicate the subunit stoichiometry.68 

 However, for more challenging general cases of higher 

stoichiometry complexes, or oligomers or complexes, a more 

robust method is needed. The method developed for achieving 

this in my laboratory utilizes Fourier spectral analysis.17 In 

essence, a pair-wise difference distribution is calculated for the 

whole of a single photobleach intensity versus time trace, 



obtained though continuously illuminating a single 

fluorescently-labelled molecular complex, and a power 

spectrum is then calculated for this pair-wise distribution of 

intensity values such that the fundamental peak in the power 

spectrum corresponds to the characteristic periodicity of the 

step-wise decrements in intensity during the raw photobleach 

trace.  

 Such raw steps are due to integer multiples of fluorophores 

undergoing step-wise photobleaching during a single sampling 

time window, therefore this characteristic periodicity is 

identical to the mean intensity IF of a single fluorophore during 

that photobleach. Poisson statistics indicates that the 

photoactive dwell time of a single fluorophore is exponentially 

distributed, implying that a general photobleach intensity versus 

time trace for several identical fluorophores can be fitted using 

a single exponential function of the form I0exp(-t/tb) where t is 

time, tb is the characteristic photobleach decay time, and I0 is 

the initial intensity given by the summed effects of all 

photoactive fluorophores. In the absence of any quenching 

effects or ‘immature’ dark fluorophores (such as fluorescent 

protein molecules that have not matured into their photoactive 

states following expression), I0/IF is a measure of the number of 

proteins tagged with the fluorophore in the complex, in other 

words the molecular stoichiometry. 

 As an analytical tool this method is far more robust than 

more traditional approaches which rely on detection of 

individual step event in a noisy time series. Single-molecule 

experiments on living cells are rife with noise in general, with 

signals being sometimes only marginally above the level of the 

noise amplitude. Most molecular-scale events are manifest as 

some form of transient step signal in a noisy time series, the 

fluorescence intensity photobleach signature from a single 

fluorophore being one such example, and therefore the 

challenge becomes one of robust step-detection in a noisy data 

stream. Edge-preserving filters of raw data were originally 

employed – standard mean/spinal/polynomial-fitting filters 

perform badly in blurring distinct edges in a data stream. 

Median filters, or the Chung-Kennedy algorithm consisting of 

two adjacent running windows whose output was the mean 

from the window possessing the lowest statistical variance, 

preserve such edges; steps can then be detected as being 

probabilistically accepted or rejected on the basis of the change 

in the mean window output in light of the underlying noise (e.g. 

by calculating a corresponding the Student t-statistic for such a 

putative step change) between two adjacent windows run across 

a data stream time series,  using a pre-defined threshold for 

acceptance. Variants of methods detecting steps from a noisy 

time series may be model dependent such that the probability 

for observing a step is history-dependent about earlier detection 

events, from so-called Markovian processes.69
  

 However, such time-domain detection analysis algorithms 

are all sensitive to the level of detection threshold set; the 

acceptance threshold is often semi-arbitrary and subjective. 

Frequency-domain approaches, such as using Fourier spectral 

analysis as described above for photobleach traces but which 

have also been applied to other unrelated single-molecule 

studies such as the observed translocation of kinesin molecular 

motors on tubulin tracks, are potentially far less subjective 

since they utilize information obtained across the whole of a 

data trace as opposed to just a single putative step even in a 

data stream. The main disadvantage is the loss in time 

information for any specific individual step event in a given 

trace. Such analytical methods may also be employed for 

studies involving fluorescence recovery after photobleaching 

(FRAP) and fluorescence loss in photbleaching (FLIP) at single 

cell level and single molecule complex level to quantify the 

extent of dynamic molecular turnover.17,18 

 

5. Rendering distributions of molecular behaviour 

A recent improvement to objectifying single-molecule data is in 

how a distribution of single-molecule properties is actually 

rendered, e.g. step-sizes in terms of displacement of a tracked 

molecular motor, or the subunit stoichiometry measured from a 

molecular complex using step-wise photobleaching. Traditional 

approaches use some form of histogram to bin data across the 

observed distribution. However, it is clear that the size of a 

histogram bin and its position potentially lead to subjective 

bias. Such behaviour can lead to significant error in the general 

case of molecular heterogeneity – namely, that such 

distributions may be far from a unimodal, symmetrical 

Gaussian-type distribution, as is often mistakenly assumed to 

be the case, rather they may be far more complex, asymmetrical 

and often multimodal (for example, signifying the existence of 

metastable free energy states in the molecular probability 

distribution).  

 The development of analytical methods that instead use so-

called kernel density estimation (KDE) has resulted in more 

objectivity in rendering molecular parameter distributions. With 

KDE, instead of data being pooled into semi-arbitrary 

histogram bins, the raw data are convolved using a detection 

sensitivity function, typically with a Gaussian function whose 

width is an estimate for the measurement error for that property 

in that particular experiment, and whose amplitude is then 

scaled such that the area under each unitary detection 

sensitivity function is equal to unity (reflecting a single 

detection event) – the sensitivity function thus indicates a 

realistic estimate for the actual sample distribution for a single 

event.  

 Histograms which contain too many bins potentially suggest 

there is more heterogeneity than there really is, whereas those 

which contain too few bins can hide heterogeneity. A KDE will 

generate the most objective distribution from any dataset for 

any single-molecule property (Fig. 9). This is important not 

simply on a qualitative level but rather the position of identified 

peaks in a distribution can be robustly quantified to identify 

distinct single-molecule states. 



 

Fig. 9 Robust and objective rendering of the distribution of single-molecule parameters. Too small a histogram bin size (left) may suggest 

heterogeneity that is not really there, too few histogram bins (centre) may hide real heterogeneity. The most objective method to render a single-

molecule parameter distribution is through kernel density estimate (centre), here shown on raw data obtained from ref. 18 on molecular 

stoichiometry of a component of the bacterial flagellar motor using a Gaussian convolution width of 0.7 molecules. 

 



 

Conclusions and Outlook 

As microscope camera sensitivity, the photophysical properties of new fluorophores, and the methods of delivering 

fluorophores inside cells with specificity improve, single-molecule fluorescence imaging experiments in live cells 

will become increasingly more ambitious in terms of the practical aspects of imaging single molecular complexes 

in living cells70; truly multi-dimensional imaging using not just multiple colours71 but multiple polarization states as 

well as simultaneous electrical and chemical measurements will most likely become increasingly more prevalent. 

Such complex datasets will ideally provide correlated and orthogonal information of molecular and cellular 

properties, necessitating yet further objective, analytical tools for extraction of molecular level information in a 

noisy environment. A natural extension of single-molecule research on single living cells is to rise to the cell 

population challenge – to perform single-molecule imaging of several cells simultaneously which potentially 

operate as a emergent multi-cellular, integrated structure, such as biofilms, tissues, even organs. An obvious 

challenge here is computational – having the ability to efficiently analyse molecular level tracking data from 

multiple cells simultaneously and, ideally to do so ‘on-the-fly’, namely in real-time such that the analysis is 

sufficiently fast to permit levels of feedback intervention to be applied to living sample. The logical basis to begin 

this challenge is to develop further robust analytical protocols to single-cell single-molecule data.  

 As the esteemed 19th century biologist Thomas Henry Huxley noted, the great tragedy of science is the slaying 

of a beautiful hypothesis by an ugly fact – the days of making qualitative judgements by eye for single-molecule 

biology research consistent with well-behaved ‘beautiful’ hypotheses have well and truly gone and the ascendance 

of the increasing ugly, complex, but very precisely known, single-molecule ‘fact’, is most certainly upon us. 

 

Acknowledgements 
The author was supported from a Royal Society University Research Fellowship, the EPSRC, and the Biological 

Physical Sciences Institute (BPSI) at the University of York. Raw data were kindly donated by Quan Xue, Oliver 

Harriman and Erik Hedlund. Many thanks to Nick Jones for critical discussion. The author would particularly like 

to thank his students, postdocs and collaborators co-authored on many of the studies cited in this article, and to the 

growing collegiate fellowship of the BPSI at the University of York.  

 

Notes and references 
a Biological Physical Sciences Institute (BPSI), Departments of Physics and Biology, University of York, York, YO10 5DD, UK. 

 

1 M. C. Leake, Phil Trans B, 2013, 368, 20120248. 

2 M. C. Leake, Single-molecule cellular biophysics, Cambridge University Press, 2013. 

3 T. Lenn and M. C. Leake, Open Biol., 2012, 2, 120090. 

4 O. L. J. Harriman and M. C. Leake, Condensed Matter, 2011, 23, 503101. 

5 S.-W. Chiu and M. C. Leake, Int. J. Mol. Sci., 2011, 12, 2518. 

6 M. C. Leake, Commun Integr Biol., 2010, 3, 415. 

7. R. Reyes-Lamothe, D. J. Sherratt,  M. C. Leake, Science, 2010, 328, 498.  

8 A. Badrinarayanan, R. Reyes-Lamothe, S. Uphoff, M. C. Leake, D. J. Sherratt, Science, 2012,  338, 528.  

9 M. J. Saxton and K. Jacobson, Annu. Rev. Biophys. Biomol. Struct., 1997, 26, 373. 

10 Y. Sako, S. Minoguchi, T. Yanagida, Nat. Cell Biol., 2000, 2, 168. 

11 C. Dietrich, B. Yang, T. Fujiwara, A. Kusumi and K. Jacobson, Biophys. J., 2002, 83, 274. 

12 Y. Kalaidzidis, Eur. J .Cell Biol., 2007, 86, 569. 

13 K. Kinneret, P. T. Yam, A. Kinkhabwala, A. Mogilner and J. A. Theriot, Nat. Cell Biol., 2009, 11, 1219. 

14 S. Lara, M. Salemme, C. Vaccaro, G. Pesce G, G. Rusciano, A. Sasso, C. Campannella and R. Carotenuto, Methods, 2010, 51, 

20. 

15 E. C. Keelly, K. L. Berger, N. S. Heaton, J. D. Cooper, R. Yoon, and G. Randall, PLoS Pathog., 2009, 5, e1000702.  

16 M. C. Leake, N. P. Greene, R. M. Godun, T. Granjon, G. Buchanan, S. Chen, R. M. Berry, T. Palmer and B. C.  Berks, Proc. Natl 

Acad. Sci, U. S. A., 105, 15376. 

17 M. C. Leake, J. H. Chandler, G. H. Wadhams, F. Bai, R. M. Berry and J. P. Armitage, Nature, 2006, 443, 355. 

18 N. J. Delalez, G. H. Wadhams, G. Rosser, Q. Xue, M. T. Brown, I. M. Dobbie, R. M. Berry, M. C. Leake and J. P. Armitage, 

Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 11347.  

19 S. Arnauld, N. Bertaux, H. Rigneault and D. Marguet,  Nat. Methods, 2008, 5, 687.  

20 K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid and G. Danuser, Nat. Methods, 2008, 5, 695.  

21 J. W. Yong, A. Bruckbauer,W. J.  Fitzgerald, and D. Klenerman, Biophys. J., 2008, 94, 4932. 

22 P.-W. Wu, S. H. Arce, P. R. Burney and Y. Tseng, Biophys. J., 2009, 96, 5103. 

23 S. Bonneau, M. Dahan, and L. D. Cohen. IEEE Trans. Image Process., 2005, 14, 1384.  

24 E. Meijeng, I. Smal and G. Danuser, IEEE Signal Process., 2006, 23, 46.  

25 Z. Pincus and T. A. Theriot, J. Microscopy, 2007, 227, 140.  



26 P. Yan, X. B. Zhou, M. Shah, S. T. C. Wong, IEEE trans. Information technology in biomedicine, 2008, 12, 109.  

27 J. A. Sethian (1999) Level Set Methods and Fast Marching Methods : Evolving Interfaces in Computational Geometry, Fluid 

Mechanics, Computer Vision, and Materials Science, Cambridge University Press, 1999.  

28 C. A. Glasbey and M. H. Young MH, Application Statistics, 2002 51, 209. 

29 D. Mackay, Information theory, inference and learning algorithms, Cambridge University Press, 2003. 

30 R. Molina and A. K. Katsaggelos , IEEE transactions on image processing, 1999, 8, 231.  

31 Z. G. Liang and S. Wang, IEEE Trans. Med. Imaging, 2009, 28, 297.  

32 Q. Xue, N. S. Jones and M. C. Leake, Proc. IEEE Internat. Symp. Biomed. Imaging (ISBI): From Nano to Macro, 2010, 161. 

33 S. Kirkpatrick, C. D. Gelatt and M. P. Jr Vecchi, Science, 1983, 220, 671.  

34 C. Andrieu and A. Doucet, IEEE transactions on information theory, 2000, 46, 994. 

35 G. Reshes, S. Vanounou, I. Fishov and M. Feingold, Biophys. J., 2008, 94, 251. 

36 Q. Yu Q and D. A. Clausi, IEEE transaction on pattern analysis and machine intelligence, 2008, 30, 2126. 

37 S. Z. Li, Markov Random Field Modeling in Image Analysis, Springer, 2009. 

38 K. C. Giannis, N. P. Galatsanos and A. C. Likas, IEEE transactions on image processing, 2006, 15, 2987. 

39 A. Hujsman A, M. A. Viergever, D. J. van Diest and J. P. W. Pluim, Biomedical Imaging: From Nano to Macro, 2011, 618. 

40 A. Serge, N. Bertaux, H. Rigneault and D. Marguet, Nat. Methods, 2008, 5. 687. 

41 M. K. Cheezum, W. F. Walker and W. H. Guilford, Biophys. J., 2001, 81, 2378. 

42 S. S. Rogers, T. A. Waigh, X. Zhao and J. R. Lu, Phys. Biol., 2007, 4, 220. 

43 I. Llorente-Garcia, T. Lenn, H. Erhardt, O. L. Harriman, L.-N. Liu, A. Robson, S.-W. Chiu, S. Matthews, N. J. Willis, C. D. Bray, 

S.-H. Lee, J. Y. Shin, C. Bustamante, J. Liphardt, T. Friedrich, C. W. Mullineaux and M. C. Leake, BBA-Bioenergetics, 2014, In 

Press. 

44 L. Rothfield, S. Justice and J. Garcia-Lara, Annu. Rev. Genet., 1999, 33, 423. 

45 N. Nanninga, Microbiol. Mol. Biol. Rev., 2001, 65, 319. 

46 A. Robson, K. Burrage and M. C. Leake, Phil Trans B. , 2013, 368, 20130029. 

47 Q. Xue and M. C. Leake, Proc. IEEE Internat. Symp. Biomed. Imaging (ISBI): From Nano to Macro, 2009, 1158. 

48 I. J. Cox and S. L. Hingorani, IEEE Trans. Pattern Anal. Mach. Intell., 1996, 18, 138. 

49 C. J. Veenman, M. J. T. Reinders and E. Backer, IEEE Trans. Pattern Anal. Mach. Intell., 2001, 23, 54. 

50 S. Bonneau, M. Dahan and L. D. Cohen, IEEE Trans. On Image processing, 2005, 14, 1384. 

51 D. Sage, F. R. Neumann, F. Hediger, S. M. Gasser and M. Unser, IEEE Trans. On Image Processing, 2005, 14, 1372. 

52 K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. I. Schmid and G. Danuser, Nature Methods, 2008, 5, 695. 

 

53 B. J. H. Verwer, P. W, Verbeek and S. T. Dekker, IEEE Trans Pattern Anal. Mach. Intell., 1989, 11, 425. 

54 B. Huang, W. Wang, M. Bates and X. Zhuang, Science, 2008, 319, 810. 

55 S. R. P Pavani, M. A. Thompson, J. S. Biteen, S. J. Lord, N. Liu, R. J. Twieg, R. Piestun and W. E. Moerner, Proc. Natl. Acad. 

U. S. A., 2009 106, 2995. 

56 M. A. Thompson, J. M. Casolari, M. Badieirostami, P. O. Brown and W.E. Moerner. Proc. Natl. Acad. U. S. A., 2010, 107, 

17864. 

57 A. French, S. Mills, R. Swarup, M. J. Bennett and T. P. Pridmore, Nature Protocols, 2008, 3, 619. 

58 I. Koyama-Honda, K. Ritchie, T. Fujiwara, R. Iino, H. Murakoshi, R. S. Kasai and A. Kusumi, Biophys. J., 2005 88, 2126. 

59 S. Y. Kim, Z. Gitai, A. Kinkhabwala, L. Shapiro and W. E. Moerner. Proc. Natl. Acad. Sci. U. S. A, 2006, 103, 10929. 

60 A. L. Demond, K. D. Mossman, T. Starr, M. L. Dustin and J. T. Groves. Biophys. J., 2008, 94, 3286. 

61 J. P. Bouchaud and A. Georges.  Physics Reports, 1990, 195, 127. 

62 M. Saxton, Biophys J., 1994, 66, 394. 

63. G. J. Schütz, H. Schindler and T. Schmidt Biophys. J., 1997, 73, 1073. 

64 R. Metzler, Physics Reports , 2000, 339, 1. 

65 D. V. Nicolau, J. F. Hancock and Burrage, K.., Biophys.  J . ,  2007,  92, 1975. 

66 T. Lenn, M. C. Leake and C. W. Mullineaux, Mol. Microbiol., 2008, 70, 1397. 

67 T. Lenn T, M. C. Leake and C. W. Mullineaux,  Biochem. Soc. Trans., 2008, 36, 1032. 

68 M. H, Ulbrich and E. Y. Isacoff,  Nature  Methods, 2007, 4, 319. 

69 B. C. Carter, M. Vershinin and S. P. Gross Biophys. J., 2008, 94, 306. 

70 I. M. Dobbie, A. Robson, N. Delalez and M. C. Leake, J. Vis. Exp., 2009, 31, 1508.  

71 I. Llorente-Garcia, T. Lenn, H. Erhardt, O. L. Harriman, L.-N. Liu, A. Robson, S.-W. Chiu, S. Matthews, N. J. Willis, C. D. Bray, 

S.-H. Lee, J. Y. Shin, C. Bustamante, J. Liphardt, T. Friedrich, C. W. Mullineaux and M. C. Leake, Biochim Biophys Acta 2014, 

[Epub ahead of print, pii: S0005-2728(14)00030-9. doi: 10.1016/j.bbabio.2014.01.020]. 

 


