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A nal yt | Cal tOOI S for S| ngl e'm0| ecu | e molecule approaches, arguably better termed ‘in cellulo’

approaches if one is observing single individual cells to
fluor escence |mag|ng in Ce”UIO discriminate from investigations on multicellular organisms
(excepting single-celled organisms such as bacteria which can
be described in both contexts), add significant insight not only
into the native biochemistry of the living cell, but also the

. . . » important physical chemistry and chemical physics of the
Recent technological advances in cutting-edge ultrasensitive . . . .
cellular environment— the ionic strength, pH, viscosity,

fluorescence microscopy have allowed single-molecule imaging L ;
microrheological features, phase transition behaviour,
experiments in living cells across all three domains of life to becom
osmolarlty, as well as a breadth of information concerning free
commonplace. Single-molecule live-cell data is typically obtained In |
nergy landscapes of observed molecular compofénts.
a low signalto-noise ratio (SNR) regime sometimes only marglnally
The primary importance of single-molecule live-cell data is

in excess of 1, in which a combination of detector shot noise, sub-

due to often highly heterogeneous behaviour in such physical
optimal probe photophysics, native cell autofluorescence and

parameters both as a function of localization in the cell and of

intrinsically underlying stochasticity of molecules result in highly historv-dependent effects in the cell cvele. Namelv. there are
noisy datasets for which underlying true molecular behaviour is noboth ys a'?lal and temporal de endgnmes in t>i/1,e internal
trivial to discern. The ability to elucidate real molecular phenomena nwronfnent of cells, \l/)vhlch th:refore require not only a

is essential in relating experimental single-molecule observations fo
unctioning cell as an experimental specimen but also a probe at

both the biological system under study as well as offering insight
t#e molecular length scale of the nanometre to offer a level of
into the fine details of the physical and chemical environments of t

living cell. To confront this problem of faithful signal extractiamd spatial precision sufficiently high to probe the highly local
. ; . . . ) fluctuations in physical chemistry that can potentially occur on

analysis in a noise-dominatesgime, the ‘needle in a haystack th | th ¢ basic of livi s f th

challenge, such experiments benefit enormously from a suite of € hanoscale: even the most basic of fiving cefls from ihe

objective, automated, high-throughput analysis tools thah prokaryotic domain, such as bacteria, are far more than just
. ' . . , . static bags of chemicals, but rather are dynamic structures
in on the underlying ‘molecular signature’ and generate meaningful

statistics across a large population of individual cells and moleculé’%h":h have distinctly defined molecular architectures at the
Here, | discuss the development and application of severatiaahly sub-cellular level affecting the physical chemistry of the
methods applied to real case studies, including objective methods"c'ﬂ‘emaI cellular environmert. . o

segmenting cellular images from light microscopy data, tools to _Slngle molecule data _'S '”""?S"?a”Y S_tOChaSt'C _m n_ature,
robustly localize and track single fluorescently-labelled molecules,VICh ¢an lead to potential ambiguity in interpretation in the
algorithms to objectively interpret molecular mobility, analysis absence of robust analytical tools. Fluorescence imaging data at

protocols to reliably estimate molecular stoichiometry and turnovef'he single-molecule level from living cells also suffers from
and methods to objectively render distributions of molecular further detection challenges since they are compounded with
parameters the effects from a variety of sources of noise, including shot

noise at the level of the camera detectors, photophysical
spectral shifts and broadening of the fluorescent reporter dyes,
native cellular autofluorescence and out-of-focus contributions
of fluorophores, in addition to nearest-neighbour issues in
situations of high molecular concentrations making definitive

Ernest Rutherford, the father of modern nuclear physics wfftinuous detection of the same fluorescently-labelled
was awarded the 1908 Novel Prize in Chemistry, is attributedg!ecule over extended time scales challenging.

have commented prior to this that all scienees either Furthermore, the majority of in cellulo single-molecule
‘physics or stamp collectingWhat Rutherford lacked at thisfluorescence imaging utilizes fluorescent protein labelling at
time was a clear insight into the enormous future extent Bf l€vel of fusion of the encoding DNAand these naturally
modern interdisciplinary research between the physical amd fCCUrTing dye molecules in general have poor absorption cross-

sciences that would emerge in the century to follow afgctions and low photostéiby compared to synthetic organic

beyond; there is currently now a furious energy of cutting-ed@¥es, manifest in comparatively lofluorophore brightnesses

research activity at this interface which only the truly naid short photoactive lifetimes. In essence, typical single-
would label as ‘stamp collecting Experimental single- molecule fluorescence imaging datasets hepeor equivalent
molecule biology research in its most modern and exciting foﬁ*gnaln{c.)-nmse ratio (SNR) in reference to the typical pixel
essentially combines state-of-the-asetlab approaches from intensities registered on camera detectors, and are often

the life sciences with cutting-edge technology and intellectJ§latively short in duration, for example consisting of 10 or less

insight and rigor from the physical, mathematicafonsecutive image framé. S
it is also not uncommon to acquire significant

computational and engineering sciences, in challenging assayd10Wever, : ( _
that aim to preserve the underlying physiological conteguantities of such datasets during experimental runs, essential

namely to perform experiments on living cells. In vivo singldd constructing the underlying probability distribution of
heterogeneous and stochastic molecular behaviour. The need

M.C. Leake?
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for objective, robust, automated high-throughput ardistinct gradient changes at object boundaries; varied
computationally efficient analysis tools is imperative talgorithms of this type have proved to be effective and have
determine the underlying molecular properties that are markieeen used in several successful software applications, including
of biochemical, physical chemical and chemical physi&ellProfiler (http://www.cellprofiler.org). Level Set algorithms
features of the internal cellular environment. offer a good option in cellular image segmentation by creating
The use of single particle tracking (SPT) techniques ligher dimensional space from the multiple image parameter
investigate biological processes is a well-characterized as®d typically used, and find optimal solutions to this using
popular approeh, especially so in the context of monitoringnulti-parameter minimization algorithms; the quality of output
fluorescent reporters, either single molecules or nanosciiat results is often high when the input information utilizes
particles such as fluorescent beads or quantum dots, that, imthétiple experimental data from intensity, cell boundary
case of fluorescent protein molecules, can be tagged at the lpwsition and prior cell shape knowledde.
of the encoding DNA to protein molecules of interest in a living Recent image segmentation methods developed in my own
cell®® These methods have been applied to, for exampihoratory have obtained more reliable results through the
estimates of the diffusion coefficient of individual proteiMaximum a Posteriori (MAP) meth8%! by minimizing an
complexes in the cellular membrafend investigating the objective energy function obtained from the raw image tfata.
molecular stoichiometry and turnover of molecular machinesThe foreground image intensity and geometrical boundary of
vivo.1"® While green fluorescent protein (GFP) and its varianemch cell can be modelled, and the compactness and
offer enormous potential for increasing our understanding sshoothness can be estimated. Simulated Annealing*{%A)
biological processes in large data sets, automatic tools win help estimate parameters, and our approach is to apply this
efficient techniques for analyzing time-lapse microscopyethod to generate a sub-pixel precision of the cell boundary
images from real dynamic cell processes are essential fosition. The method exploits a generative model to determine
objective and systematic quantizatioi? the shape based only upon pixel intensity, so it is comparatively
robust.
A significant number of cell types have well-defined shapes
Analytical toolsfor interrogating single-moleculedatain cellulo  gng sizes, seen for example in the rod-like Escherichia coli
bacteria used in a number of recent in cellulo fluorescence
imaging studies to investigate both internal cell process and
1. Automated segmentation of cellular images from light those integrated in the cell membrane. In such cases of
micr oscopy investigating cell membrane processes the cell shape may be
The dependence of spatial localization of physical and chemi%g?ra?tenzed relatively easily allowing global - Cartesian
. L . o oordinates on the camera detector plane to be transformed
properties in living cells necessitates objective methods 10

onto the local membrane surface coordinates relevant to single

determine the true spatial extent of cells from light microscoE) . . .
. . . . aged cell. For biological membrane protein systems, sub-
images. However, light microscopy images of cells, even when

. . Rlxel changes in position may occur over a time scale of
acquired using contrast enhancement methods such as p aﬁ_e . o
. L . -milliseconds. These can potentially be quantified accurately
contract or differential interference contract, result in a bigrri . . . . L .
. using a local coordinate representation in combination with
of the true cellular boundary due to convolution by the poin . N . .
. . . .._.superresolution localization imaging for even nanoscale
spread function (PSF) of the imaging system, necessnatlnéj .
. . o [’n vements of fluorescent protein reporters, for example
software tools to determine the precise position of the cellud";lr . i . .
boundary etecting tiny gene expression bursts at the single-molecule

. . . level the appearance of membrane protein repotters.
Many recent image processing techniques have beén . .
. . . . There is common agreement on a canonical shape for
proposed to determine the precise boundaries of cells with the . S
. . E. coli bacteria, namely that of a cylindrical body capped by
external environment. Image segmentation approaches can . . . . .
o . .hemispheres, with a typical diameter width of it and end-
extract the cellular characteristics of size and shape. P|%<e d | th in th 5 d di . i
intensity thresholding methods are useful and fast if the caliend 'ength i the ;?2198‘3 + cepending primartly on
. o L . ?]tage in the cell cycle® Here, we define a local coordinate
body intensity is homogenous and easily distinguished from the

non-cellular background, but typically produce jagged edgsé,sswm from each bacterium’s position, orientation, length and
’ width, as estimated from the non-fluorescence brightfield

that do not accurately represent the smooth cellular bouﬁﬁar%/rh inq data. Thr h observation ing liaht micr
There exist more recent advanced approaches that are mofe 9 aata. ough observations using fig icroscopy we

. . . . . can characterize the size and shape of each detected &eltoli
robust, including Region Growing methodsoften generating . | ) . o ) 2
o o . individually, with its characteristic ‘stubby’ object shape
better resultsvhenthe pixel intensity in foreground cell objects L
. . shc%wn in Fig. 1.
of the microscope image are homogenous, but arguably aré o0
more limited use for noisy experimental fluorescence imaging
data of the type typical for imaging of fluorescent protein
constructs. Watershed mheds utilize ‘flooding’ strategies

along the intensity baseline, being particularly sensitive to



an optimal parameter estimation problem
Q* - {x*)y*,e*)l*)r*{/*}_

A light microscopy live-cell image can be modelled as a
‘foreground’ object of interest, on top of an image
‘background’. The foreground object can be represented as a
two-dimensional matrix which can in turn be rendered into a
one-dimensional vector to be processed. Let | be the oloserve
two-dimensional matrix image with size NxN pixels, resulting
from an uncontaminated, noise-free foreground infagaus a
zero-mean Gaussian noise image C, which can be expressed as
I = I*+C, where C~N(0,0.), with o, image noise standard
deviation. Similarly, the parameter set representing a given
image can be represented by the idealized optimal parameter set
with the addition of some parameter perturbation. Considering
1um the parameter vector spa&e with size M, we model each
estimated parameter element as an individual random variable
consisting of real valueQ* plus zero mean Gaussian
Fig. 1 Brightfield microscopy image of a single E. coli cell (grelegca distribution asQ = Q*+D, where D is zero-mean Gaussian

modelled as cylinder with hemispherical caps, with parameter Set(]{l%tributionN(O,od) which reports the noise associated with the

reconstruct cell body perimeter projected onto the two-dimensio%%en parameter element. The conditional probability
plane of the camera detector. distribution of these estimated parameter variables can be
formulated as:

Each E. coli cell shape can be fitted to an observed cell obj M
image by estimating parameters from within a sensibly defin P(QI { 2, } 0'D| ) H p(Qi | &, 70—Di)
region of parameter space. The match between cell object ...... =1 (D

characteristic shape quantifies the particular manner in which

the parameter set is chosen by estimating optimal param&ging Bayesian inference,|)=p(1|€) >p(<2))/p(). A point
sets from an object energy function. estimateQ” may be determined by maximizing the conditional

For constructing a local coordinate system relevant distribution p(Q|I). The main challenge lies in estimating the
single E. coli cells, four parameters characterize the twiknown shape coefficients * obtained only from the original
dimensional cell boundary: (i) a local originO{x,y} unique to imagel*. We use MAP to define a statistical model allowing us
each cell with respect to the global (camera) coordinate systdfh; maximize p(Q|). We can transform the probability
(i) long axis orientation of the cell with x-axis of the camerdistribution to rewrite Equation 1, and Q* can be obtained as
/6;; (iii) length — {I} which is cylinder long axis length; (iv) follows:

radius— {r} which is the radius of hemispherical cap and equal ( Q) (Q)
to half the cylinder diameter. To estimate these properties wg= argmax{m( (Q| |))} argmaxln pUIQ)- pl@Q)
adopted a stochastic framework within a multivariate statistical pea’ peol p(l )
model.
= argmax|Inp(! | £ Q)-Inp(l
The parameter set ofx,y,0,,r} allows us to compute g¢eg [ p( | ) p( ) p( )]

several other relevant attrl.butes, e.g. total length of the CS"J'argmax[Inp(l |Q)+ Inp(Q)]
body parallel to the long-axis as the sum of |+2xr, the width is T

2xr, the centre position of the two hemispherical capsrl 2

O, are computed byx+//2-cosO, y+l/2-sinO}. The origin of the

local coordinate system can be defined as either O,onGhe Here, | is the recorded microscopy image on the camera
different applications depending on the specific applicatisigtector, ¢ is the candidate set for estimating parameters and QF
desired. is a uniformly spaced set of points in the parameter space. In

For the microscopy images, we need to consider the P8FS formulation, we assume that the experimental images | ar
which accounts for the blurred cell boundary appearance @edsistent with the model with prior distributionp(€2).
resultant ambiguity over the precise boundary location. We The maximuma posteriori estimate for a given set of the
introduce a variable {f} to indicate the PSF in the aboefnéd shape model parameters is dependent on the sum of both
parameter spac®. This parameter is not required to directlyn(p(112)) and In(p(Q)). The In(p(1|2)) component is a
determine the standard shape, but it is important to deconvoweasure of the likelihood of the original image given
the raw blurred cell image in the pattern matching process, spatameters2. We characterize the variation in this model space
is a latent variable i® = {x.y,6,.rf}. The task of determining by a Gaussian distributia¥(0,s?).
the local coordinate system of a given shape representation is



We use the spatial intensity distribution inside the bounda@§sSNR= S/«/S+ N, where S and N are the mean foreground signal

of eE?ICh individual E. . coli cell as the eqUiValent I|kel|h00g|xe| intensity, and mean background noise pixel intensity
function, and the precise detected cell boundary edge of eadpectively. Because the bacterium observed in light microscopy
cell image provides additional information for matching a welkas an indefinite boundary from the background, the estimated shap

defined template shape to modify the bias from the maximyfay not fit the boundary of object accurately in the case of low
likelihood formulation. In noisy, complex live-cell microscopysNR.

images there may be non-trivial ambiguity as to where this

precise cell image edge is located. Previous studies in im&jmulated datasets were analyzed using our bespoke software
analysis have shown that the cell image edge may be modediad the real values recorded before the convolution of PSF and
using a monotonically decreasing intensity functioon top of pixel sub-sampling (Fig. 2).

a Markov random field (MRF}"® consistent with empirical
observations from raw images. An MRF provides a method to
model the joint probability distributions of the image sites in
terms of local spatial correlations, which can be expressed by
the energy function U(l), which is a measure of the spatial
connection of pixels across the image, known as the ‘clique’ c.

The energy from c is defined as Efp=p, where p is the
pixel of interest, and neighbouring pixels are signified as p

(i=1,..,n), to construct pair-wise clique values with n elements g7 =
in total. 8 is a positive number describing the strength. For non- a Lﬁ b
neighbouring pixel elements, the clique energy is assumed td-lge 2 Sub-sampling technique from (a) large scale image to small scale
zero. image is used for simulating a bacterial cell image obtained from an

The prior distribution of shape parameters can be regardedEMCCD camera detectp(b) The imaging system’s point spread
as a penalty to control the bias from the intensity likelihood function is used in the deconvolution of cell boundary from the
method, which can be treated as a regularized selection inforeground; (c) Simulated E. coli with exact boundary (cyan)
MAP. Using knowledge from a prior distribution of image controlled to sub-pixel accuracy.
shape can generate an improved estimate of the cell image édgeevaluate the performance of this shape reconstruction
than considering just likelihood component alone. Empiricapproach, we compared the results from several reference
microscopy observations indicate that in the case of E. coli cefisthods. Of the conventional segmentation tools currently
their width is relatively constant to within ~1098.Thus we available we found that the marker-controlled watershed
can give a sharp prior statistical distribution for cell width artdansformation segmentation algoritin,which relies on
use the uniform function as prior distribution for the othetefining gquantitative measurement of the intensity gradient
variables. Starting from the MAP-based formulation, ouransform, gave the most promising results using our brightfield
method combines three key features from the image object égperimental data of live E. coli cells, which could in many
parameter estimation: pixel intensityQ|l), edge penalty p(l) cases be used to determine the location of the cellular boundar
and prior distribution (£2). to a sub-pixel precision.

The SA method is a standard optimization tool, and has The basic watershed transformation works in the following
proved to be an effective method for MAP optimization iway. Firstly, any greyscale image can be modelled as a
particular. This problem can be resolved by using an optint@pographical surface. If we then flood this surface from its
searching strategy to get the best candidate, which will matoiwest point, and prevent any water combining from different
the observed object accurately by generating a standard shapetcesthen ‘watershed lines’ between ‘catchment basins’ can
We use the SA algorithm to find the global optimal resolutidre defined marking out the lines of image segmentation. An
Q*. improvement to this involves the uses of pre-selected markers

To test the performance ofir cell shape reconstruction  from which to initiative the flooding, which minimizes the risk
algorithm we simulated images containing bacterial cells randomlyf over-segmentation in the image.

distributed over the sample surface with their long axes assumed In Fig. 3 we compare the results of simulated noisy
parallel to the surface, with cells having variable &médnd lengths  brightfield cell images using our generative MAP shape
and diameters over a physically sensible range typical of real reconstruction algorithm with the marker-controlled watershed

bacteria. Background noise levels were increased systematically thethod.
give a signato-noise ratio (SNR) from 2 to 5. Here, SNR is defined



it

simulated noisy simulated cell
brightfield image body perimeter

watershed
segmentation

generative MAP
segmentation

Fig. 3 Comparison of performance of cell body segmentation methods using the watershed method or our generative MAP method for different
categories of cell body shape for (a) ‘half fat’, (b) ‘elongated thin’, (c) ‘short fat’, (d) ‘banana’, (e) ‘lotus’, (f) ‘cluster fat’ categories; in lower two

panels simulated cell body perimeter (cyan) and the predicated perimeter from the respective segmentation algorithm (magenta) are indicated.



The figure shows a series of example shapes with the simulatedontaminated noise-free image, since a key practical
cell boundary which having several varying length and widthallenge of dynamic fluorescence microscopy in cellulo is
combinations. The most commonly observed category of E. aafien extremely noisy data due to several reasons, e.g. dark
cell shape, the standard rod type shape with an I/r value of states of the fluorescent reporter tag, especially blinking of
we denote as thalf fat’ shape. However, sometimes bacteriguantum dots and fluorescent proteins, background
are not distributed uniformly flatly over the surface of thBuorescence due to parental autofluorescence from cells, shot
microscope coverslip parallel to the cells’ long axis, in addition noise for the camera pixel readout in the background, as well as
cells will elongate during the cell cycle prior to cell divisiofPoisson signal noise and pixilation noise (the latter is
and may have slightly curved appearances, these facessentially due to uncertainty as to where fluorescence photons
resulting in some cells appearing closely together as a clusteorijinated from if detected within a single pixel whose length
bacteria, sometimes with cell bodies projecting above theale when projected onto the level of the imiaggpically 50-
coverslip surface, so the inferred cell length from the tw&50 nm).

dimensional image may be artefactually low. To characterize Microscopy image data consists typically of background
these effects we could also simulate such clusters/overldsgd cdéluorescence and cellular structures with fluorescence levels of
as well as elongated and curved variants. All of our synthetitensity close to the peak intensity emitted from fluorescent
shapes consist of six underlying categorigghalf fat’, particles. The image of a fluorescent particle being tracked,
‘elongated fat’, ‘short fat’, ‘curved fat’, ‘lotus fat’, ‘cluster with intensity consists of a real fluorescemphoton component
fat’}, shown in Fig. 3 with these simulated examples all haviagsociated with each particle, plus possible noises contributing
the same SNR of 6. the sum of a final observed fluorescence p8ak.

To estimate the objective measure of the accuracy in the For any observed fluorescent particle in the image, the
reconstruction method we calculated the residual mean-squarmber of detected fluorescence emission photons from an
error (MSE) to compare the simulated with the measureliserved fluorophore image on the camera detector is unknown
parameters. This indicates that our MAP approach has kat can be represented as a random variable with a probability
intrinsic accuracy in the absence of noise of MSE ~0.01 pixdistribution including the phenomena of photon noise,
The MSE in the presence of noise, using an SNR of 6 typibdédaching and blinking. The Expected Maximum (EM)
for our real brightfield microscopy images, is a measure of thigorithnf! can be applied to estimate the background mean
effectiveness of the shape reconstruction method unded variance based on the intensity distribution of an averaged
experimental conditions, indicating that our generative MAFRersion of intensity. A Laplace of Gaussian (LoG) filter first
segmentation algorithm generates an output typically within Ipfbvides particle recognition by template matching parficle.
pixels of the true cell boundary position, superior to thehen, a morphological filter is used to find the local intensity
watershed method by a factor typically greater than 2. centroid for each candidate particle to be tracked. Each

particle’s pixel intensity distribution is then fitted by a two-
dimensional Gaussian model to refine the estimate of intensity
2. Pinpointing fluor escently-labelled molecules centroid to within sub-pixel precision, better than the standard

The first step in pinpointing where exactly a fluorescentlgptical resolution limit of our imaging system of 200-300 nm

- ; 816,17
labelled molecule is in a living cell is to attempt to restore t & a factor of ~10 (Fig. 4).

Fig. 4 Particle spot detection (a) Original fluorescence microscopyeinvia dynamical particle; (b) Smoothing filter image from template filter by
Laplace of Gaussian (LoG); (c) Greyscale image based on successive geodesic mogbloplegitions; (d) Final detection image with marker on
each particle.



In a low SNR regime typical of live-cell single-molecule expenis not all fluorescently-labelled molecules may be detected.
However, the detection likelihood can be characterized using stiockiastilated images with values of signal and noise typical of
experimental data, with a detection probability of ~80% beipg#&) for a single fluorescent protein of GFP under typical video-
rate in cellulo imaging conditions from cell membrane studies oEbadtFig.5a red arrow trace), which improves dramatically
with brightness of the observed fluorescent spot (for example, thenpe®f more GFP molecules in higher stoichiometry
molecular complexes). Molecular mobility potentially affects déadikelihood however since it results in a blurring effect of
the observed PSF fluorescent spot on the images, which typicaligdace the real detection probability by a further factor of ~2
(Fig. 5b, blue arrow trace).
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Fig. 5 Monte Carlo simulation to indicate the (a) detection prdibabhnd particularly relevant to observations made throughout different
(b) localization precision as a function of stoichiometry (assumingpeints of the cell cycle, since cell shape displays marked
molecular complex is labelled here with typical GFP moleculevorphological changes. Converselyn transforming the
observed using video-rate imaging typical of the studies usedordinate system of each two-dimensional diffusing particle in
previously in my laboratory), with zero diffusion (red arrow tjacethe membrane into a local cellular coordinate system, such that
and a diffusion coefficient of Oun®/s (blue arrow trace), s.d. errorthe coordinate plane in the immediate local vicinity of the
bars. The probability of chance co-localization using an analytiqaérticle is always parallel to its motion, the observed particle
Poisson model is indicated in (c) for zero diffusion, and (d) for thajectory becomes independent of the translation and
diffusion coefficient of 0.4m%s, for the same imaging conditions asrientation of the cell.

(a) and (b). Tracking of fluorescently-labelled membrane proteins
involves fluorescent particle detection, nearest-neighbour
linkage and fragment integration. A common problem is that

The spatial precision of pinpointing the intensity centroid of &®me particle trajectories are only observed in fragmentsodue

observed fluorescent spot scales roughly with the reciprocalpptophysics such as blinking or stochastic noise, so

the square-root of the number of photons sampled, simply digectories might not be linked due to missing image frames. In
to Poisson sampling statistics. Realistic simulated imag®y laboratory, we have developed robust methoddirtk

indicate that a lateral precision of 50-150 nm is typical forteacking segments into complete pseudo-three-dimensional
single GFP molecule imaged at video-rate in the cell membrafajectories at sub-pixel resolution by searching over minimum
of a living bacterial cell under our in vivo, video-rate conditior@nergy curves along the temporal axis using global

(compared with 120nm lateral precision for many typicalcombinatorial parameter optimization. We validate the

fixed-cel PALM studies), but as expected higher stoichiometgerformance of our algorithms using simulated data and apply

complexes would have improvements to this precision Gkg. it to experimental data obtained from live cells using a single-
red arrow trace). Again, molecular diffusion results imolecule fluorescence microscope, indicating a new, robust
reductions to the observed localization precision due to teproach applicable to many different biological systems.

effect of image blurring (Fighb, blue arrow trace For SPT, traditional approaches depend on locally

Reliable detection of fluorescently-labelled single molecug@rrelated information by linking particle feature points in

also depends on their local density, namely the near#B@iges directly. Tracking fluorescent particles in a cell

neighbour separation distance; if this distance is comparabldmgmbrane is complicated because the trajectories may be
less than the optical resolution limit as set by the PSF of ihterpreted based on different biological phenomena and
imaging system then there is a higher probability fluorophorgarticle diffusion models, such as Brownian or normal diffusion
will no longer be resolved individually as distinct moleculeyia a two-dimensional random walk, directed motion, confined

The effect of increasing concentration of photoactive moleculigfusion, or anomalous or sub-diffusiéh. Similarly,

on nearest-neighbour distance can be characterized analytidaigtophysics of the fluorescent reporter tag on the particle

by using a Poisson nearest-neighbour model furfttforo being tracked may add complications resulting in, for example,

generate maps fafependence of the likelihood of ‘chance’ co- particle blinking manifest as truncated particle trajectories.
localization (i.e. that two particles in a live cell will beNearest-neighbour methods are simple to implement but very
separated randomly by less than the optical resolution limitys@fsitive to nois&*’ Statistical methods, for example using

a function of both the stoichiometry of diffusing particles (i.@robability density functions such as Multiple Hypothesis

the number of fluorescent dye molecules per particle) and fH@ckers and NP-Hard methods have been applied with varying

number of diffusing particles per cell (Fig. 5¢). Once agaifiegrees of succe$%? Multiple Hypothesis Trackers (MHT)
non-zero molecular mobility has an effect here in reducing tiéroduce probabilistic knowledge, but can be difficult to apply
probability of observing single distinct molecules by a factor §iom matching a variable number of image feature points in
~1.5 for typical diffusion rates observed in the cell membra@éobal optimization both in space and time, while NP-Hard
for protein complexes (Fig. 5d). methods prohibit fast computation. Heuristic methods can be

Once a candidate fluorescently-labelled molecule has bésed to identify putative tracks from qualitative descriptions,

detected then the challenge lies in reliably linking together thet suffer the disadvantage of relying critically on the accuracy

same molecules in subsequent images to form a track. Sifglethe detection stage and easily fail when ambiguities

particle tracking (SPT) trajectories of quorescentIy-IabeIIe@fICUlrf‘S’49
molecules in living cells are conventionally measuredhwit To overcome many of the shortcomings of existing tracking

respect to the global Cartesian camera detector coordin@gthods, my laboratory has developed a new automated multi-
system. However, in studies involving the investigation @@rticle tracking algorithm based on minimal path optimization,

membrane processes, fluorescent particles may be constrafieular to those used previously but extended in application to
to move over the non-planar cell membrane surface, so fi@dive cell membranes of living bacterial cells. After detecting

conventional Cartesian tracking analysis may be inadequatedandidate particles and linking image feature points frage-

detailed studies of intracellular dynamféd® This is frame, some segmented trajectories are obtained initighy. S

trajectory data from time-lapse TIRF microscopy are combined



from individual truncated tracks to create much larger
trajectories usin@ pseudo-three-dimensional volume, and then
the track in this pseudo-volume space from each moving

particle is obtained using a combination of a minimal energy .
path approach mediated through a Fast Marching méthad,
Dynamic Programming approachand the Linear Assignment
Solution?

To extract a particle trajectory, our method consists of three .
modules. Considering the particle intensity models from
fluorescence microscopy, first a set of filters are applied to the
image data to suppress noise and enhance the contrast (
moving particles in each image frame. Then these particke
linked based on a nearest-neighbour principle betweena Az=0nm b Az=+500nm
successive frames. However, a combination of high noise gl 6. Four-dimensional fluorescence microscopy (three spatial
complex particle movement often generates many truncatedgimensions plus time) using astigmatism imaging (a) in the focal

fragments of particle trajectories. The Grey Weighted Distance pjane of fluorescent 200nm diameter beads, and (b) +500nm from the
Transform (GWDT) method can group and complete such fycq plane in z.
truncated tracks to form re-annealed trajectories using
probabilistic criteri2® The final segmented pseudo-3D curve iSytative molecular interaction may be quantified using dual-
linked by pairs of points from the tail of one trajectory to thgs|our single-molecule fluorescence imaging. Here, the ability
head of another trajectory. to robustly quantify if two molecules are definitively in the
These methods are comparatively robust in dealing W¥hme region of space at the same time in the same living cell,
ambiguities due to particle image fusion, missing detectigRmely that theyre co-localized’, is critical. In an ideal world
events and appearance/disappearance of multiple target$ne would potentially use Férster resonance energy transfer
fluorescent particle tracking. The trajectories are then gederg{eReT), however for live-cell applications at the single-
from the minimal energy path as defined by the solution of thejecule level this has proved particularly challenging
time-dependent partial differential equation from the GWDkchnically due primarily to the poor photophysics of
method. This approach offers a resilient tracking technique fRlorescent protein FRET pairs used in monitoring the
the study of sub-cellular single-molecule dynamics in celftercellular environment. However, significant information can
membranes. still be obtained by using robust methods of co-localization
Such localization and tracking methods may also B@glysis.
extended to new forms of sailed ‘four-dimensional’ A method developed in my laboratory which has proved
microscopy that monitor fluorescently labelled molecules 3pust involves the use of fluorescence correlation. Firstly, to
three spatial dimensions as a function of the fourth dimensigfercome the grainy quality of the raw images resulting mainly
of time®**® A simple but yet robust method is to introduce afiom the shot noise associated with low photon intensity and
asymmetry in the fluorescence emission optical pathway prighdout noise associated with the camera detector the graininess
to imaging on a camera detector. In my laboratory we Us§samoothed out using a low-pass filter of a two-dimensional
cylindrical lens component in tandem with the final imagingaussian kernel of width comparable to PSF of our imaging
lens that projects the image onto an EMCCD detector Vias)astem (200-300 nm), which dramatically reduces noise

dual-view filter that separates the image into two waveleng{isociated at the level of individual camera pixelg.(B.
regimes for dual-colour imaging. The astigmatism induced

deforms the image projected on the camera in a very specific
way: if a point source is located in the microscope specimen
focal plane then the image will be essentially identical to that of
a non-astigmatic system, but when the sourceasout of the
focal plane a distinct deformation of the image occurs. The
effect is that the symmetric image of a point source in thd fo . . .
) . . ) . 1Ig. 7. Raw image of a fluorescent cell expressing fluorescent protein
plane elongates in either the x or y direction depending on ) . .
. . tagged OXPHOS complexes in the cytoplasmic membrane of E. coli
whether the fluorophore is moving closer or further away from . ) : : i
o ) . . . . (left panel) with low-pass two-dimensional Gaussian convolution
the objective lens (Fig. 6). Using iterative unconstrained , . . ) .
. . . (right panel), white um, strains developed in ref. 43.
Gaussian fitting to these deformed PSF images allows the

precise width in x and y to be determined, which then can Pg enable comparison of cell images from different colour

usepl_ n conj_uncl:ltlon W|thhpr|or callb.ra.tlon t]? :gtf(r)rglne tk}ec annels used in dual-colour imaging the pixel intensity ranges
p93|t|0n, typically to within §1 pre_x:|3|on ) ) MM 10%re first normalised to be from zero to one in each channel.
single-molecule fluorescence imaging.

This step results in a loss of information on absolute intensity,




but enables comparison of feature location in images wghould be compared between frames from different times. The
differing total intensities. To produce initial insight into spatidtnowledge of what pseudo-independent (time displaced) co-
correlation, the channels of each (monochromatic) frame #&wealization looks like can then be used in the analysis of the
combined into a single RGB imageAs well as the intensity co-localization in a single frame. This technique produces
variation present in the monochromatic images, these imag#srmation on the motion of fluorescence from frame to frame
include the dimension chu€’. The channel correlation at eactwhich is used in interpretation of the correlation information.
pixel can be identified by the hue resulting from mixing of the For a given image sequence, either a colour channel is
green and red components. While retaining all informatfon evaluated against itself (for example, green-green or red-red
relative pixels values within each cell image, the combinedrrelation) for information on realistic localisation and
colour images are difficult to interpret due to the multiplmobility, or one channel is evaluated against the other (green-
gradations in hue and intensity. A single quantitative metric fieed correlation) for information on molecular correlation. To
correlation § required. Alternative statistical measures a#xplain the technique, a grid can be formed in which the rows
correlation exist such as Pearson's correlation coefficient amdl columns are associated with the sequence of frames of the
Spearman's rank correlation coeffici@htand with further two channels under analysis. For example, the rows (top to
techniques the precision of co-localization can be accuratbhttom) could be associated with the frames of the green
calculated®® Our complementary approach has the beauty adiannel and columns (left to right) the frames of the red
computational simplicity and efficiency to implement and give§ig. 8). The correlation of images associated with the row and
a very immediate indicator of the extent of co-localizatiocolumn for each position in the grid is calculated. This means
across a whole population of individual cells. that a correlation measure is determined not only for images
The highest value pixels in each cell are first distinguish&ken at the same time point, but also between frames displaced
from the rest. The images can then be compared based orirthigne. The hue of each element signifies the colour channels
proportion of overlap between the high value pixels. #at have been compared, and the brightness indicates the
‘binarization threshold’ is set as the upper quartile pixel valugorrelation value.
within each cell image, resulting in binary images with 25% of To infer a high likelihood of co-localization, values along
the pixels in each cell having the high value. When cell imagée main diagonal are compared to the rest. If brighter than
of each channel are overlaid, putativ-localization is average, this indicates that the spatial distribution of intensity in
identified through the location and total number of overlappirmpth channels is correlated. If the intensity can be shown to be
high-value pixels. The approach loses information on relatifrem the fluorescently labelled proteins, this indicates co-
pixel intensity, but can produce a single and consistent metdcalization of the labelled molecules. There is total co-
on cell correlation. localization when one channel is compared with itself (as in
Our fluorescence correlation technique is based on fthg. 8 left and centre) where the diagonal elements have the
realisation that in past and future frameSegalistically maximum brightness. This is not necessarily the case when
redistributed” fluorescence is observable. So as well as images of different channels are compared (as in Fig. 8 right).
comparing the channel images of one frame, channel images

aF &% P G&® & o0 £ GO SO & o0 &P gP SO &5
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Fig. 8 Using fluorescence correlation to determine moleaadocalization Arrays illustrating level of correlation between each image frame of five
frame video sequences. (Left) Green-green correlation, (centre) red-red correlatiqright) green-red correlation. Brighter colour correspands t
higher correlation. Cell strains developed in ref. 43.



3. Measuring molecular mobility To implement the BARD diffusion analysis algorithm
firstly all the microscopic diffusion coefficienfsom the

The mobility behavior of fluorescently-labelled single ) o )
dataset are estimated from the initial gradienthef MSD

molecules in live cells may have several modes deaiate ) o
from simple Brownian motion, including directed@ce of each molecular trajectory. Then the diattion of

diffusion. sub-diffusion also known as anomalou@!! microscopic diffusion coefficients is constredt and
diffusion, as well as potential confinement effectg’nodelled by Gamma distribution. The shape parameters of this

Diffusion analysis has until very recently been rtnOSGamma distribution are used to estimate the equivalent

popularly performed using relatively simple anabysif propagator function for each candidate diffusion mode,

the mean-squared displacement (MSD) of track&yowmg a normalized marginal likelihood to be estimated for
particles, but these heuristic measures rely ontigar each individual track for each candidate diffusion mode, which

tracks of relatively large numbers of data poirti@wever can then be ranked and an inference thus made as to the most

due mainly to inferior photophysics in live celligtes only probabilistic diffusion mode to account for the individual
short tracks are typically obtained implying thabchastic trajectory data. o ) ) )

effects become dominant. To counter this, my latooyahas The use of the diffusion propagator functions in this way
developed a novel method called Bayesian Analysis Qgrmits robust discrimination between Brownian, directed,

Ranking Diffusion (BARD) that uses propagator functions étf)nfined and anomalous diffusion, even for relatively sparsely
diffusive processes directly to discriminate di#fet modes sampled data tracks as short as ~10 data points, relevant

that is capable of working on short fluorescentls"® therefore to the truncated trajectories typically obtained from
Brownian motion  represents  ‘normal diffusion single-molecule live-cell fluorescence imaging. Separating

characterized by a linear relation between time interval in tfiglecular mobility characteristics into  different categories

molecular trajectory and MSD. However, a tracked prote?r{-ferS enormous insight into several important physical

trajectory for which the MSD plateaus at large values of tiff@€Mistry questions concerning the living cell internal
interval indicates confinement suggesting that the protein efvironment: how do proteins partition dynamically in different
trapped by its local environment; such corrals may be import§®gions of the cell, how are signalling events linked to local
to forming nano-chambers for reactions thereby greaﬁyb-cellular architecture, how does the heterogeneous internal

enhancing the physical chemical efficiency. Directed dif]‘usioq?II enwronr.nen_t affect .the mOb'_I'ty of ‘motor proteins, an_d_the
has a typically parabolic MSD versus time interval tracenseeXtem to which interacting proteins rely upon random collisions

during active diffusive processes such as those of translocaﬁﬁ@re part of putative confinement nano-reaction z8H¥s.

molecular motor§®®® Anomalous or sub-diffusive behavibr

is usually modeled as MSD proportional to time interval to the . .
ower o?lan exponernt Wherep ispa coefficient between 0 and4' Counting molecules in fluor escently-labelled complexesto

P T p . o ) . guantify stoichiometry and tur nover

1, indicative of percolation through the disordered media of the

cell as well as a putative hopping motion between differdhtsubunits within a molecular complex can be fluorescently

confinement domains in the cell across corrals or interactidabelled then the observed integrated fluorescence intensity
with specialized domairf&:®® from such a complex, when summed over all corresponding

Bayesian inference quantifies the present state @fmera pixels within the diffraction-limited PSF fluorescent
knowledge and refine# on the basis of new data. Thisspot image, can be correlated to the total number of subunits
posterior distribution incorporates any prior uretanding Present, namely the subunit stoichiometry of the complex,
on the set of parameters that comprise that moflath provided the brightness of a single fluorescent probe is known.
priors embody our initial guess of the system, sashthe In general this can be measured by utilizing the phenomenon of
expected order of magnitude or distribution of thstep-wise photobleaching of fluorophores, such that the size of
parameters. The prior probability is independentdata of the step in intensity between the light and dark states of a
the system. The results of this inference are sunmedrby fluorophore is simply equivalent to the mean average brightness
the most probable parameter values and their associd@eédhat particular dye molecule. For complexes containing
distributions, embodied in the posterior distribution of thi@wer than ~6 subunits these stgfse changes can be observed
parameterAfter this stage, model comparison takes pladgdividually from a typical photobleach trace from a single
in which diffusion models are ranked, conditioneg the molecular complex, and so the number of steps in the trace ca
observed data to assign a probability-based preéere be counted simply by eye, or by using some relatively trivial
between the distinct modelsf the model priors are flat (no analysis routine, to indicate the subunit stoichiom&try.
particular a priori preference), the result of modedlaation However, for more challenging general cases of higher
is by simply ranking the marginal likelihood of dac Stoichiometry complexes, or oligomers or complexes, a more
individual diffusion mode. This is also known asethrobust method is needed. The method developed for achieving
evidence or the marginal likelihood and is given bthis in my laboratory utilizes Fourier spectral analy$isn
integrating the data over the parameter space. essence, a pair-wise difference distribution is calculated for the

whole of a single photobleach intensity versus time trace,



obtained though continuously illuminating a singlanalysis as described above for photobleach traces but which
fluorescently-labelled molecular complex, and a powdéiave also been applied to other unrelated single-molecule
spectrum is then calculated for this pair-wise distribution efudies such as the observed translocation of kinesin molecular
intensity values such that the fundamental peak in the powmstors on tubulin tracks, are potentially far less subjective
spectrum corresponds to the characteristic periodicity of thiece they utilize information obtained across the whole of a
step-wise decrements in intensity during the raw photobleaddta trace as opposed to just a single putative step even in a
trace. data stream. The main disadvantage is the loss in time
Such raw steps are due to integer multiples of fluorophoiaformation for any specific individual step event in a given
undergoing step-wise photobleaching during a single samplingce. Such analytical methods may also be employed for
time window, therefore this characteristic periodicity istudies involving fluorescence recovery after photobleaching
identical to the mean intensity of a single fluorophore during (FRAP) and fluorescence loss in photbleaching (FLIP) at single
that photobleach. Poisson statistics indicates that wwl level and single molecule complex level to quantify the
photoactive dwell time of a single fluorophore is exponentiallgxtent of dynamic molecular turnover®
distributed, implying that a general photobleach intensity versus
time trace for several identical fluorophores can be fitted using
a single exponential function of the forgexp(-t/t) where t is 5. Rendering distributions of molecular behaviour

time, § is the characteristic photobleach decay time, anid | A recent improvement to objectifying single-molecule data is in

the |n|t|&}| intensity given by the summed effects of a_How a distribution of single-molecule properties is actually
photoactlv‘g quorop’hores. In the absence of any quenCh\%‘?]dered, e.g. step-sizes in terms of displacement of a tracked
effects or ‘immature’ dark fluorophores (such as fluorescent molecular motor, or the subunit stoichiometry measured from a

protein molecules that have not matured into their photoactyy@q oy complex using step-wise photobleaching. Traditional

states following expression)/l is a measure of the number 0]:approaches use some form of histogram to bin data across the

proteins tagged with th? fl.uorophore in the complex, in OthSBserved distribution. However, it is clear that the size of a
words the molecm_JIar st0|ch|9metry. . histogram bin and its position potentially lead to subjective

As an gpalytlcal tool this meth_od is far more robu_st th%?as. Such behaviour can lead to significant error in the general
more traditional approaches which rely on detection 8£\se of molecular heterogeneity namely, that such
individual step event in a noisy time series. Single-molecuyjg. i tions may be far from a unimodal, symmetrical
e_xperlmen.ts on Ilvmg cells are rife Yv'th noise in general, W'@aussian—type distribution, as is often mistakenly assumed to
signals being sometimes only marginally above the level of tgg the case, rather they may be far more complex, asymmetrical
noise amplitude. MQSt molecu_lar-scgle evehts gre mar_llfestaﬁa often multimodal (for example, signifying the existence of
some form of .tran5|.ent step signal in _a noisy time serleg, mgtastable free energy states in the molecular probability
fluorescence intensity photobleach signature from a S'”Q‘Etribution)

fluorophore being one such example, ar!d t_herefore the The development of analytical methods that instead use so-
challenge becomes on_e of .robust step-detection in a n9l§y %?ﬂ?ed kernel density estimation (KDE) has resulted in more
stream. Edge-preserving filters _Of raw data_l W?r_e O”gmalbbjectivity in rendering molecular parameter distributions. With
employed — standard mean/spinal/polynomial-fitting fllter%DE’ instead of data being pooled into semi-arbitrary
perfqrm .badly inblurring distinct edges |_n a data_SFr'ea'mstogram bins, the raw data are convolved using a detection
Medlan. filters, or the Ch_ung-Kennedy algorithm consisting gtensitivity function, typically with a Gaussian function whose
two adjacer_n running Wlnd_ows whose output_ W_as the _me\ﬁmm is an estimate for the measurement error for that property
from the window possessing the lowest statistical variangg, y o+ particular experiment, and whose amplitude is then

preser\{g _SUCh edges; steps_can then be dgtected as %%iglgd such that the area under each unitary detection
probabilistically accepted or rejected on the basis of the Chaggﬁsitivity function is equal to unity (reflecting a single

in the mean window output in light of the underlying noise (e'getection event)- the sensitivity function thus indicates a

by cglculatlng a corresponding the Stgdent t-s_tatlstlc for suchgyistic estimate for the actual sample distribution for a single
putative step change) between two adjacent windows run acr

a data stream tl.me Series, using a prg-deflned threshold forHistograms which contain too many bins potentially suggest
a_lcceptar_lce. Variants of methods detecting steps from a n?ﬁ?é’re is more heterogeneity than there rellyvhereas those
time serle_s may be _mo‘?'e' dependent such that th? prObabWchh contain too few bins can hide heterogeneity. A KDE will
for observing a step is hlstory-.dependent about earlier detec%%'ﬁerate the most objective distribution from any dataset for
events, from so-callgd Markow_an procefs?es. . . any single-molecule property (Fig. 9). This is important not
However, such time-domain detection analysis algorith ﬁnply on a qualitative level but rather the position of identified

are all sensitive to th? level of det.ecthn threshold S?t; t_Bgaks in a distribution can be robustly quantified to identify
acceptance threshold is often semi-arbitrary and subjectiygqi .t single-molecule states

Frequency-domain approaches, such as using Fourier spectral
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Fig. 9 Robust and objective rendering of the distribution afjlermolecule parameters. Too small a histogram bin size (left) may suggest
heterogeneity that is not really there, too few histogram bins (centre) may hitketeralgeneity. The most objective method to render a single-
molecule parameter distribution is through kernel density estimate (centre)shms® on raw data obtained from ref. 18 on molecular
stoichiometry of a component of the bacterial flagellar motor using a @aussivolution width of 0.7 molecules.



Conclusions and Outlook

As microscope camera sensitivity, the photophysical properties oflmemwphores, and the methods of delivering
fluorophores inside cells with specificity improve, single-molecule femeace imaging experiments in live cells
will become increasingly more ambitious in terms of the practispkects of imaging single molecular complexes
in living cells’®; truly multi-dimensional imaging using not just multiple coldbisut multiple polarization states as
well as simultaneous electrical and chemical measurements willlikelgtbecome increasingly more prevalent.
Such complex datasets will ideally provide correlated and orthogomaimiafion of molecular and cellular
properties, necessitating yet further objective, analytical toolsxtpaaion of molecular level information in a
noisy environment. A natural extension of single-molecule researdingie living cells is to rise to the cell
population challenge- to perform single-molecule imaging of several cells simultangowslich potentially
operate as a emergent multi-cellular, integrated structure, asidhiofilms, tissues, even organs. An obvious
challenge here is computationalhaving the ability to efficiently analyse molecular level trackidega from
multiple cells simultaneously anddeally to do so ‘on-the4ly’, namely in real-time such that the analysis is
sufficiently fast to permit levels of feedback intervention tapplied to living sample. The logical basis to begin
this challenge is to develop further robust analytical protocols to siedlsingle-molecule data.

As the esteemefl9" century biologist Thomas Henry Huxley noted, the great tragedy ofcscis the slaying
of a beautiful hypothesis by an ugly facthe days of making qualitative judgements by eye for single-melecu
biology research consistent with webhaved ‘beautiful” hypotheses have well and truly gone and the ascendance
of the increasing ugly, complex, but very precisely known, singlkecule ‘fact’, is most certainly upon us.
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