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ABSTRACT

The aim of this paper is to model the impacts of competition between cities on both the

optimal welfare generating tolls and upon longer-term decisions such as business and

residential location choices. The research uses a dynamic land use transport interaction

model of two neighbouring cities and analyses the impacts by setting up a game between

the two cities to maximise the welfare of their own residents. The work builds on our earlier

research which studied competition in a small network using a static equilibrium approach for

private car traffic without accounting for the land use responses to the change in

accessibility. This paper extends the earlier work by setting up a dynamic model which

includes active modes of travel and the more usual car and public transport in a realistic twin

city setting and assesses the longer term relocation responses. This paper firstly sets out the

competition between two hypothetical identical cities i.e. the symmetric case; and then sets

out the real world asymmetric case in which the cities are of different size representative of

Leeds and Bradford in the UK but equally applicable elsewhere too. It was found that the

level of interaction between the two cities is a key determinant to the optimal tolls and

welfare gains. Our findings show that the competition between cities could lead to a Nash

Trap at which both cities are worse off in terms of welfare gains. On the other hand, we

found that cities, if regulated, would gain in terms of welfare and yet charge only half the toll

compared with tolls under competition. We then show that the effect of competition

increases with increased interaction between cities. In terms of residential location, cities

with higher charges benefit from an increase in residents, though as with other studies, the
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relative change in population in response to cordon charging is small.

The policy implications are threefold – (i) while there is an incentive to cooperate at local

authority level, this is not achieved due to competition; (ii) where cities compete they may fall

into a Nash Trap where both cities will be worse off compared to the regulated solution; and

(iii) regulation is recommended when there is a strong interaction between the cities but that

the benefits of regulation decrease as interaction between cities decreases and the impact of

competition is lessened.

Keywords: Competition between cities, land use transport interaction, strategic transport

model, road user charging.

1. INTRODUCTION

Cities compete with each other. For more than fifty years, Public Choice Theory has

explored the notion that cities compete to attract and retain residents and businesses

(Tiebout, 1956; Basolo, 2000). Likewise, the Public Finance & Tax Competition literature

identifies competition between cities on tax-and-spend policies (Wilson, 1999; Brueckner

and Saavedea, 2001).

This paper forms part of a larger study which aimed to answer the following policy questions:

 In what ways do and could cities compete using fiscal demand management policies?

 How should cities design their policies to achieve individual and collective ‘best’

outcomes?

 Should cities consider sharing revenue streams – should they compete or co-operate?

 How significant are these policies to the redistribution of business and residents between

cities?

Early work by Marsden and Mullen (2012) has looked at the motivations of decision-makers

in local government in different towns and cities of four major city regions in England. It

showed that towns and cities both compete and collaborate to maximise their own

competitive position. The major cities are seen as the main powerhouses of growth, with

other towns and cities trading on particular distinctive skills sets or tourist offers and spill-
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over effects from the major cities. Working together they can act as a more powerful voice to

argue for investment from central government.

Our interviews with local authorities confirmed that cities do consider competing, but they

consider different cities as competitors for different aspects. For example when competing

for investment from creative industries to locate jobs, cities from further afield will be

considered as competitors, but when competing for regional funds from government they will

team with neighbouring cities. However, when it comes to charges for using transport

facilities such as parking then they will consider local neighbours as competitors and will

consider the charges levied in other local towns. Finally, when it comes to road user

charging (which is not common in cities within the UK except London), the cities suggest that

there would be a hierarchy of charges to consider akin to the parking charges and so some

form of strategic charging or competition may well evolve.

Whilst cities seem to compete at inter-city level for example through the use of parking

charges or tolls, research in the transport literature has focused predominantly on intra-city

issues. The strong focus in recent years has been on road user charging, economic theory

suggesting benefits will accrue to a city from a combination of congestion relief and recycling

of revenues within the city (Manville and King 2013, May et al 2010). Beyond the theoretical

benchmark of full marginal cost pricing, the design of practical charging schemes, such as

those adopted by local authorities in recent Transport Innovation Funds (TIF) bids in the UK,

has generally focused on pricing cordons around single, mono-centric cities (Shepherd et al,

2008). It is possible in such cases to design the location and level of charges for a cordon so

as to systematically maximise the potential welfare gain to the city (Shepherd and Sumalee,

2004; Sumalee et al, 2005), yet there is an implicit premise in here that the city acts in

isolation.

Whilst we have found no empirical studies examining competing cities in the transport

sphere, a handful of studies address aspects of competition. In the context of toll roads,

several authors have studied the welfare implications of competition between a public and

private operator (Verhoef et al, 1996; De Palma & Lindsey, 2000; Yang et al, 2009). The
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focus in these studies is on the impacts of alternative ownership regimes, and of public

versus private control in the form of either monopoly pricing or competitive Nash Equilibria

(Nash Equilibrium is reached when a player cannot improve their own welfare when the

other players have decided their own strategies). De Borger et al (2007) and Ubbels &

Verhoef (2008) studied a more closely related problem of competition between

countries/regions setting tolls and capacities, investigating the implications of players

adopting two-stage games or different strategies.

In parallel, several pertinent recent studies have appeared on the evolution of city structures

and tolls under different assumptions. Levinson et al (2006) and Zhang et al (2007) used an

agent-based approach to investigate how networks evolve over time. In this area of study,

while Mun et al (2005) focused on the development of a non-monocentric, linear city, others

have opted to develop two-dimensional continuum models involving finite element solution

methods capable of representing multiple Central Business Districts (CBD) (Ho et al, 2005;

Ho & Wong, 2007). From the field of Economic Geography, the recent contribution by Anas

& Pines (2008) analyses the move away from monocentric to polycentric models. In spite of

their relevance to the proposed study, none of the above approaches considers direct

competition between cities, nor does the inter-play between parking charges and road user

tolls (either within or between cities), for which Marsden (2009) found evidence.

When we move to a polycentric case, competition between cities may arise as described

above. Issues of short-term destination changes and potentially longer term household and

business relocation decisions thus need to be considered.

Mun et al (2005) studied optimal cordon pricing in a one dimensional linear city with more

than one CBD. Their research revealed that cordon pricing is not always effective for

congestion management in polycentric linear cities and it tends to be effective as the urban

structure is more mono-centric. Our work differs significantly from that of Mun et al. in that

we analyse the optimal toll between two cities competing with each other whereas Mun et al.

consider one city with many CBDs.
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The aim of this paper is to model the impacts of demand management strategies on optimal

tolls and longer-term business and residential location choices in competing cities. This is a

continuation of the work reported in Shepherd and Balijepalli (2012a, b) which had outlined

the initial model set up and discussed the preliminary results. The research uses a dynamic

land use transport interaction model of two neighbouring cities to analyse the impacts by

setting up an optimisation game between the two cities which are assumed to maximise the

welfare of their own residents. The work builds on the earlier work by Koh et al (2012) who

studied competition in a small network using a static equilibrium approach for private cars

who have a choice of route (when tolled) but without a land use feedback mechanism. It was

found that when cities compete in terms of welfare, there was the possibility that the

outcome of the game was a classic Nash Trap whereby both cities may end up worse off.

That is to say that allowing competition between the two cities results in residents in both

cities being worse off than under the co-operative or regulated case as well as worse off

than in the no toll case. Our research extends this by setting up a dynamic model which

includes slow modes, private car, public transport bus, rail and investigates the longer term

location responses.

The model is used first to study an isolated city (representative of Leeds) and a standard

welfare function is used to determine the optimal toll around the central area and its impacts

on location decisions and other transport indicators. A twin city is then added to the model

thus introducing traffic between the cities. This traffic may be charged to enter the central

area along with own residents, however the revenue may be retained by the charging city -

a form of tax exporting behaviour which would in theory increase the welfare of the city.

Thus both cities will have an incentive to charge and a game may evolve.

With this simple model set up we study the impact on the optimal tolls set by the cities and

how the game develops between cities, firstly of equal size and amenity (the symmetric

case) and secondly with cities which differ in size and amenity (the asymmetric case). The

impact on location decisions and other transport indicators will be investigated as will the

implications for regulation and the development of cities within regional partnerships.
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This paper is divided into four sections including the present one. Section 2 describes the

development of a dynamic model and in particular introduces the small model approach to

developing a land use transport interaction model for the cases of symmetric and

asymmetric cities. Section 3 introduces the welfare measure used in the modelling and

reports the numerical results on optimal tolls for various modelled scenarios including the

regulated cases and competitive Nash Games. This section then reports the sensitivity of

welfare gains to the level of interaction between the cities. Finally, Section 4 concludes the

work and identifies the directions for further work.

2. DYNAMIC LAND USE TRANSPORT INTERACTION MODEL

Metropolitan Activity Relocation and Simulation (MARS) is a strategic dynamic Integrated

Land Use and Transport model. The basic underlying hypothesis of MARS is that

settlements and activities within them are self-organising systems. MARS is based on the

principles of systems dynamics (Sterman 2000) and synergetics (Haken 1983) and can

model the complex interactions between the land use and transport systems. The present

version of MARS is implemented in Vensim®, a System Dynamics programming, simulation

environment. MARS is capable of analysing policy combinations at the city/regional level and

assessing their impacts over a 30 year planning period. Figure 1 shows an overview of the

MARS model. There are three sub-models within MARS, viz., transport, residential location

and workplace location sub-models. The transport sub-model determines the demand for

travel between zones for a given land use pattern and estimates the number of trips by a

given mode of transport such as car, bus, train, walking and cycling for peak and off-peak

periods. The output of the transport sub-model includes an accessibility measure which

influences the residential and workplace location choices. Rents, land prices and land

availability also influence where land is developed and the location choice of residents.

These sub-models then interact over time and the system responds to exogenous inputs for

growth in residents, jobs and car ownership and to any policy instruments simulated. Thus

the system modelled here is a non-equilibrium one as it keeps evolving continuously over
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time.

Figure 1 Overview of the MARS model

Figures 2 and 3 show examples of the Causal Loop Diagrams (CLD) for the main responses

included within MARS for commute trips by car and for development and relocation of

residences respectively.

Figure 2 shows the CLD for the factors which affect the number of commute trips taken by

car from one zone to another. Starting with the balancing feedback loop B1, commute trips

by car increase as the attractiveness by car increases which in turn increases the search

time for a parking space which then decreases the attractiveness of car use – hence the

balancing nature of the loop. Loop B2 represents the effect of congestion – as trips by car

increase speeds decrease, times increase and so attractiveness is decreased. Loop B3

show the impact on fuel costs, in our urban case as speeds increase fuel consumption is

decreased – again we have a balancing feedback.
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Figure 2 CLD for the transport model – commute trips by car in MARS

Figure 3 CLD for development of housing in MARS

Figure 3 shows the CLD for the development of housing and the interaction with location

choice of residents in MARS. Starting with the development of housing, loop H1 is a

balancing feedback loop which shows that the attractiveness to the developer to develop in a
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given zone is determined by the rent which can be achieved. The level of the rent is driven

by the excess demand for housing which in turn is related to the housing stock and new

housing developments. As new houses are developed the stock is increased which reduces

the excess demand which then reduces the rent achievable which reduces the

attractiveness to develop – resulting in a balancing loop. Loop H2 is a reinforcing loop as

new housing reduces the excess demand which reduces rent and hence land price which in

turn makes development more attractive all other things being equal. Loop H3 represents

the restriction of land available for development; as land available is reduced then the

attractiveness to develop is reduced. Loop H4 extends H3 to represent the effect of land

availability on land price.

The housing development loops are linked to the residents’ location choice. Firstly the main

elements considered to influence the choice of location are rent, accessibility and area

quality. As area quality is difficult to measure it is normal to take some kind of proxy for

quality, in this case average income. The main loops in the residential choice are M1 which

is a balancing feedback loop – as more people move in excess demand increases which

increases rent which then reduces attractiveness to move in. M2 is also a balancing loop

which shows that as the number of residents increases in a zone then congestion out of that

zone increases which reduces accessibility to workplaces and so reduces attractiveness to

move in.

Loop M3 is a positive feedback loop which simply shows that as the number of residents

increases in a zone then the potential for moving out also increases (set as 10% of residents

per year in the simplest case). This increases the pool of potential movers, which also

includes growth in population (which could come from natural growth or in-migration and is

taken from an exogenous forecast per annum). Loop M4 is a positive feedback loop which

extends H1 – as more people move in this increases excess demand which increases rent

and so increases attractiveness to develop which in turn increases the housing stock. Here
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it should be noted that housing stock available can limit the number of people allowed to

move in to a zone as any excess demand is reallocated to other zones. This process

reflects reality where excess demand must be taken up elsewhere if the capacity for

residential occupation is reached in any one time period. Following the principles described

above, a MARS model was developed for the Leeds Metropolitan Area with 33-zones

representing the electoral wards. The population, employment, land available for

development were based on official data from the Council and national census data. The

transport data was taken from publicly available data and from an aggregation of the Leeds

SATURN model. Growth in population and workplaces were based on DfT’s TEMPRO

forecasts (DfT 2010). The outcomes of the model were calibrated to match the official

forecasts available, for more detail see Pfaffenbichler et al (2010).

The performance of the MARS Leeds model has also been assessed by evaluating outturn

elasticities, viz., fare and fuel elasticities. The out-turn fare elasticities were compared with

standard values as reported in The Demand for Public Transport: a Practical Guide,

(Balcombe et al, 2004). Similarly, the fuel elasticities were compared with the values

published by Goodwin et al (2004). The fuel price elasticity was seen to be -0.1 which

agrees well with the commuter value of Litman (2013) and also with the mean value of

Goodwin et al (2004), while the fare elasticity was seen to be -0.16 which is low but within in

the range for urban areas as per TRL Report 593.

2.1 Developing an aggregate model

Following the discussion in Ghaffarzadegan et al (2011) who highlight the benefits of using

small system dynamics models in addressing public policy issues, we chose to aggregate

the model from 33 zones to only 2 zones to simplify the presentation of the results which

would otherwise become difficult to follow when moving to a twin city model with many

zones. However while recognising the benefits of simplification for presentation of results,

we first of all describe the aggregation process and compare results of the 2-zone model

with the previous 33-zone model. Demographic and land use parameters such as
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population, number of jobs, land available for development have been summed for zones 1-

13 of the large model to form zone 1 (inner zone) of the small model; the remaining zones in

the large model viz., 14-33 are then summed to form the outer zone 2 of the small model.

During the aggregation process we compared the results with the model outcomes of the 33-

zone model to ensure that the small model responds in a similar manner to that of the large

model in two different scenarios viz., do-nothing and then with a 5€ cordon charge. Table 1

compares the population in the base year 2001 and forecast year 2030 between the 33-zone

model and the 2-zone model. The aggregate model of Leeds was calibrated to reproduce a

similar distribution of residents across the zones in year 2030. Table 2 shows that the total

growth in jobs in the 2-zone model is consistent with that in the 33-zone model, however,

their distribution between the zones is less so. Akin to the large model the aggregate model

also predicts a higher growth in zone 2 than in zone 1 though to a lesser extent. Whilst this is

not as consistent as the residential response, it is the relative change between tolled and un-

tolled scenarios which informs our analysis.

Table 1: Distribution of population in Leeds

33-zone model 2-zone model

Area Year
2001

Year
2030

Growth
(%)

Year
2001

Year
2030

Growth
(%)

Zone1 (1-13) 262560 343384 30.8% 262560 342879 30.6%

Zone2 (14-33) 453042 621801 37.3% 453042 621780 37.3%

Total 715602 965185 34.9% 715602 964659 34.8%

Table 2: Distribution of jobs in Leeds

33-zone model 2-zone model

Area Year
2001

Year
2030

Growth
(%)

Year
2001

Year
2030

Growth
(%)

Zone1 (1-13) 218700 246634 12.8% 218700 262746 20.1%

Zone2 (14-33) 133400 188303 41.2% 133400 171615 28.7%

Total 352100 434936 23.5% 352100 434361 23.4%
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Table 3 compares the modal share in year 2001 and year 2030 between the 33-zone model

and the 2-zone model. It is noted that the 2-zone model reproduces the modal shares of the

large model well with the exception of rail which is slightly under-predicted in the aggregate

model.

Table 3: Modal share of commuting tours

33-zone model 2-zone model

Mode Year 2001 Year 2030 Year 2001 Year 2030

Car 49.7% 51.1% 50.1% 51.1%

Rail 2.9% 2.7% 1.3% 1.2%

Bus 28.0% 27.1% 28.5% 28.3%

Slow 19.5% 19.2% 20.1% 19.4%

In order to verify further whether the 2-zone model would respond to policy inputs in a similar

manner to that of the 33-zone model, a 5€ cordon charge to enter the inner zone in both the

models (zone 1 in the small model and zones 1-13 in the large model) was implemented. It

was noted that the relative change in population and jobs with a 5€ charge over the do

nothing scenario are small (results for the twin city cases will be discussed in detail later).

These results are similar to those noted by others e.g. Jenson (1999), Anas & Xu (1999) and

Anas and Hiramatsu (2013). Table 4 shows the main impact which is the change in modal

share of commuting tours with a 5€ charge. In particular, it shows that car mode loses about

3% of its share and most of it would be absorbed by the bus. As a result of the shift in modal

use, the travel times in MARS would improve for all road users which are accounted for in

the welfare function as described later. It is noted that under the charging regime both

models show a very similar reduction in car share in the peak, the small model shows a

slightly higher increase in share for bus but this is still a good representation of the more

detailed model and suitable for the purpose of this study.
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Table 4: Change in modal share (peak) in year 2030 with 5€ charge

33-zone model 2-zone model

Mode Do-nothing 5€ charge Do-nothing 5€ charge

Car 51.1% 48.5% 51.1% 48.1%

Rail 2.7% 2.8% 1.2% 1.2%

Bus 27.1% 28.9% 28.3% 30.9%

Slow 19.2% 19.8% 19.4% 19.8%

2.2 Symmetric case

In order to investigate the impacts of competition between cities on optimal tolls and other

indicators, our first step was to develop a simple hypothetical case study involving two

identical cities. Thus we took the 2-zone model of Leeds as described in the previous section

and copied it to form a twin city model with 4 zones based on the idea of two identical cities

within reach of one another (see Figure 4). In the single city model the population of Leeds is

split between the inner zone 1 and the outer zone 2 with more growth predicted in the outer

zones by 2030. We call this City A and the additional hypothetical neighbouring city we will

call City B. The model naturally deals with interaction between cities in terms of commute

choices and also allows for relocation between the cities. In what follows, each city may

decide to charge car users to travel to the central area (zones 1 or 3) within the peak period.

A charge will be applied to their own residents as well as those from the other city.

Figure 4: The twin-city zones

2.3 Asymmetric case

After developing the symmetric case and in order to make the case more realistic, we then

extended the model of symmetric cities to asymmetric cities by revising the characteristics of
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City B. City A continues to be based on the population of Leeds which is split between the

inner zone 1 and the outer zone 2 as described earlier, but the neighbouring City B is now

reduced in size and is based loosely on Bradford which is located 18km (11.2 miles) away

from Leeds. Thus we now have the case of two neighbouring cities with differing populations

and workplaces and thus with different workplace-population ratios based on a realistic

setting.

Table 5 shows the distribution of base year population, work places and

workplace/population ratio in the zones in City A and City B in the census year 2001. Note

that the population and work places have been calibrated to match the estimates for Leeds

and Bradford as given by TEMPRO. Notice that the workplace population ratios for zones 1

and 2 (City A) are slightly higher than the corresponding values in zones 3 and 4 (City B) so

we should expect a higher proportion of trips to travel from City B to City A than in the

reverse from A to B.

Table 5 Distribution of base year population and workplaces in the two cities

Region Base year

population

Base year

work places

Workplace/

population ratio

City A: Zone 1 262,560 218,700 0.833

City A: Zone 2 453,042 133,400 0.294

City B: Zone 3 168,038 134,369 0.800

City B: Zone 4 289,947 81,961 0.283

The asymmetric case has been calibrated to the level of interaction between the two cities

represented by the observed number of trips between Leeds and Bradford (See Table 6).

This is achieved by introducing city specific factors which weigh up the attraction between

inter-city origin-destination pairs. This can be thought of as a proxy for some unobserved

preference to work in a city over the other such as a skills mis-match or other household

decisions which impact on travel choice such as child care. In other words there are barriers

to travel across city boundaries other than those which can be explained by the transport
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costs. The resulting trips after the calibration exercise are shown in Table 6. The proportions

of trips from Leeds to Bradford and from Bradford to Leeds are comparable to the

proportions given in a study by Simmonds and Skinner (2006). As expected the proportion

from Bradford to Leeds is much higher due to the higher jobs to population ratio in Leeds

which will give the larger city greater tax exporting opportunities.

Table 6 Modelled commuting tours between City A and City B

Number of

commuting tours

(2001) per day#

Modelled

commuting tours

per day in MARS

Proportion of

trips to other

city

Leeds to Bradford 15260 15266 4.7%

Bradford to Leeds 21261 21267 10.9%

Source: # City of Bradford Metropolitan Council, Big Plan II, Transport Intelligence Briefing,

2010

3. NUMERICAL STUDIES

This section describes the application of the MARS model under various charging regimes

for the symmetric and asymmetric cases as described above. Before explaining the

scenarios considered, we first explain the welfare measure used.

3.1 Welfare measures

For each city, the local authority is assumed to maximise the welfare of their citizens. The

traditional form of welfare measure within the transport field is the Marshallian measure

which sums the consumer and producer surpluses. For tolling, the welfare measure

includes the assumption that all revenues collected are recycled within the system i.e.

shared back between the residents of the charging city, typically by investing in

improving/maintaining the roads/public transport. In our case study, we assume that the

revenue collected from non-residents is retained by the charging city and is recycled within

the charging city i.e. tax exporting behaviour is assumed. The welfare measure may be

estimated by the so called “rule of a half” (Williams, (1977)) and is based on official UK

Department for Transport advice (DfT, 2011). We simplify the welfare measure within our

study by considering the impact on private traffic in the peak hours only. Whilst this is a
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simplification of the full appraisal, it does account for the main impacts of a peak charging

scheme, i.e. private traffic time savings due to a change of mode and the monetary impacts

of a peak charge where revenue is assumed to be ear-marked for the city.

For the isolated city, the local authority objective to maximise welfare coincides with the

objective of a higher level regulator e.g. the national government or some appointed

regulator. But in the two city case, we now have two authorities whose aim is to optimise the

welfare of their residents – including their journeys to/from the other city region. The welfare

measure for each city is similar in principle to that of an isolated city, but now we need to

consider transfers of revenue from City A to City B and vice versa, and the particular welfare

measures for each of City A and City B are written as below:

ܹ = ∑ ∑ ቄ− ଵଶ ൣ∝ ൫ݐଵ − ݐ ൯�൫ ܶଵ + ܶ൯൧ − ଵଶ [߬ ( ଶܶଵଵ + ଶܶଵ )]− ଵଶ [߬ ( ܶଷଵ + ܶଷ )]ቅ �+ସୀଵଶୀଵ � ଶܶଵଵ ߬ + ∑ ܶଵଵ ߬ସୀଷ − ∑ ܶଷଵ ߬ଶୀଵ (1)

ܹ = ∑ ∑ ቄ− ଵଶ ൣ∝ ൫ݐଵ − ݐ ൯�൫ ܶଵ + ܶ൯൧ − ଵଶ [߬ ( ସܶଷଵ + ସܶଷ )]− ଵଶ [߬ ( ܶଵଵ + ܶଵ )]ቅ�+ସୀଵସୀଷ � ସܶଷଵ ߬ + ∑ ܶଷଵ ߬ଶୀଵ − ∑ ܶଵଵ ߬ସୀଷ (2)

where,ݐଵ = travel time between each Origin destination (OD) pair ij with road charge (superscript ݐ(1 = travel time between each OD pair ij without road charge (superscript 0)

ܶଵ = trips between each OD pair with road charge

ܶ = trips between each OD pair without road charge߬�, ߬� = toll charge to enter the central zone in City A or City B

α =  Value of travel Time1 (VoT)

Equation (1) sums the rule of half time benefits and the rule of half money benefits

(consumer surplus) with the net revenue to residents of City A (producer surplus). The time

1
Based on UK Department for Transport guidance – webtag unit 3.5.6 see www.dft.gov.uk/webtag
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and money benefits include the savings accrued to all trips originating from City A, i.e. i =

1,2, destined to any of the zones in City A or City B i.e. j = 1,2,3,4. This means time savings

to residents of City A are accounted for in both the cities i.e. whether they occur on the

network in City A or City B. The net revenue collected by City A is equal to the sum of the toll

revenue collected in A from City A’s residents and that from City B’s residents together with

the transfer of money from City A to City B to account for the toll paid in City B by the

residents of City A. These revenue terms which transfer funds between the two cities are

important and form the basis of the tax exporting mechanism. An identical logic has been

used to derive the welfare sum for City B as shown in equation (2).

The welfare measure adopted in this research is a simplified version of the full scale of

welfare. It is further simplified by considering the impact on private traffic in the peak hours

only. However, we affirm that this is not too simplistic as it does account for the main

impacts of a peak charging scheme, i.e. private car traffic time savings and the monetary

impacts of a peak charge whose revenue is assumed to be ear-marked for the city.

Moreover the time savings to private traffic take into account the secondary effect of modal

shift towards public transport as well as the re-distribution of trips. However, a full scale

welfare function would include the benefits accrued to public transport passengers and those

using slow modes. As we are interested in peak road user charging only in our study the

monetary and time benefits accruing to the private car users would tend to dominate the full

welfare function and so the welfare functions described in (1) and (2) are taken to be

sufficiently robust to offer interesting insights into the dynamics of competition between the

cities when considering only road tolls of this nature. Equally, we ignore any impacts due to

changes in land use as is acceptable when changes are relatively small, see for example the

advice in the PROSPECTS methodological guidebook (Minken et al, 2003).

For a global regulator the welfare is simply equal to the sum of the welfare of City A and City

B which is written as:
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ܹ = ܹ + ܹ (3)

Note that in equation (3) when the welfares of City A and City B are summed together the

non-resident toll revenue transfers between City A and City B cancel out with each other i.e.

there is no benefit or consideration of tax exporting behaviour in the regulated case. In all

cases below, the benefit streams generated over the 30 year study period will be discounted

to form a Net Present Value of benefits discounted at 3.5% (DfT 2012).

Before presenting the results of various scenarios, it is useful to demonstrate how the

welfare measures evolve over time and how the individual and collective benefits may vary

when a toll is imposed. Figure 5 shows, in the symmetric cities case, how the welfare varies

over time for City A, City B and in total as City A charges a toll of 5€ from year 5 onwards.

Figure 5 Variation in welfare over time when City A charges €5

From the figure we can see that when the charge is applied there are immediate positive

benefits to City A which increase steadily over time as the demand from exogenous growth

in population provides more potential for time savings and revenue from additional users
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willing to pay the charge compared to the do-nothing case. The benefits are made up from a

combination of time and money benefits and also include the revenues collected from both

residents (City A) and non-residents (City B). City B’s residents whilst benefitting from some

time savings, lose all the toll revenues paid to City A and so the welfare change in City B is

negative. The total welfare for City A and City B put together becomes positive after year 20

when the time savings outweigh the money losses in the system. Note that in the first year

of implementation the benefits oscillate for a few months as the feedback loops in the model

take time to respond to the charges imposed. Whilst City A gains significantly from a charge

of 5€, City B clearly loses out and given the symmetry in this case we would expect them to

react with a charge of their own (there is obviously an incentive to begin charging for both

cities from the above figure).

Figure 6(a) shows how the NPV of welfare for City A (and, due to symmetry, City B) varies

with combinations of tolls from City A and City B in the range 0-8€ while Figure 6(b) shows

the NPV of total welfare surface. The surfaces are smooth and convex in nature which

indicates that we do not expect multiple local Nash Equilibria as was found in Koh et al

(2012). Looking at the City A surface, it can be seen that when City B does not charge, we

should expect a maximum change in welfare for City A to occur for a toll of around 5 €.

However as City B would have the same welfare surface with tolls transposed (due to

symmetry) they would also be incentivised to toll. The Nash Equilibrium in this case will be

at a point where the derivative of own city welfare with respect to own toll is zero for both

cities. Due to the symmetry in this case, we can plot the point of intersection between the

line where the gradient = 0 and the equal toll line and so the Nash Equilibrium should be

found for a toll of around 6€ as shown by point N.
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Figure 6(a) NPV of welfare in City A

Figure 6(b) NPV of total welfare
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Figure 6(b) shows the total welfare surface as tolls are varied. By inspection we may expect

that a regulated solution (i.e. when a higher authority e.g. National Government or City-

Region Combined Authority aims to maximise the total welfare as specified by equation (3)

earlier) would be for both cities to set tolls of around 2.5€. In this case the tax exporting

behaviour or incentive is removed by regulation and all toll revenues are recycled within the

whole system.

3.2 Modelled scenarios

This section sets out the optimal tolls and welfare implications for a number of different

scenarios, namely :-

 Isolated city – City A tolls (2-zone model)

 City A or B tolls alone within the two city set up (4-zone model)

 City A or B regulated (4-zone model)

 City A and City B – regulated (4-zone model)

 City A and City B Nash Game (4-zone model)

In the first scenario, City A is considered in isolation and the local authority solution is to

maximise the welfare of all residents. In this case there is no tax exporting behaviour as

there is only one city to investigate. The next two scenarios consider City A or City B tolling

within the two-city set up so some tax exporting behaviour is now possible. The addition of

the ‘City A or B regulated’ test allows us to compare the solutions when a higher level

regulator controls the toll in one of the cities to maximise the welfare of residents from both

cities. The final two scenarios consider tolling in both cities of which the first one is a

regulated scenario2 where tolls are set to maximise the total welfare of all residents, and the

second is a Nash Game where cities compete against each other aiming to maximise their

own residents’ welfare in a non-co-operative manner. In this final scenario, tax exporting

behaviour is assumed and revenues are not recycled between the cities. Note that all four of

2 Regulation is a form of cooperation but when two cities play a cooperative game whether they reach
the global optimal solution is a completely different point. We have dealt with that question in a
separate paper. See Shepherd and Balijepalli (2015) for further details.
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the two-city scenarios from the above consider both symmetric and asymmetric cases

except the City A or B scenario for the symmetric case where presenting the results for one

city would sufficient due to the symmetry.

Next, it should be noted that as the model predicts the impacts over a 30 year period we

could in theory allow the tolls to vary over time. We would expect as the population is set to

increase, the congestion would increase so we may expect the tolls to increase over time as

potential time benefits increase. However to simplify the discussion and presentation of

results we instead only consider constant or flat tolls over time fixed in absolute terms.

In order to find the optimal toll levels, the VENSIM optimisation tool was used to maximise

the appropriate welfare measure by varying the values of the relevant tolls. Note that to

calculate the Nash Equilibrium solution, a diagonalisation approach was used whereby City

A maximises their own welfare first with tolls for City B held constant, then City B optimises

their welfare with tolls for City A held at the previous iteration value. This was repeated until

convergence which was usually found to be within three to four rounds of each optimisation

game.

3.3 Optimal tolls: symmetric cities

Table 7 shows the optimal tolls and Net Present Value (NPV) of welfare change for each city

plus the total welfare change for both cities for the symmetric cases.

Table 7: Optimal tolls and NPV of welfare in year 30 for the symmetric cases

Scenario

Optimal

Tolls €
Welfare A

Million €
Welfare B

Million €
Total Welfare

Million €
City A 2-zone only 2.63 71.7 N/A 71.7

Single City A 5.00 419.1 -502.0 -82.9

Regulated Single

City 1.86 287.1 -155.1 132.0

Regulated 2-city 2.53 179.3 179.3 358.6

Nash Game 6.08 -27.9 -27.9 -55.8
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First of all the optimal tolls found by the VENSIM optimisation facility for the single city (in the

twin-city setting), the Nash Game and the regulated 2-city scenario are in line with the grid

search results shown in Figures 6(a)-(b). Next, if a city is assumed to be an isolated city

then the optimal tolls are lower than when the same city has a neighbour and is able to

extract toll revenue from a neighbouring city. The welfare for City A is also significantly

higher when A tolls alone and toll exporting behaviour is allowed. This increase in the welfare

of City A is at the expense of those living in City B, but the total welfare change over both

cities shows that together they are worse off as the total welfare change is negative.

Regulation of a single City A, in the twin city setting, results in lower tolls for the regulated

city, with lower welfare for City A, and a corresponding lower reduction in welfare for City B

and the two cities together are better off in terms of the overall welfare. This is due to the fact

that the regulation considers residents of two cities together and thus mitigates the issues

associated with tax exporting behaviour. However residents from City B are still worse off

compared to the no toll situation and the regulator should consider some re-distribution of

the revenues from City A to City B to compensate for the negative welfare in City B.

Due to symmetry, the tolls under the twin city regulated case are equal and are between the

single city toll levels and those resulting from the Nash Game, they are also higher than the

single city regulated case. The regulated two city case returns the highest total welfare as

would be expected, but the welfare to each city is much lower than could be achieved in

regulated and un-regulated single city case. The most interesting case is the Nash Game

where both cities engage in a competitive game against each other and results in the highest

tolls. As a result, both cities are worse off than in the no toll case with a reduction in welfare.

This is the classic Nash Trap outcome which appeared in the work of Koh et al (2012) as

described earlier. Note that whilst we have found a classic lose-lose outcome similar to that

in the earlier work, we have shown that in the present case there are no Local Nash

Equilibria (LNE) as observed in Koh et al (2012). The LNE reported in Koh et al arose due

to network specific route choices where the path-set varied with the toll. The fact that we

have only one Nash Equilibrium simplifies the discussion around policy implications as there
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are no local solutions which lie close to the regulated solution as was the case in the earlier

work.

3.4 Optimal tolls: asymmetric cities

Table 8 shows the optimal tolls and NPV of welfare for the asymmetric cities. In this case the

level of interaction has been calibrated as described earlier to be representative of the

interaction between Leeds and Bradford. The results show that the optimal charge for City A

alone is higher than for City B alone and the welfare gain is also higher. This is due to the

larger size of City A together with a proportion of non-residents entering the cordon and

paying the fee in City A (recall City A has a higher workplace/population ratio and so draws in

a higher proportion of commuters from City B, than City B does from City A). Comparing

these results shows that City A has more of an incentive to begin charging than does City B.

When a regulator controls City A alone then the tolls are lower than for the un-regulated City

A scenario with greater total welfare gain together with lower gains for City A, and a lower

reduction in welfare for City B as in the symmetric case. Similar changes are seen for the

regulation of City B. From the whole system point of view there is more to be gained from

tolling in City A than in City B due to the greater population and associated time savings.

Regulation of both cities results in higher charges in both cities compared to single regulated

cases, though the tolls are still lower than the cities would charge in the single city cases.

The total welfare is the highest for the 2-city regulated case, though the individual city

welfare gains are lower than all previous single city cases. This would suggest that a city

may prefer the single city regulated case over the 2-city regulated case, though a regulator

would prefer both cities to be under its control. The Nash Game again results in the highest

charges for both cities, as cities react to the tolls set by the other city. The welfare changes

are however both positive in the asymmetric case, though still lower than the regulated case

and with higher optimal tolls applied to both cities. So while this is a Nash Trap, it does not

result in a negative outcome for either city as was the case in the symmetric scenario. This

is thought to be due to the lower level of interaction between the cities than that observed in
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the Leeds-Bradford case presented here and therefore lower opportunity for tax exporting

behaviour. The sensitivity of results to the level of interaction will thus be interesting which is

discussed further in Section 3.6 later.

Table 8: Optimal tolls and NPV of welfare in year 30 for the asymmetric cases

Scenario Tolls €
Welfare A

Million €
Welfare B

Million €
Total welfare

Million €
Single City A 2.47 128.08 -57.58 70.50

Single City B 2.17 -50.75 61.76 11.01

Regulated City A 1.76 119.72 -39.96 79.76

Regulated City B 1.16 -26.63 50.54 23.92

Regulated 2-city: A:1.93 97.68 19.67 117.34

B:1.48

Nash Game: A:2.63 87.48 12.64 100.12

B:2.41

3.5 Long term land use response to tolls

The land use response is measured in terms of change in residents and change in the

number of workplaces over the do-nothing case at the end of the study period i.e. year 30. A

negative value indicates residents/jobs moving out of the zone and a positive number

indicates residents/jobs moving into the zone.

Table 9 shows the change in residents for the symmetric case. First of all we can see that

with a 2-zone model, residents are attracted to the charged zone. This is because of the

reduction in accessibility for residents in zone 2 due to the change which increases the

relative attractiveness of residing within zone 1. Note that there is also a small increase in

accessibility for those already living in zone 1 as there is less congestion within the charged

area. Note that the change in residents is less than 1% of the total residents residing in

zone 2 in the do-nothing case and that small changes noted due to road pricing are

consistent with other studies (e.g. Jenson (1999), Anas & Xu (1999) and Anas & Hiramatsu
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(2013) for large cordons). Moving onto the four zone model scenarios, with the single City A

charging alone Table 9 indicates that residents are attracted from zones 2, 4 towards the

charged zone 1. Residential location choice is based on housing costs, relative

accessibilities and income to represent the attractiveness of an area. Whilst the absolute

accessibility of zones 2, 3 and 4 is reduced by the toll around zone 1, the relative

attractiveness of zones 1, 3 improves so residents relocate from zones 2 and 4 towards the

central zones with more going towards the charged zone 1. The net effect on City B is a

loss of over 3000 residents to City A (still only a small percentage of the total residents in

City B). When a regulator controls a single city or both cities, the impacts are dampened

due to the lower tolls. Finally, when the cities compete against each other we have the

highest tolls and greatest movements from outer to inner zones (still only around 1.25%).

However as this is a symmetrical case, when both cities charge the same toll there is no net

movement of residents between cities.

Table 10 shows the change in residents for the asymmetric cases in response to optimal

tolls described earlier. The location choice again depends on changes in relative

accessibility and we can see that when City A charges alone, residents move into the

charged area and City B loses over 900 residents to City A after allowing for the gain in zone

3. When City B charges alone in the asymmetric case, whilst zone 3 attracts over 2000

residents, an even larger number of residents (over 3100) move from zone 4 City B to City A

and zone 3 of City B. This is because of the larger number of job opportunities in City A and

so despite absolute reductions in accessibility from zones 1 and 2 due to the charge to travel

to zone 3, the relative accessibilities of zones 1 and 2 improve compared to zone 4 which

has the largest absolute reduction in accessibility. Regulated single city cases show similar

patterns to the unregulated cases but responses are smaller due to lower charges. The

regulated two-city case and the Nash Game scenario display similar trends in that residents

are attracted to the inner zones. However, City B loses residents to City A in both cases and

more so in the Nash Game where the tolls are higher. These results suggest that City B

loses residents in all scenarios and could be seen as the weaker city. However the losses
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are only in the order of 1-2% in the worst case. Whilst this movement was only in the order

of one percent of all residents, it still could be a cause for concern where cities are perceived

to be in decline.

Table 9 Change in residents in year 30: symmetric cases

Scenario Zone 1 Zone 2 Zone 3 Zone 4

City A 2-zone

only

2230

(0.66%)

-2230

(-0.35%) NA NA

Single City A 7277

(2.16%)

-4165

(-0.66%)

219

(0.07%)

-3331

(-0.53%)

Regulator City A 3491

(1.04%)

-2076

(-0.33%)

229

(0.07%)

-1644

(-0.26%)

Regulator 2-city 4622

(1.37%)

-4622

(-0.73%)

4622

(1.37%)

-4622

(-0.73%)

Nash Game 7851

(2.34%)

-7851

(-1.25%)

7851

(2.34%)

-7851

(-1.25%)

Table 10 Change in residents in year 30: asymmetric cases

Scenario Zone 1 Zone 2 Zone 3 Zone 4

Single City A 2672

(0.76%)

-1765

(-0.27%)

515

(0.26%)

-1427

(-0.37%)

Single City B 2557

(0.73%)

649

(0.10%)

2137

(1.07%)

-5343

(-1.37%)

Regulator City A 2210

(0.63%)

-1407

(-0.22%)

362

(0.18%)

-1165

(-0.30%)

Regulator City B 1523

(0.44%)

427

(0.07%)

1240

(0.62%)

-3190

(-0.82%)

Regulator 2-city 3673

(1.05%)

-786

(-0.12%)

2075

(1.04%)

-4962

(-1.27%)

Nash Game 4360

(1.25%)

-595

(-0.09%)

3113

(1.56%)

-6878

(-1.77%)

In terms of changes in workplace locations, jobs were seen to move out from the charged
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areas and the results were found consistent with the modelling work carried out by Jenson

(1999) based on a road user toll ring in Oslo, Norway. They reported a slight employment

decentralisation and residential centralisation in Oslo. In our case study, the relative change

in employment was even smaller than for residents and is not discussed here.

3.6 Sensitivity of optimal tolls and welfare to level of interaction between cities

As mentioned earlier, the level of interaction between cities in the symmetric case was

higher than that seen in reality between the cities of Leeds and Bradford. It was noticeable

that the Nash Game tolls were only slightly higher than the regulated tolls in this case and

that the resulting welfare was positive for both cities rather than negative as in the symmetric

case. In order to understand the relationship between the level of interaction and optimal

tolls a set of sensitivity tests were conducted for both the symmetric and asymmetric cases.

The tests involved factoring the level of interaction up/down between the cities by a common

value in both directions. This is achieved by multiplying the ‘attraction’ in the distribution part

of the model for trips between the cities. We then calculated the new optimal tolls and the

associated welfare changes for the two city regulated and Nash Game scenarios. The level

of interaction was varied from no interaction (factor = 0) through the current value with a

factor of 1, to a doubling of the level of interaction (factor = 2). Figure 7 shows how the

optimal tolls vary with the factor on level of interaction for the symmetric cases. The Nash

Game tolls are higher than the regulator tolls and the gap between regulated and Nash

Game tolls widens as the level of interaction increases. The optimal tolls converge when

there is no interaction between the cities i.e. when there are no trips between them. In this

case, the two cities are acting independently from each other, competition does not have an

adverse effect on the system and there is no need for regulation.
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Figure 7 Optimal Nash Game/Regulator tolls: symmetric cases

Figure 8 shows the NPV of total welfare for the Nash Game and Regulator cases as the

level of interaction is varied. (Note that for this symmetric case we do not need to present

city level welfare changes as they are equal and half the total welfare). As may be expected,

the Nash Game welfare is always lower than the regulator welfare and that the gap in

welfare increases with an increase in the level of interaction. This means as the level of

interaction increases the ability of each city to extract revenue from non-residents also

increases. This results in higher tolls being charged, which are sub-optimal from the

congestion or total welfare point of view. As explained earlier the best response surface for

each authority results in a potential Nash Trap and where interactions are higher the total

welfare turns out to be negative. On the other hand, as the level of interaction decreases, the

welfare outcome for the Nash Game scenario is positive which is consistent with the earlier

comments. Thus when cities strongly interact with each other regulation should be

considered to avoid the negative impacts of competition.
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Figure 8 Optimal total welfare: symmetric cases

Figure 9 shows the Nash Game and Regulator tolls for the asymmetric case. For a factor of

1.0, the figure shows the optimal tolls for the calibrated case of Leeds-Bradford. In general,

the asymmetric cases follow the same trend as that of the symmetric cases, with an

increasing gap between the Nash Game tolls and the regulated tolls as the level of

interaction is increased. As explained previously the initial level of interaction between the

cities is low which reduces the role of tax exporting behaviour. Due to this the welfare for the

asymmetric case is closer to the regulated case and so the optimal tolls under Nash Game

are also low. As the interaction increases the toll by City B exceeds that of City A under the

Nash Game. This is due to the greater proportion of trips coming from City A relative to the

trips within City B which results in a greater impact from the tax exporting element of the

optimal toll in City B compared to City A. Clearly the optimal toll is dependent on the relative

size of the city and number of non-resident drivers making a trip to the charged area. The

increase of toll in City B relative to City A also dampens the net migration from City B to City

A though the effects as discussed previously are relatively small.

When there is no interaction in terms of trips between the cities, the tolls tend to converge

exactly as in the symmetric case. The slight deviation in Nash and Regulator tolls in City B

can be explained by the location response of the residents. While there is no interaction in
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and as explained in the above it is the relative accessibilities which affect the location

decision. Thus there are some relatively small differences in the location of residents which

arise between the Nash Game and the Regulated Scenario which in turn affects the optimal

tolls. The cities are competing albeit indirectly for residents to increase their own welfare.

This did not arise in the symmetric case as the location responses are symmetric and cancel

each other out as shown earlier where both cities respond with the same tolls.

Figure 9 Optimal Nash Game/Regulator tolls: asymmetric case
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(a) Optimal total welfare

(b) Optimal Welfare by City

Figure 10 Optimal welfare: asymmetric case

Figure 10a shows the total welfare for the Nash Game and regulated scenarios with varying

level of interaction. Figure 10b shows the welfare changes for City A and City B individually.

As the level of interaction is increased the welfare gap between the Nash Game and

regulated scenarios increases and as expected the Nash Game total welfare is always less

than or equal to the regulated case. The variation in welfare for each player does not follow
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0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

0.0 0.5 1.0 1.5 2.0

W
e
lf
a
re
,
m
il
li
o
n
€

Level of Interaction

NPV of Total Welfare - Asymmetric Case

Nash

Regulator

0.0

20.0

40.0

60.0

80.0

100.0

120.0

0.0 0.5 1.0 1.5 2.0

W
e
lf
a
re
,
m
il
li
o
n
€

Level of Interaction

Optimal Payoff - Asymmetric Case

Nash City A

Regulator City A

Nash City B

Regulator City B



33

decreases for both cities though not as much as in the symmetric case. Thus as the level of

interaction increases there is a greater incentive for cities to accept regulation as the

potential gain in welfare is higher for both cities.

4. CONCLUSIONS

This paper addresses the general problem of how cities may compete when cordon tolls are

applied using a strategic land use transport interaction model. This allowed us to consider all

modes of transport together with the longer term re-location response to any tolls imposed.

Firstly the response surface and grid search approach shows that there exists only one Nash

Equilibrium with our model for the cases considered. As the MARS model does not include

route choice, this would suggest that the multiple local Nash Equilibria found by Koh et al are

a result of changes in the path set. Whether or not multiple equilibria exist in more realistic

networks still requires further research, but at least for our model, we found that only one

equilibrium was possible which meant that we could rely on the VENSIM optimisation results

and use the diagonalisation approach to solve the Nash Game scenario.

We then investigated various tolling regimes for a single city and two cities under regulation

and competition. Firstly, we found that if a city planner adds a neighbouring city into the

planning process, then this allows tax exporting behaviour where the city may toll users from

the other city and retain revenues for its own residents. This results in higher tolls and

increased welfare at the expense of the other city.

Regulation of tolls reduces the tolls imposed while increasing the total welfare, though

individual city welfare is lower than can be achieved if tolling alone. This incentive to tolling

alone means that the Nash Game scenario resulted in the highest tolls and the cities fell into

a Nash Trap where both become worse off compared to the no toll case for the symmetric

interaction between the cities.

The asymmetric case study is based on the population and workplace distribution of Leeds

and Bradford and the level of interaction between the two cities was calibrated to observed

data. In general the differences in tolls between the regimes followed the same pattern as
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the symmetric case. However, while the tolls are still the highest in the Nash Game scenario,

the outcome is positive in terms of welfare change for both cities. This raised the question

about the sensitivity of tolls and welfare to the level of interaction under competition.

The sensitivity tests show that as the level of interaction is increases, the potential for tax

exporting behaviour also increases and so the tolls under competition increase. The gap

between welfare outcomes for the cities under competition and for the cities under regulation

also increases with an increase in the level of interaction. As the level of interaction tends to

zero, the tolls under competition converge to the regulated tolls. This suggests, intuitively,

that regulation should be considered where there is significant movement between cities and

that the cities should be encouraged to collaborate for the greater good. Where there are no

significant flows between cities then competition has little adverse impact and cities will not

be competing for revenue from their neighbours but for something on a different level such

as investment from government or the private sector in terms of jobs. In all the sensitivity

tests, both cities would be incentivised to accept regulation though the larger city always

takes a larger share of the welfare changes.

Finally, the long term response to tolls is that the residents move into the charged areas and

the jobs move out of the charged cordons. While the case of symmetric cities showed

identical pattern when both cities charge, the case of asymmetric cities is more interesting in

that the smaller city loses some residents but gains a small number of jobs from the larger

city.

The question of which is the strongest city in terms of cordon charges depends upon how we

view the problem – if we define strength based on toll level, then the larger City A appears to

be strongest, but the smaller City B seems to be implicitly stronger as it can charge a higher

proportion of non-residents and so has a greater tax exporting ‘strength’. However if as one

would expect cities are more concerned about losing residents and jobs to other cities, then

the larger city is the stronger one in this case. Whilst these relative changes were small,

they could be of concern to cities which are thought to be in decline and the regulator would

be under pressure to provide equal benefits per capita via some kind of re-distribution of
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revenues between cities. This would reduce the incentive for the larger city to accept

regulation.

The policy implications are threefold – (i) while there is an incentive to cooperate at local

authority level, this is not achieved due to competition; (ii) where cities compete they may fall

into a Nash Trap where both cities will be worse off compared to the regulated solution; and

(iii) regulation is recommended when there is a strong interaction between the cities but that

the benefits of regulation decrease as interaction between cities decreases and the impact of

competition is lessened.

Future research should consider extending the model to include more than two cities and to

include other objectives such as a reduction in CO2 which would be greater here under the

competitive regime than under the regulated case due to the higher charges imposed.
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