Adaptive MIMO Multi-periodic Repetitive Control System: Liapunov Analysis

H. Dang, D. H. Owens

Research report No. 853

Department of Automatic Control and Systems Engineering
The University of Sheffield, Mappin Street
Sheffield, S1 3JD
United Kingdom
Adaptive MIMO Multi-periodic Repetitive Control System: Liapunov Analysis

H. Dung, D.H. Owens
Department of Automatic Control and Systems Engineering
University of Sheffield, Mappin Street
Sheffield, S1 3JD
United Kingdom

Abstract

This paper presents a simple feed forward adaptive plus multi-
periodic repetitive control scheme for the ASPR (Almost Strictly Pos-
tive Real) or ASNR (Almost Strictly Negative Real, see Appendix for
definition) plant to asymptotically track or reject multi-periodic refer-
ence or disturbance signals. The Liapunov stability analysis is given.
This is an extension work of the Liapunov stability analysis for multi-
periodic repetitive control system under a positive real condition. A
simulation is included. The extension of the Liapunov stability anal-
ysis to ASPR or ASNR plant under certain non-linear perturbations and
an exponential stability scheme are discussed as well. Finally an adap-
tive proportional plus MRC (multi-periodic repetitive control) scheme
is proposed.

1 Introduction

For a system to track/reject periodic reference/disturbance signal, repetitive
control was developed several years ago. This control method, which is based
on the internal model principle, has proven to be very effective in practical
applications. In most existing repetitive control approaches [1] [2] [4] [8] [12],
the asymptotic convergence of the state to the origin and internal stability
of the system are guaranteed under some strict assumption on the dynamic
system. Hara [2] derived the sufficient conditions for the stability of repetitive
and modified repetitive control systems by applying the small gain theorem
and the stability theorem for time-lag systems. It is shown that the plant
$P(s)$ should satisfy $\|f(s)(1 - P(s))\|_{\infty} < 1$ where $f(s)$ is a low-pass filter
introduced to improve the system stability at a cost of losing tracking accuracy
at high frequencies. Owens et al [12] [13] gave the Liapunov stability
analysis and proved that asymptotic/exponential stability is guaranteed if the
linear plant is positive real/strictly positive real or the nonlinear plant
is passive. Similar lyapunov stability analysis was done in [1] [4] [8] and some strict assumptions, which are actually passive condition as in [13], were made on the nominal system of the plant. In this paper, we will alleviate such restrictive assumptions on the plant to some extent.

In many cases, the reference and/or disturbance periodic signals may contain different fundamental frequencies and the ratio of these frequencies can be irrational. So the so-called multi-periodic repetitive control was analysed by several authors (Weiss [18] [19]; Owens et al., 2002 [12]; Li et al., 2002 [9]). Weiss [18] [19] gave a H_∞ stability condition based on input-output transfer function for linear SISO/MIMO single/multi-periodic system. The Lyapunov stability analysis is given by Owens et al [12] and it is studied by Li et al [9] that a feed forward and feedback compensation can be employed when the real plants are not necessarily positive real. However, the method in [9] needs some plant parameter information and such information is based on off-line frequency domain system identification of a particular system. Also the plant is restricted to be minimum phase, strictly proper and with relative degree one and positive high-frequency gain.

Adaptive repetitive control design and implementation, which includes internal model principle, have been discussed by many authors [3] [8] [14] [15] [16] [17] [20] both in the discrete-time and continuous-time domain. Most of them [3] [14] [15] [16] [17] are indirect adaptive control algorithms. Several estimation algorithms were used to identify the plant models and certainty equivalence principles were applied to design the adaptive control schemes. On the other hand, Jiang [8] gave a direct adaptive control scheme and applied an adaptively adjusted gain in the feedback controller when the upper bound of the plant uncertainty exists, however unknown. Ye [20] designed a global adaptive control of a class of nonlinear systems when the signs of certain system parameters are unknown for learning control system.

In this paper we will use the non-identifier-based direct adaptive control technique [5] [7] to design adaptive controllers for a class of ASPR or ANSR MIMO LTI systems, which actually are minimum-phase, with relative degree 1 and unknown high-frequency gain, to track/reject multi-periodic reference/disturbance signals. The Lyapunov stability analysis is applied.

The adaptive MIMO multi-periodic repetitive control system is shown in Figure 1. The R, D, Y, U, E are reference, disturbance, output, control input and error respectively. The plant Σ_G is finite-dimensional, linear time-invariant, and described by

$$\begin{align*}
\dot{x}(t) &= Ax(t) + B(u(t) + d(t)) \\
y(t) &= Cx(t), \quad x(0) = x_0
\end{align*}$$

(1)

where $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^m$, $y(t) \in \mathbb{R}^m$ and the dimensions of constant matrices A, B, C are $n \times n$, $n \times m$, $m \times n$ respectively. Both reference $r(t)$ and disturbance $d(t)$ are multi-periodic with components of period τ_i, $i = 1, \ldots, p$. These periods are assumed known. The multi-periodic repetitive controller is
Figure 1: Adaptive MIMO multi-periodic repetitive control system

\[M(s) = \sum_{i=1}^{p} \frac{a_i}{1 - e^{-s_i} \alpha_i} \]

we select \(\sum_{i=1}^{p} \alpha_i = 1 \) without loss of generality. \(W_i(s) \) is a low-pass filter. \(C_1(s), C_2(s) \) are both feed forward matrix gains given in the following sections designed to guarantee the Lyapunov stability of the whole system including the plant.

The paper is organized as follows. In section 2, we introduce a simple high constant feed forward gain, which realizes the stability of the MRC system for an ASPR plant. In section 3, we adopt an adaptive feed forward gain, which alleviate the assumption made in section 2. In section 4, the general problem is solved for the ASPR or ASNR plant and here we introduce a Nussbaum-type feed forward gain. Simulation results are presented in section 5. Section 6 discusses the extension of the Liapunov analysis to the ASPR or ASNR plant under certain non-linear perturbations. Section 7 gives an exponential stabilization control scheme via exponential weighting factor. Section 8 gives an adaptive proportional plus MRC scheme. For every control schemes, the Lyapunov stability proof is given. Finally in section 9, conclusions are given.

2 Stabilization by high constant feed forward gain

Assume the MIMO, LTI plant \(\Sigma_G \) is ASPR, that is there exists an unknown constant matrix \(\lambda^* \in \mathbb{R}^{p \times w} \) such that the closed-loop system \((A - \)
\(B^* C, B.C\) satisfies the strict-positive-realness conditions, that is
\[
P(A - B^* C) + (A - B^* C)^TP < -Q
\]
\[
P^T B = C^T
\]

Theorem 1 Consider the ASPR system \(\sum_G\) described by (1). Suppose that both reference \(r(t)\) and disturbance \(d(t)\) are identically zero. The feedforward gain \(C_1(s) = kG\) and \(C_2(s) = \Gamma\), where \(k\) is a positive constant and is selected to be larger than \(\gamma := \|\lambda^T + \lambda^*\|\). \(\Gamma \in R^{m \times m}\) is a matrix such that \(\Gamma + \Gamma^T > 0\) and is selected to be \(I_{m \times m}\) without loss of generality. Then the multi-periodic repetitive system in Figure 1 is globally asymptotically stable in the sense that the state \(x(\cdot) \in L^p_\infty[0, \infty)\), control signal \(v(\cdot) \in L^p_\infty[0, \infty)\), and output \(y(\cdot) \in L^p_2[0, \infty)\).

Proof: Assume
\[
\dot{x}_W(t) = A_W x_W(t) + B_W v(t)
\]
\[
z(t) = C_W x_W(t)
\]
is a minimal realization of strictly bounded real \(W_i(s)\). Then according to Corollary 1 and the inequality (10) in [12], we have \((x^T_W P W_i x_W)^{\gamma} \leq \mu^2 v_i^T v_i - z_i^T z_i\), where \(0 < \mu < 1\) is a constant. Introduce a positive definitive Lyapunov function \(V\) of the form
\[
V = x^T P x + \frac{1}{k} \sum_{i=1}^p \alpha_i \int_{t-\tau_i}^t \|z_i(\theta)\|^2 d\theta + \frac{1}{k} \sum_{i=1}^p \alpha_i x^T_W P W_i x_W
\]
The system (1) can be rewritten as follows:
\[
\dot{x}(t) = (A - B^* C)x(t) + B \sum_{i=1}^p \alpha_i v_i + B \lambda^* y(t)
\]
\[
y(t) = Cx(t)
\]
By differentiating \(V\) along (5) and using (2) we have
\[
(x^T P x)^{\gamma} \leq \frac{1}{k} \sum_{i=1}^p \alpha_i \int_{t-\tau_i}^t \|z_i(\theta)\|^2 d\theta + \frac{1}{k} \sum_{i=1}^p \alpha_i x^T_W P W_i x_W
\]
\[
\frac{dv}{dt} < -x^T Q x - (k - \gamma) y^T y - \frac{1}{k} \sum_{i=1}^p \alpha_i (1 - \mu^2) v_i^T v_i < 0
\]
Integrating (6) and using (4) and the positivity of \(V\) yield
\[
V(0) > V(t) + \int_0^t x^T Q x dt + \int_0^t (k - \gamma) \|y\|^2 dt + \frac{1}{k} \sum_{i=1}^p \alpha_i u_i^T u_i dt
\]
from which $x(.) \in L^p_{\infty}[0, \infty), v(.) \in L^p_T[0, \infty)$ and $y(.) \in L^p_T[0, \infty)$, which proves the result.

Here we assume γ is known and it is a restrictive assumption which will be excluded in the following section.

3 Stabilization by adaptive feed forward gain

Theorem 2 Consider the ASPR system Σ_{C_2} described by (1). Suppose that both reference $r(t)$ and disturbance $d(t)$ are identically zero. The feedforward gain $C_1(s) = k(s)\Gamma$ and $C_2(s) = \Gamma$, where $k(t)$ is an adaptive scale gain with adaptive law $k(t) = e^T(t)e(t), k(0) > 0, \Gamma = I_{n \times m}$. Then the adaptive multiperiodic non-linear repetitive system in Figure 1 is globally asymptotically stable in the sense that $x(.) \in L^p_{\infty}[0, \infty), v(.) \in L^p_T[0, \infty), y(.) \in L^p_T[0, \infty), k(.) \in L^p_{\infty}[0, \infty)$ and $\lim_{t \to \infty} k(t) = k_\infty < \infty$.

Proof: The proof is an extension of that in section 2. By differentiating (4) we have

$$\frac{dV}{dt} = \begin{cases} -x^T Q x - (k - \gamma) y^T y - \frac{1}{\mu^2} \frac{d}{dt} \sum_{i=1}^p \alpha_i \int_{\theta_{i-1}}^{\theta_i} \|z_i(t)\|^2 \, d\theta \\ - (1 - \mu^2) \frac{1}{k} \sum_{i=1}^p \alpha_i v_i^T v_i - \frac{1}{\mu^2} \frac{d}{dt} \sum_{i=1}^p \alpha_i x_{W_i}^T P W_i x_{W_i} \end{cases}$$

(8)

Integrating (8) and using the adapting law $k(t) = e(t)^T e(t) = y(t)^T y(t)$ yields

$$V(t') - V(0) \leq - \int_0^{t'} x^T(t') Q x(t') \, dt' - \int_0^{t'} e^T(t') e(t') \, dt' - \frac{1}{\mu^2} \frac{d}{dt} \sum_{i=1}^p \alpha_i \int_{\theta_{i-1}}^{\theta_i} \|z_i(t)\|^2 \, d\theta \, dt'$$

$$- \int_0^{t'} (1 - \mu^2) \frac{1}{k} \sum_{i=1}^p \alpha_i v_i^T v_i \, dt' - \frac{1}{\mu^2} \frac{d}{dt} \sum_{i=1}^p \alpha_i x_{W_i}^T P W_i x_{W_i} \, dt'$$

$$= - \int_0^{t'} x^T(t') Q x(t') \, dt' - \left[\frac{k(t')}{2} - \gamma k(t') - \frac{k(0)}{2} + \gamma k(0)\right]$$

$$- \int_0^{t'} \frac{1}{\mu^2} \frac{d}{dt} \sum_{i=1}^p \alpha_i \int_{\theta_{i-1}}^{\theta_i} \|z_i(t)\|^2 \, d\theta \, dt'$$

$$- \int_0^{t'} (1 - \mu^2) \frac{1}{k} \sum_{i=1}^p \alpha_i v_i^T v_i \, dt' - \int_0^{t'} \frac{1}{\mu^2} \frac{d}{dt} \sum_{i=1}^p \alpha_i x_{W_i}^T P W_i x_{W_i} \, dt'$$

(9)

We will establish $k(t) \in L^p_{\infty}[0, t')$ by contradiction. Suppose $k(t) \not\in L^p_{\infty}[0, t')$, the term $-\frac{k(t')^2}{2} - \gamma k(t') - \frac{k(0)^2}{2} + \gamma k(0)$ will be negative infinity because $f(x) := x^2$ becomes infinite of a higher order than $g(x) := x$ as x increases to infinity. The other items of the right part of (9) are definitely negative due to $\frac{d\theta}{dt} \geq 0$ and $0 < \mu < 1$, hence contradicting the non-negativity of the left hand side of (9). Therefore, we have $k(t) \in L^p_{\infty}[0, t')$.

When $t = \infty$, we have $k(t) \in L^p_{\infty}[0, \infty)$. Due to the monotonic increase of $k(t)$, we have $\lim_{t \to \infty} k(t) = k_\infty < \infty$. Also we have $x(.) \in L^p_{\infty}[0, \infty), v(.) \in L^p_T[0, \infty)$ and $y(.) \in L^p_T[0, \infty)$ as before, which proves the result. \qed
4 Stabilization via Nussbaum-type switching

Assume the MIMO, LTI plant Σ_G is ASPR or ASNR, that is there exists an unknown positive definite matrix λ^* such that the closed-loop system $(A - \sigma B \lambda^* C)\) satisfies the strict-positive-realness conditions, that is

$$P (A - \sigma B \lambda^* C) + (A - \sigma B \lambda^* C)^T P < -Q$$

where $\sigma := \text{sign}(CB)$ is assumed unknown.

Now we introduce a Nussbaum-type adaptive controller as follows:

$$u(t) = N(\lambda(t))\Gamma z(t)$$

$\Gamma = I_{m \times m}, N(\cdot) : R \to R$ is any continuous function of Nussbaum type [Nussbaum, 1983 (11)], that is, $N(\cdot)$ has the properties

$$\sup_{k \geq k_0} \frac{1}{k} \int_{k_0}^k N(\tau) d\tau = +\infty \quad \text{and} \quad \inf_{k \geq k_0} \frac{1}{k} \int_{k_0}^k N(\tau) d\tau = -\infty.$$

For example, $N(\cdot) : \tau \to \tau^2 \cos \tau$ suffices.

Theorem 3 Consider the ASPR or ASNR system Σ_G described by (1). The feedforward gain $C_1(s) = k(s)\Gamma$ and $C_2(s) = N(s)\Gamma$, where $k(t)$ and $\lambda(t)$ are both adaptive scalar gains with adaptive law $k(t) = e(t)^T e(t), k(0) > 0$ and $\lambda(t) = e(t)^T z(t), \lambda(0) \geq 0$. Then the adaptive multi-periodic nonlinear repetitive system in Figure 1 is globally asymptotically stable in the sense that $x(\cdot) \in L^2_\infty[0, \infty), y(\cdot) \in L^2_\infty[0, \infty), \lambda(\cdot) \in L^2_\infty[0, \infty), k(\cdot) \in L^2_\infty[0, \infty)$ and $\lim_{t \to \infty} k(t) = k_\infty < \infty$.

Proof: We set the low-pass filter $W_i(s)$ to be 1 for sake of simplicity. The system can be rewritten as follows:

$$\begin{align*}
\dot{x}(t) &= (A - \sigma B \lambda^* C)x(t) + B(N(\lambda)z(t) + d(t)) + \sigma B \lambda^* y(t) \\
y(t) &= Cx(t), \quad z(t) = \sum_{i=1}^p a_i z_i(t)
\end{align*}$$

(12)

Also due to the minimum phase property of Σ_G, there exists an invariant set, made up of periodic trajectories vanishing with $r(t)$ and $d(t)$, which is contained in the ker of the output. That is, if the control input u_∞ is carefully selected under some state x_∞, the output of the system output y_∞ will be r. So we have

$$\begin{align*}
\dot{x}_\infty(t) &= Ax_\infty(t) + Bu_\infty(t) \\
r(t) &= Cx_\infty(t)
\end{align*}$$

(13)

Then we define $e(t) := r(t) - y(t), e_\infty(t) := x_\infty(t) - x(t)$, we have

$$\begin{align*}
\dot{e}_\infty(t) &= (A - \sigma B \lambda^* C)e_\infty(t) + \sigma B \lambda^* e(t) - BN(\lambda)z(t) - Bd(t) + Bu_\infty(t) \\
e(t) &= C e_\infty(t)
\end{align*}$$

(14)
Similar to \(d(t) = \sum_{i=1}^{p} \alpha_i d_i(t) \), we have \(u_{\infty}(t) = \sum_{i=1}^{p} \alpha_i u_{\infty}(t) \). Introducing a positive definite Lyapunov function \(V \):

\[
V = c_x^T P c_x + \frac{1}{k} \sum_{i=1}^{p} \alpha_i \int_{t-i}^{t} \| z_i(\theta) \| + \sigma u_{\infty}(\theta) + \sigma d_i(\theta) \| d \theta \|^2 d \theta
\]

(15)

By differentiating \(V \), we have

\[
\begin{align*}
(e_x^T P e_x)_{\dot{t}} & \leq -e_x^T Q e_x + \gamma e_t^T e - 2\sigma N(\lambda) z^T e - 2\sigma d^T e + 2\sigma u_{\infty}^T e \\
(\frac{1}{k} \sum_{i=1}^{p} \alpha_i \int_{t-i}^{t} \| z_i(\theta) - \sigma u_{\infty}(\theta) + \sigma d_i(\theta) \| d \theta)_{\dot{t}} & = z^T e + e^T z - \sigma u_{\infty}^T e - \sigma \dot{u}_{\infty}^T e + \sigma \dot{d}_i(\theta) + \sigma \dot{d}_i(\theta) \\
& - \frac{1}{k} \frac{d}{dt} \sum_{i=1}^{p} \alpha_i \int_{t-i}^{t} \| z_i(\theta) - \sigma u_{\infty}(\theta) + \sigma d_i(\theta) \| d \theta
\end{align*}
\]

(16)

Integrating (16) and using law \(\dot{k}(t) = c(t)^T c(t), \lambda(t) = e(t)^T z(t) \) yield

\[
V(t') - V(0) \leq -\int_{0}^{t'} e_x^T Q e_x dt - \int_{0}^{t'} (\tau - \gamma) d\tau - \int_{0}^{t'} (2\sigma N(\tau - 2) d\tau \\
- \int_{0}^{t'} - \frac{1}{k} \frac{d}{dt} \sum_{i=1}^{p} \alpha_i \int_{t-i}^{t} \| z_i(\theta) - \sigma u_{\infty}(\theta) + \sigma d_i(\theta) \| d \theta dt
\]

\[
= -\int_{0}^{t'} e_x^T e_x dt - [\frac{k(t')^2}{2} - \frac{k(t')^2}{2} + \gamma k(0)] - \int_{0}^{t'} (2\sigma N(\tau - 2) d\tau \\
- \int_{0}^{t'} - \frac{1}{k} \frac{d}{dt} \sum_{i=1}^{p} \alpha_i \int_{t-i}^{t} \| z_i(\theta) - \sigma u_{\infty}(\theta) + \sigma d_i(\theta) \| d \theta dt
\]

(17)

We will establish \(\lambda(t) \in L_\infty[0, t'], k(t) \in L_\infty[0, t'] \) by contradiction. Suppose \(\lambda(t) \notin L_\infty[0, t'], k(t) \notin L_\infty[0, t'] \), the term \(-[\frac{k(t')^2}{2} - \frac{k(0)^2}{2} + \gamma k(0)]\) will be negative infinity as in section 3. The term \(-\int_{0}^{t'} (2\sigma N(\tau - 2) d\tau\) will take arbitrary large negative or positive value when \(\lambda(t') = \infty \) according to Theorem A.1 in Appendix. For example, if we select \(N(\lambda) = \lambda^2 \cos \lambda \) and \(\lambda(0) = 0 \) without loss of generality, then we have \(-\int_{0}^{t'} (2\sigma N(\tau - 2) d\tau\) \(-2\sigma |\lambda(t')^2 \sin\lambda(t') + 2\lambda(t') \cos\lambda(t') - 2 \sin\lambda(t') + 2\lambda(t') + 2\lambda(t') \) and it will take arbitrary large negative or positive value when \(\lambda(t') = \infty \). So when it takes arbitrary large negative, the right hand side of (17) will be negative, hence contradicting the non-negativity of the left hand side of (17). Therefore, we have \(\lambda(t) \in L_\infty[0, t'], k(t) \in L_\infty[0, t'] \).

When \(t' \), we have \(\lambda(t) \in L_\infty[0, \infty), k(t) \in L_\infty[0, \infty) \). As in section 3, we have \(\lim_{t \to \infty} k(t) = k_\infty \) if \(\infty \), \(z(t) \in L_\infty[0, \infty) \) and \(y(t) \in L_\infty[0, \infty) \), which proves the result.

\(\square \)

It should be pointed out that we can’t prove that \(\lim_{t \to \infty} \lambda(t) = \lambda_\infty < \infty \) although the simulation seems to show \(\lambda \) converges. Also \(W_\epsilon(s) \) can only be set as 1 for above analysis because otherwise \(\dot{z_i}(t) = \dot{z_i}(t) - \sigma u_{\infty}(t) + \sigma d_i(t) \)
doesn’t satisfy the same evolution equation as \(z_i(t) \). It’s easy to understand because zero-tracking/full-rejection will be lost when \(W_i(s) \) isn’t equal to 1.

5 Simulation

For sake of simplicity, a SISO system is examined to illustrate the control system performance. The ASPR or ASNR plant under control is described as (1) where

\[
A = \begin{pmatrix} -1 & 1 \\ 2 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} \pm 1 \\ 0 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & 0.5 \end{pmatrix}, \quad x(0) = \begin{pmatrix} 1 \\ -1 \end{pmatrix}
\]

or \(G(s) = \frac{\pm(s+1)}{(s-1)(s+2)} \). The reference is \(r = r_1 + r_2 \), where \(r_1 = \sin(\omega_1 t + 1.5 \sin(5\omega_1 t), r_2 = \sin(\omega_2 t) + 0.2 \times 2\pi \text{rad/sec}, \omega_2 = 0.3 \times 2\pi \text{rad/sec}. \) The disturbance is a square wave at a period of 7Hz and with peak value \(\pm 2 \). A square wave is chosen to indicate the scheme can cope with signals with infinite frequency content. The weightings are chosen to be 0.4, 0.4, 0.2 (for the disturbance rejection repetitive sub-controller). We select \(k(0) = 1, \lambda(0) = 0, W_i(s) = 1 \) and \(N(\lambda) = \lambda^2 \cos(\lambda) \). The simulation result is given in Figure 2 and 3. Figure 2 is for \(G(s) = \frac{\pm(s+1)}{(s-1)(s+2)} \) and Figure 3 is for \(G(s) = \frac{-\pm(s+1)}{(s-1)(s+2)} \). The simulation result shows that the control scheme is capable for the ASPR or ASNR plant to asymptotically track/reject a multi-periodic reference/disturbance signal.

![Figure 2: Error \(e(t) \) and Nussbaurn-type gain \(N(\lambda) \) for ASPR plant](image)

8
6 Effect of non-linear perturbation

The above Liapunov stability can be extended to the system under certain non-linear perturbations. The plant is described by

\[
\begin{align*}
x(t) &= Ax(t) + B(u(t) + d(t)) + g_1(t, x(t)) + g_2(t, y(t)) + d'(t) \\
y(t) &= Cx(t)
\end{align*}
\]
\hspace{1cm} (18)

The nominal system is ASPR or ASNR as in section 4 and the non-linear perturbations satisfy

\[
\begin{align*}
g_1(\cdot, \cdot) : \mathbb{R} \times \mathbb{R}^n &\to \mathbb{R}^n, \|g_1(t, x)\| \leq \hat{g}_1 \|x\| \\
g_2(\cdot, \cdot) : \mathbb{R} \times \mathbb{R}^m &\to \mathbb{R}^n, \|g_2(t, y)\| \leq \hat{g}_2 \|y\| \\
d'(\cdot) &\in L^2_\infty[0, \infty)
\end{align*}
\]
\hspace{1cm} (19)

Here \(g_1(\cdot, \cdot), g_2(\cdot, \cdot), d'(\cdot)\) are assumed to be Carathéodory function, which, for some unknown \(\hat{g}_1, \hat{g}_2 \geq 0\), are linearly bounded for almost all \(t \in \mathbb{R}\) and for all \(x \in \mathbb{R}^n, u, y \in \mathbb{R}^m\).

Theorem 4 Consider the system \(\Sigma_C\) described by (18) and (19). Suppose that both reference \(r(t)\) and disturbance \(d(t)\) are identically zero. Then the adaptive multi-periodic non-linear repetitive system in Figure 1 where the feedforward gain \(C_1(s) = k(s)\Gamma\) and \(C_2(s) = N(s)\Gamma\) with \(k(t) = e(t)^T e(t), k(0) > 0, \lambda(t) = e(t)^T z(t), \lambda(0) \geq 0\) is globally asymptotically stable in the sense that \(x(.) \in L^m_\infty[0, \infty), y(.) \in L^m_\infty[0, \infty), \lambda(.) \in L_{\infty[0, \infty), k(.) \in L_{\infty[0, \infty)}\) and \(\lim_{t \to \infty} k(t) = k_{\infty} < \infty\).
Proof: The proof is similar to that in section 4 and here we only outline below. Introducing a positive definite Liapunov function V:

$$V = x^T P x + \frac{1}{k} \sum_{i=1}^{\mu} \alpha_i \int_{t_{i-\tau_i}}^{t_i} \|z_i(\theta)\|^2 d\theta$$ \hspace{1cm} (20)

Differentiating V along (18) and using (10) yield

$$\begin{align*}
&\dot{V} = -x^T Q x + 2 \sigma N(\lambda) z^T y + \gamma y^T y + \dot{g}_1 \|P\| \|x\|^2 + 2 \dot{g}_2 \|P\| \|y\|^2 + 2 \|P\| d' \|x\| \\
&\leq -x^T Q x + 2 \sigma N(\lambda) z^T y + \gamma y^T y + 2 \dot{g}_1 \|P\| \|x\|^2 + 2 \dot{g}_2 \|P\| \|y\|^2 + \|P\| a_2^2 \|x\|^2 + \|P\| a_2^2 \|y\|^2 + \|P\| a_1^2 \|\dot{z}\|^2 + \|P\| a_2^2 \|d'\|^2 \\
&= -x^T (Q - 2 \dot{g}_1 \|P\| I - \dot{g}_2 \|P\| a_2^{-1} I - \|P\| a_2^{-2} I) x + 2 \sigma N(\lambda) z^T y + (\gamma + \dot{g}_2 \|P\| a_2^2) y^T y + \|P\| a_2^2 \|d'\|^2 \\
&\leq -x^T f_1 y - y^T K y - \frac{1}{k} \sum_{i=1}^{\mu} \alpha_i \int_{t_{i-\tau_i}}^{t_i} \|z_i(\theta)\|^2 d\theta
\end{align*}$$

When the linear bounds $\dot{g}_1, \dot{g}_2 > 0$ are sufficiently small in terms of the system entries (A, B, C) and $a_1, a_2 > 0$ are chosen to be sufficiently large so that $Q := Q - 2 \dot{g}_1 \|P\| I - \dot{g}_2 \|P\| a_2^{-1} I - \|P\| a_2^{-2} I$ is also positive definite. Therefore, we have

$$\begin{align*}
\frac{dV}{dt} &\leq -x^T \tilde{Q} x - (2 \sigma N(\lambda) - 2) z^T y - (k - \gamma - \dot{g}_2 \|P\| a_2^2) y^T y \\
&\leq -\frac{1}{k} \sum_{i=1}^{\mu} \alpha_i \int_{t_{i-\tau_i}}^{t_i} \|z_i(\theta)\|^2 d\theta + \|P\| a_2^2 \|d'\|^2
\end{align*}$$ \hspace{1cm} (21)

Integrating (21) yields

$$\begin{align*}
V(t') - V(0) &< -\int_0^{t'} x^T \tilde{Q} x dt - \int_0^{\lambda(0)'} (\tau - \gamma - \dot{g}_2 \|P\| a_2^2) d\tau - \int_0^{\lambda(0)'} (2 \sigma N(\tau) - 2) d\tau \\
&\leq -\int_0^{t'} \frac{1}{k} \sum_{i=1}^{\mu} \alpha_i \int_{t_{i-\tau_i}}^{t_i} \|z_i(\theta)\|^2 d\theta dt + \int_0^{t'} \|P\| a_2^2 \|d'\|^2 dt
\end{align*}$$ \hspace{1cm} (22)

The item $\int_0^{t'} \|P\| a_2^2 \|d'\|^2 dt$ is bounded as $d'(.)$ $\in L_2[0, \infty)$. Therefore, it can be shown that $\lambda(.) \in L_{\infty}[0, \infty)$ and $k(.) \in L_{\infty}[0, \infty)$ as before. Also we have $\gamma(.) \in L_2[0, \infty)$ and $x(.) \in L_{\infty}[0, \infty)$ and $\lim_{t \to \infty} k(t) = k_{\infty} < \infty$ as before, which proves the result. \hspace{1cm} \square

7 Exponential stabilization via exponential weighting factor

It has been proved that asymptotical stability of MRC system can be guaranteed if the plant Σ_G is ASP or ASNR. While when it strictly satisfies
a ASPR or ASNR condition, now we show that the system is exponentially stable when modifying the adaptive scheme. According to Definition 3.1 and Appendix A.3 in Appendix, each almost strictly positive real system is almost strictly positive real for some sufficiently small but unknown $\epsilon^* > 0$, that is, $(A + \epsilon^* I, \sigma B, C)$ is Almost Strictly Positive Real. Our aim is to find $\epsilon^* > 0$ adaptively by using an exponential weighting factor tuned by $k(t)$. We introduce a function $\epsilon(k(t))$ for example $0.\frac{1}{1 + k(t)}$ with following properties: i) $\epsilon(k(t)) > 0$ for all $k(t) > 0$. ii) It is non-increasing for all $k(t) > 0$. iii) $\lim_{t \to \infty} \epsilon(k(t)) = \epsilon_\infty > 0$.

Theorem 5 Consider the system \sum_{C} described by (1). Suppose that both reference $r(t)$ and disturbance $d(t)$ are identically zero. Then the adaptive multi-periodic non-linear repetitive system in Figure 1 where the feedforward gain $C_1(s) = k(s)\Gamma$ and $C_2(s) = N(s)\Gamma$ with $k(t) = e_0(t)^T e_0(t), k(0) > 0$, $\lambda(t) = e_0(t)^T \nu(t), \lambda(0) \geq 0$ by denoting $z_k(t) := e^{(k(t))T}x(t)$ is exponentially stable in the sense that $x(.) \in L^\infty_{\infty}[0, \infty), y(.) \in L^\infty_{\infty}[0, \infty), \lambda(.) \in L^\infty_{\infty}[0, \infty) h(.) \in L^\infty_{\infty}[0, \infty), \lim_{t \to \infty} k(t) = k_\infty < \infty , \lim_{t \to \infty} \epsilon(k(t)) = \epsilon_\infty > 0$ and also $\|x(t)\| \leq M_1 e^{-\epsilon t}$ for all $t \geq 0$ and some $M_1 > 0, \epsilon > 0$.

Proof: With the notation $x_k(t) := e^{(k(t))T}x(t)$, the plant can be written as

$$
\begin{align*}
x_k(t) &= [A + \epsilon^* I - \sigma Bx^*C]x_k(t) + \epsilon(k(t))x_k(t) - \epsilon^* x_k(t) \\
&= \frac{dz_k(t)}{dt} - \lambda x_k(t) + \sigma Bx^*C x_k(t) + N(\lambda)B

\end{align*}
$$

(23)

$$
\begin{align*}
y_k(t) &= Cx_k(t), \\
\nu_k(t) &= \sum_{i=1}^{p} \alpha_i \nu_i(t)

\end{align*}
$$

Also we have

$$
\begin{align*}
z_{k_i}^T(t - \tau_i)z_{k_i}(t - \tau_i) \\
= e^{2(k(t) - \tau_i)(t - \tau_i)}z_{k_i}^T(t - \tau_i)z_{k_i}(t - \tau_i) \\
> e^{2(k(t))T(t - \tau_i)}z_{k_i}^T(t - \tau_i)z_{k_i}(t - \tau_i) \\
= e^{2(k(t))T}e^{-2(k(t))T}z_{k_i}^T(t - \tau_i)z_{k_i}(t - \tau_i) \\
> e^{-2(k(t))T}z_{k_i}^T(t - \tau_i)z_{k_i}(t - \tau_i) \\
\tau := \max(\tau_i)

\end{align*}
$$

(24)

Introducing a positive definite Lyapunov function V:

$$
V = x_k^T P x_k + \frac{1}{\kappa} \sum_{i=1}^{p} \alpha_i \iint_{-\tau_i} z_{k_i}(\theta) d\theta d\theta + \frac{1}{\kappa} \sum_{i=1}^{p} \alpha_i \nu_i^T W_{k_i} P W_{k_i} x_{k_i}
$$

(25)

Differentiating V along (23) and using (24) yields

$$
\begin{align*}
(x_k^T P x_k)' &< -x_k^T Q x_k - 2\epsilon^* x_k^T P y_k + 2\epsilon(k) x_k^T P x_k + 2 \frac{dk}{dt} x_k^T P x_k - 2\sigma N(\lambda)(-y_k)^T x_k + \gamma y_k^T y_k \\
\left(\frac{1}{\kappa} \sum_{i=1}^{p} \alpha_i x_{k_i}^T W_{k_i} P W_{k_i} x_{k_i}\right)' &\leq \frac{1}{\kappa} \sum_{i=1}^{p} \alpha_i x_{k_i}^T W_{k_i} P W_{k_i} x_{k_i} - \frac{1}{\kappa^2} \sum_{i=1}^{p} \alpha_i x_{k_i}^T x_{k_i} - \frac{1}{\kappa^2} \sum_{i=1}^{p} \alpha_i x_{k_i}^T W_{k_i} P W_{k_i} x_{k_i}

\end{align*}
$$
\[(\frac{1}{k} \sum_{i=1}^{p} \alpha_i f_{i \rightarrow \tau_i} \| z_{i\tau_i}(\theta) \|^2 \, d\theta) \]
\[= \frac{1}{k} \sum_{i=1}^{p} \alpha_i \| z_{i\tau_i}(t - \tau_i) - z_{i\tau_i}(t - \tau_i) \|^2 \, d\theta \]
\[\leq \frac{1}{k} \sum_{i=1}^{p} \alpha_i \| z_{i\tau_i}(t - \tau_i) - e^{-2\varepsilon(k(\theta)) \gamma} (v_{i\tau_i} + k y_{i\tau_i}) \|^2 \, d\theta \]
\[- \frac{1}{k} \sum_{i=1}^{p} \alpha_i \| z_{i\tau_i}(t - \tau_i) \|^2 \, d\theta \]
\[= \frac{1}{k} \sum_{i=1}^{p} \alpha_i \| z_{i\tau_i}(t - \tau_i) - \frac{1}{k} e^{-2\varepsilon(k(\theta)) \gamma} \sum_{i=1}^{p} \alpha_i v_{i\tau_i} y_{i\tau_i} - e^{-2\varepsilon(k(\theta)) \gamma} y_{i\tau_i} z_{i\tau_i} \]
\[- \frac{1}{k} e^{-2\varepsilon(k(\theta)) \gamma} y_{i\tau_i} y_{i\tau_i} - \frac{1}{k} \sum_{i=1}^{p} \alpha_i f_{i \rightarrow \tau_i} \| z_{i\tau_i}(\theta) \|^2 \, d\theta \]
\[\text{(26)} \]

Therefore, we have
\[\frac{d}{dt} \leq -x^T Q x + 2e^T x^T P x + 2e(k) x^T P x + 2 \frac{d(k)}{dt} x^T P x \]
\[+ (2e^{-2\varepsilon(k(\theta)) \gamma} - 2\sigma N(\lambda)) (-y^T y + (\gamma - k e^{-2\varepsilon(k(\theta)) \gamma}) y^T y) \]
\[- \frac{1}{k} e^{-2\varepsilon(k(\theta)) \gamma} - \mu^2 \sum_{i=1}^{p} \alpha_i v_{i\tau_i} y_{i\tau_i} \]
\[- \frac{1}{k^2} \sum_{i=1}^{p} \alpha_i (f_{i \rightarrow \tau_i} \| z_{i\tau_i}(\theta) \|^2 \, d\theta) - \frac{1}{k^2} \sum_{i=1}^{p} \alpha_i \| z_{i\tau_i}(t - \tau_i) \|^2 \, d\theta \]
\[\text{Integrating (27) and using the adaptive law yields} \]
\[V(t) - V(0) \]
\[\leq -2 \int_{0}^{t} \frac{d(k)}{dt} x^T P x \, dt \]
\[+ \int_{0}^{t} (2e^{-2\varepsilon(k(\theta)) \gamma} - 2\sigma N(\lambda)) \gamma - se^{-2\varepsilon(k(\theta)) \gamma} ds \]
\[- \int_{0}^{t} \frac{1}{k} \sum_{i=1}^{p} \alpha_i f_{i \rightarrow \tau_i} \| z_{i\tau_i}(\theta) \|^2 \, d\theta \, d\theta + \int_{0}^{t} \frac{1}{k} \sum_{i=1}^{p} \alpha_i (\mu^2 - e^{-2\varepsilon(k(\theta)) \gamma}) y^T y \, dt \]
\[\text{We will establish} \lambda(.) \in L_{\infty}(0, \infty) \text{ and} \, h(.) \in L_{\infty}(0, \infty) \text{ by contradiction. Suppose} \lambda(.) \notin L_{\infty}(0, \infty) \text{ and} \, h(.) \notin L_{\infty}(0, \infty). \text{ Assume} \epsilon(k(0)) > \epsilon^* \text{ and} \, \int_{0}^{t} (e^{-\epsilon(k(\theta))}) \|	ext{dvs} + \int_{0}^{t} \gamma - se^{-2\varepsilon(k(\theta)) \gamma} \, ds \text{ is negative infinity.} \, \int_{0}^{t} \gamma - se^{-2\varepsilon(k(\theta)) \gamma} \, ds \text{ is negative infinity as before.} \]
\[\text{We select} \, \lambda(0) \text{ so that} \, |e^{-\epsilon(k(\theta)) \gamma}| < \mu^2 - e^{-2\varepsilon(k(\theta)) \gamma} \text{ is negative infinity.} \, \int_{0}^{t} \gamma - se^{-2\varepsilon(k(\theta)) \gamma} \, ds \text{ is negative infinity as before.} \]
\[+ \int_{0}^{t} \gamma - se^{-2\varepsilon(k(\theta)) \gamma} \, ds \text{ is arbitrary negative or positive infinity as before. When we select} \, \lambda(0) \text{ so that} \, |e^{-\epsilon(k(\theta)) \gamma}| < \mu^2 - e^{-2\varepsilon(k(\theta)) \gamma} \text{ is negative infinity.} \, \int_{0}^{t} \gamma - se^{-2\varepsilon(k(\theta)) \gamma} \, ds \text{ takes arbitrarily negative, the right hand side of (28) will be negative, hence contradicting the non-negativity of the left hand side. Then from} \, \int_{0}^{t} x^T Q x \, dt \leq \int_{0}^{t} x^T P x \, dt \leq +\infty, \text{ we have} \, x(.) \in L_{\infty}(0, \infty). \text{ Similar as before, we have} \]
$g(.) \in L^w_T[0, \infty), \lambda(.) \in L^w_T[0, \infty), k(.) \in L^w_T[0, \infty)$ and $\lim_{t \to \infty} k(t) = k_\infty < \infty$. Then we have $\lim_{t \to \infty} \epsilon(k(t)) = \epsilon_\infty > 0$. As $x_r(t)$ is uniformly bounded such that $\|x_r(t)\| \leq M_1$, we have $\|x(t)\| \leq M_1 e^{-\epsilon t}$ for some $M_1 > 0, \epsilon > 0$, which indicates exponential stability of the state. \square

However, perfect zero-tracking/full-rejecting for periodic reference/disturbance signals will be lost if the low-pass filter is not selected to be 1. So the state can only exponentially decrease to a bound as $\|x(t)\| \leq M_1 e^{-\epsilon t} + M_2$ for all $t \geq 0$ and some $M_1 > 0, M_2 > 0, \epsilon > 0$. Now we need to revise the adaptive scheme of $k(t)$ as

$$
\dot{k}(t) = \begin{cases}
\|e(t)\| \leq (\|e(t)\| - \delta) & \text{if } \|e(t)\| \geq \delta \\
0 & \text{if } \|e(t)\| < \delta
\end{cases}
$$

to prevent the divergence of adaptive gain $k(t)$.

8 Adaptive Proportional plus MRC system

![Adaptive MIMO Proportional plus MRC system](image)

Figure 4: Adaptive MIMO Proportional plus MRC system

Theorem 6 Consider the ASPR or ASNR system \sum_G described by (1). Suppose that both reference $r(t)$ and disturbance $d(t)$ are identically zero. Then the adaptive multi-periodic non-linear repetitive system in Figure 4 with k_1 being a positive constant, $k_2(t) = r(t)^T e(t), k_2(0) > 0$ and $\lambda(t) = e(t)^T z(t) + k_1 k_2(t) e(t)^T e(t), \lambda(t) \geq 0$ is globally asymptotically stable in the sense that $x(.) \in L^w_T[0, \infty), \lambda(.) \in L^w_T[0, \infty), \lambda(.) \in L^w_T[0, \infty), k_2(.) \in L^w_T[0, \infty)$ and $\lim_{t \to \infty} k_2(t) = k_2 \infty < \infty$.

Proof: We set the low-pass filter $W_i(s)$ to be 1 for sake of simplicity. The system can be rewritten as follows:

$$
\begin{align*}
\dot{x}(t) &= (A - \sigma B \lambda)^T x(t) + BN(\lambda) z(t) - BN(\lambda) k_1 k_2(t) y(t) + \sigma B \lambda^T g(t) \\
y(t) &= C x(t), \\
z(t) &= \sum_{i=1}^{P} c_i z_i(t)
\end{align*}
$$

(29)
Introducing a positive definite Liapunov function V:

$$V = x^TPx + \frac{1}{h^2} \sum_{i=1}^{n} \alpha_i \int_{t-\gamma_i}^{t} \|z_i(\theta)\|^2 d\theta$$ \hspace{1cm} (30)

By differentiating V we have

$$\frac{dV}{dt} < -x^TQx - (k_2 + 2k_1 k_2 - \gamma_i)y^Ty - (2\sigma N(\lambda) - 2)((k_1 k_2 y^Ty - z^Ty)$$

$$- \frac{1}{h^2} \sum_{i=1}^{n} \alpha_i \int_{t-\gamma_i}^{t} \|z_i(\theta)\|^2 d\theta$$ \hspace{1cm} (31)

Integrating (31) yields

$$V(t) - V(0)$$

$$< - \int_{0}^{t} x^TQxdt - \int_{k_2(0)}^{k_2(t)} \tau \bigg(\int_{0}^{\lambda(\tau)} (2\sigma N(\lambda) - 2) \bigg) d\tau$$

$$- \int_{0}^{t} \frac{1}{h^2} \sum_{i=1}^{n} \alpha_i \int_{t-\gamma_i}^{t} \|z_i(\theta)\|^2 d\theta dt$$ \hspace{1cm} (32)

Similar to that in section 4, we can conclude $x(.) \in L^p_t[0, \infty)$, $y(.) \in L^p_t[0, \infty)$, $\lambda(.) \in L^p_t[0, \infty)$, $k_2(.) \in L^p_t[0, \infty)$ and $\lim_{t \rightarrow \infty} k_2(t) = k_2(\infty) < \infty$, which proves the result.

Also the simulation results show that a higher proportional gain k_1 is helpful for the performance.

9 Conclusion

A kind of adaptive MIMO multi-periodic repetitive control system is studied. An adaptive feed forward adaptive gain plus multi-periodic repetitive controller is applied to make the ASPR or ASNR plant output to asymptotically track/reject multi-periodic reference/disturbance signals. The stability is analysed in the sense of Liapunov stability. The adapting gains are proved to be bounded and the error decays asymptotically to zero. The similar Liapunov stability analysis is also extended to ASPR or ASNR plant under certain non-linear perturbations. It is also shown that exponential stability can be guaranteed by modifying the adaptive schemes. Finally, an proportional plus adaptive MRC system is proposed and its stability is proven in the sense of Liapunov stability as well.

10 Appendix

Theorem A.1 [20]: Let $V(t)$ and $k(t)$ be smooth functions defined on $[0, +\infty)$ with $V(t) \geq 0$, $\forall t \in [0, +\infty)$, $N(t)$ a Nussbaum-type function, and b a nonzero constant. If the following inequality holds: $V(t) \leq \int_{0}^{k(t)} [B(N(\omega) + 1)dw + c, \forall t \in [0, +\infty)$ where c is an arbitrary constant, then $V(t)$, $k(t)$ and $\int_{0}^{k(t)} [B(N(\omega) + 1)dw must be bounded on $[0, +\infty)$.
Theorem A.2 [7]. Consider the system (1) with \(\det(CB) \neq 0 \) and let \(V \in \mathbb{R}^{m \times (n-m)} \) denote a basis matrix of \(\ker C \). It follows that \(S := [B(CB)^{-1}V] \) has the inverse \(S^{-1} = [C^T, N^T]^T \), where \(N := (V^T V)^{-1} V^T [I_n - B(CB)^{-1} C] \). Hence the state space transformation \((y^T, \eta^T)^T = S^{-1} x = ((Cr)^T, (Nx)^T)^T\) converts (1) into

\[
\begin{align*}
\dot{y}(t) &= A_1 y(t) + A_2 \eta(t) + CB(u(t) + d(t)) \\
\dot{\eta}(t) &= A_3 y(t) + A_4 \eta(t) \tag{33}
\end{align*}
\]

Here \(A_1 \in \mathbb{R}^{m \times m}, A_2 \in \mathbb{R}^{m \times (n-m)}, A_3 \in \mathbb{R}^{(n-m) \times m}, A_4 \in \mathbb{R}^{(n-m) \times (n-m)} \), so that

\[
\begin{pmatrix}
A_1 & A_2 \\
A_3 & A_4
\end{pmatrix} = S^{-1} A S
\]

If \((A, B, C)\) is minimum phase, then \(A_4\) in (33) is asymptotically stable.

Lemma A.3 (Barbalet) If the function \(f(t) \) is uniformly continuous, such that \(\lim_{t \to -\infty} \int_0^t |f(s)| ds \) exists and is finite, then we have \(\lim_{t \to -\infty} f(t) = 0 \).

Definition A.1 Almost Strictly Positive Real: A system

\[
\begin{align*}
\dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t) + Du(t), x(0) = x_0 \tag{34}
\end{align*}
\]

where \((A, B, C, D) \in \mathbb{R}^{n \times n} \times \mathbb{R}^{m \times m} \times \mathbb{R}^{m \times n} \times \mathbb{R}^{m \times m}\), is called Strictly Positive Real, if it satisfies equation (35) for \(\mu > 0 \) and we say it is Almost Strictly Positive Real, if there exists a \(K \in \mathbb{R}^{m \times m} \), so that the feedback \(u(t) = -Ky(t) + r(t) \) yields a Strictly Positive Real system.

\[
\begin{align*}
PA + A^T P &= -QQ^T - 2\mu P \\
PB &= C^T - QW \\
W^T W &= D + D^T \tag{35}
\end{align*}
\]

Definition A.2 Almost Strictly Negative Real: The system \(G(s) \) defined by (34) is called Almost Strictly Negative Real, if \(-G(s)\) is a Almost Strictly Positive Real system.

Definition A.3 Almost \(\epsilon \)-Strictly Positive/Negative Real: Let \(\epsilon > 0 \), the system (34) is called \(\epsilon \)-Strictly Positive Real, if it satisfies equation (35) for \(\mu > \epsilon \) and we say it is Almost \(\epsilon \)-Strictly Positive Real, if there exists a \(K \in \mathbb{R}^{m \times m} \), so that the feedback \(u(t) = -Ky(t) + r(t) \) yields a \(\epsilon \)-Strictly Positive Real system. It is called Almost \(\epsilon \)-Strictly Negative Real, if \(-G(s)\) is a Almost \(\epsilon \)-Strictly Positive Real system.
References

