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LEARNING AND CUE FUSION IN VIDEOS

Kyaw Kyaw Htike and David Hogg

University of Leeds
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ABSTRACT

The growth in the amount of collected video data in the

past decade necessitates automated video analysis for which

pedestrian detection plays a key role. Training a pedes-

trian detector using supervised machine learning requires

tedious manual annotation of pedestrians in the form of pre-

cise bounding boxes. In this paper, we propose a novel

weakly supervised algorithm to train a pedestrian detector

that only requires annotations of estimated centers of pedes-

trians instead of bounding boxes. Our algorithm makes use

of a pedestrian prior learnt in an unsupervised way from the

video and this prior is fused with the given weak supervision

information in a principled manner. We show on publicly

available datasets that our weakly supervised algorithm re-

duces the cost of manual annotation by over 4 times while

achieving similar performance to a pedestrian detector trained

with bounding box annotations.

Index Terms— Pedestrian detection, weak supervision,

unsupervised prior, cue fusion.

1. INTRODUCTION

Pedestrian detection is often posed as a binary classification

problem in which one class is pedestrians and the other is non-

pedestrians. To detect pedestrians in an image, the trained

classifier is used to score each image patch corresponding to

the multi-scale sliding windows and the local modes of the

score space give the locations and spatial extent of pedestri-

ans in the image [1, 2, 3]. The most popular way to train a

pedestrian detector is using supervised machine learning tech-

niques which require groundtruth annotations of pedestrians.

For most state-of-the-art research, this groundtruth annotation

is typically given in the form of bounding boxes tightly fitting

the pedestrians [4, 5, 6, 7, 8, 9, 10, 11]. However, manually

annotating with bounding boxes can be time-consuming.

In this paper, we propose an algorithm for training pedes-

trian detectors for videos that requires a weaker form of super-

vision than bounding box annotations, namely, approximate

center locations of pedestrians (as shown in Fig. 1). This

allows for a much easier and faster annotation compared to

bounding box annotation. Despite the weak supervision, our

Fig. 1. Strong versus weak annotation (best viewed in color).

On the left is the standard way of annotating pedestrians for

training a pedestrian detector. On the right is the weak super-

vision (only approximate centers of pedestrians) required by

our proposed algorithm. Note that pedestrians are of different

sizes in the video due to projective distortion and hence our

algorithm has to cope with both noisy locations and unknown

scales. Weak supervision on the right is much faster and eas-

ier for a human annotator than the strong supervision on the

left.

algorithm performs comparably with the bounding box su-

pervision (termed in this paper as strong supervision) despite

having a much lower cost (measured in terms of the time it

takes to complete the annotation).

2. RELATED WORK

Compared to training object detectors using strong supervi-

sion, the literature concerning weakly supervised training is

fairly limited. Furthermore, most of the literature on weakly

supervised learning in images use a different setting than our

proposed approach. In the existing approaches, supervision

is given in the form of image-level labels where the exact lo-

cations and spatial extents of objects of interest are consid-

ered unknown and treated as latent variables to be inferred

from data during training. One of the ways of solving this

is by formulating it as a Multiple Instance Learning (MIL)

problem [12, 13] in which supervision labels are given at the

bag level rather than at the instance level. Each positive bag

is assumed to contain at least one positive instance and each

negative bag is assumed to contain all negative instances. In



order to generate positive bags and because the space of all

possible object locations and sizes is too large to be tractable

during training, many existing approaches use an ensemble

of low-level segmentations to generate numerous candidate

regions with the assumption that at least one of them contain

the desired object [14, 15]. The performance of such a sys-

tem, however, depends heavily on the results of segmentation.

Furthermore, in most existing approaches, datasets are as-

sumed in which an object occupies a large central portion of

each image in most of the training images [16, 17, 15, 14].

This is in contrast to our approach which is dealing with far-

field videos where there are often multiple objects of varying

sizes in each frame and each object occupies only a very small

portion of the frame. Deselaers et al. [18] propose an iterative

algorithm to learn object classes from weakly labelled images

using a conditional random field that progressively adapts to

the new classes. Chum and Zisserman [16] give an algorithm

that locates image regions corresponding to object classes of

a set of training images by optimizing an objective function

that computes similarity between pairs of images. Consider-

ing classifier parameters and subwindows of objects jointly

as latent variables in a SVM classification objective function,

Nguyen et al. [17] optimizes the function to infer the vari-

ables. Weakly supervised learning is tackled as a structured

output learning framework in [19]. All of the aforementioned

approaches deal only with images and do not make use of in-

formation that can be exploited in surveillance-type videos.

We summarize our key contributions as follows:

1. A weakly supervised training algorithm that makes use

of (potentially noisy) center location annotation for

training pedestrian detectors for videos.

2. Unsupervised learning of a pedestrian prior for a given

video.

3. Combining cues from the unsupervised learnt prior and

weak supervision in an optimization framework.

4. Our algorithm can work with low resolution videos that

do not allow sophisticated part-based modelling and

discovery and, that have multiple objects of varying

sizes in each frame.

5. The algorithm is not sensitive to low-level segmenta-

tion unlike many state-of-the-art weak-supervision ap-

proaches using MIL.

6. Our approach is efficient since it does not require

jointly solving all the weak supervisions.

3. OUR APPROACH

The overview of our algorithm is illustrated in Fig. 2. Let

V = [I1, I2, . . . , IN ] be a given video of N frames and let

C ∈ R
M×3 be M given center annotations (on sampled

frames of V) stored in the form of a matrix. Each row of C is

a vector [n, x, y] containing the frame number n in V and the

x and y coordinates of the weak supervision corresponding to

the approximate center of a pedestrian. The goal is to obtain a
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Fig. 2. (A) shows the standard way of training pedestrian

detectors. In comparison, (B) illustrates the overview of our

proposed algorithm.

pedestrian detector given only C without being provided any

bounding box annotations (which the traditional supervised

training requires). Our algorithm is made up of 3 stages.

In the 1st stage, we learn a pedestrian prior in an un-

supervised way using knowledge that can be automatically

extracted from V. This knowledge comes in the following

form: for any video captured with a static uncalibrated cam-

era, the dynamic background of the scene can be effectively

modelled. Although this model is usually noisy, by consid-

ering V as a whole, we can get some idea about foreground

objects in the video and thus effectively build a distribution

over objects in V. Furthermore, we can easily slightly bias

this model towards the pedestrian class by introducing a few

simple constraints (detailed in Section 3.1). After obtain-

ing this model, the pedestrian prior can be represented as

P (pedestrian|patch), i.e. given any patch in V, the pedes-

trian prior gives the prior probability1 that the patch depicts a

pedestrian. Due to noises and inaccuracies in the background

modelling process, the pedestrian prior is error prone. How-

ever, we do not make any hard decisions at this stage and any

errors and uncertainties in the pedestrian prior are resolved in

the next stage.

The 2nd stage involves an optimization framework with

an the objective function that is a mixture of two terms: (1)

the score of the pedestrian prior obtained in the 1st stage and

(2) the agreement with the centers C. We perform the op-

timization independently for each center in C, i.e. we pro-

cess each row in C independently. Formulating in this way is

very efficient compared to having to solve them jointly. Af-

ter optimizing each weak supervision annotation (described

in Section 3.2), we automatically obtain the bounding box

annotations. Therefore, the 2nd stage is in essence automat-

1It is the probability or belief before seeing any (weak) supervision.
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Fig. 3. Detection performance curves (left and middle) and cost comparison (right)

Algorithm 1 Overview of the weakly supervised training

Input: Video V = [I1, I2, . . . , IN ] and weak supervision

C ∈ R
M×3

Output: Pedestrian detector

1: F← LearnPrior(V), where LearnPrior is the function to

learn unsupervised pedestrian prior. Described in Algo-

rithm 2.

2: B ← FuseOptimize(V,C,F), where FuseOptimize is

the function to convert weak center supervision C to

bounding box annotations B. Detailed in Algorithm 3.

3: Train a pedestrian detector using V and B using any su-

pervised learning algorithm.

4: return Pedestrian detector

ically converting the weak center annotations C to bounding

box annotations B ∈ R
M×5 where each row of B is a vec-

tor [n, x1, y1, x2, y2] denoting a bounding box with x1 and y1
representing the top left corner of the bounding box and x2

and y2 the bottom right corner.

After obtaining B, we can now use any supervised learn-

ing algorithm to train a pedestrian detector. This is the 3rd

stage. We formalize our approach in Algorithms 1-3 and give

further descriptions in the coming sections.

3.1. Unsupervised pedestrian prior learning

For a given video V, background subtraction is performed for

each frame Ii and followed by Connected Component Anal-

ysis (CCA). Although any background subtraction technique

could be used, since the unsupervised prior learning stage is

offline and does not need real-time processing, a highly ac-

curate and robust yet reasonably fast background subtraction

algorithm (such as [20]) is recommended. The CCA gives a

set of bounding boxes and for image patches corresponding

to each of them, we compute features after appropriate resiz-

ing of each patch. The feature extraction is general and any

suitable mechanism can be used. In this paper, Histograms of

Oriented Gradients (HOGs) features [3] are used. In order to

slightly bias the (unknown) multi-modal distribution of fore-

Algorithm 2 Unsupervised pedestrian prior learning

Input: Video V = [I1, I2, . . . , IN ]
Output: Unsupervised pedestrian prior F

1: Dp ← ∅

2: Dn ← ∅

3: Initialize background model G.

4: for Ii ∈ V do

5: BW ← background subtraction using Ii and G, where

BW is a binary image.

6: R ← Connected Component Analysis on BW , where

R = {r1, r2, . . . , rT } is a set of T bounding boxes.

7: Update G.

8: for j = 1 to T do

9: if height(rj) > width(rj) then

10: ~d← compute feature vector on patch correspond-

ing to the bounding box rj .

11: Dp ← Dp ∪ {~d}
12: end if

13: end for

14: Dq ← compute feature vectors from patches randomly

sampled from regions not intersecting with R.

15: Dn ← Dn ∪ {Dq}
16: end for

17: Train a binary classifier F on Dp and Dn.

18: Calibrate F to produce valid probabilities.

19: return F

ground classes (and any “noise” classes) towards pedestrian

class, we perform a simple filtering by aspect ratio, discard-

ing any bounding box whose height is less than its width. Our

goal in this stage is not to cluster or discover foreground ob-

ject classes. Instead, it is simply to capture some information

about the pedestrian class (which does not require any object

class discovery). We achieve this by training a 2-class classi-

fier F in which the positive class is the set of features of the

filtered bounding boxes and the negative training data comes

from background regions. This implicitly captures the multi-

modal distribution about objects in the scene and from an-



Algorithm 3 Cue Fusion and Optimization

Input: Video V = [I1, I2, . . . , IN ], weak supervision C ∈
R

M×3 and unsupervised pedestrian prior F

Output: Bounding box annotations B ∈ R
M×5

1: B← [ ]
2: Let {wmin, wmax, hmin, hmax} be estimates of min and max

possible widths w and heights h of pedestrians in V.

3: for i = 1 to M do

4: n← Ci1 % get frame num of ith weak supervision %

5: x← Ci2 % get x position of the center %

6: y ← Ci3 % get y position of the center %

7: ~e← [x−wmax/2, y−hmax/2, x+wmax/2, y+hmax/2]
8: W ← get multiscale sliding windows (larger than wmin

and hmin) in the area surrounded by rectangle ~e.

9: W = {~w1, . . . , ~wK} is the set of K bounding boxes

and ~w = [x1, y1, x2, y2] is a vector denoting coordi-

nates of top left and bottom right corners.

10: Let Y be the function to compute a feature vector given

a patch in frame In corresponding to ~w.

11: Let ~w[j] be a scalar denoting the jth element of ~w.

12: Let G(•) = N (•; ~µ,Σ) = N (•; [x, y], [ 3 0
0 3 ])

13: p1 ←
∑

~w∈W

F(Y (~w))

14: p2 ←
∑

~w∈W

G([ ~w
[1]+~w[3]

2 , ~w[2]+~w[4]

2 ])

15: ~wbest = arg max
~w∈W

F(Y (~w))

p1
+

G([ ~w
[1]+~w[3]

2 , ~w[2]+~w[4]

2 ])

p2
16: Add to matrix B a new row given by [n, ~wbest]
17: end for

18: return B

other perspective, the classifier F gives some measure about

objectness in the scene. This can also be considered as a

pedestrian prior after the aforementioned biasing. Another

potential benefit of the biasing is that it may allow us to use a

simple linear classifier to obtain F. If F does not output valid

probabilities (such as when using a SVM), we calibrate it to

produce probabilities by simple Platt scaling.

3.2. Cue Fusion and Optimization

For each weak supervision center, we first compute a large

rectangle ~e surrounding it. This can be computed by setting

for the whole video, an estimate of the width and height of the

largest possible pedestrian in the scene. This does not need

to be accurate and it can be easily determined by a human.

Then multi-scale sliding windowsW are generated within ~e.

We seek the best sliding window ~wbest ∈ W such that ~wbest

is scored highest by two terms in the objective function: (1)

score of the pedestrian prior given by
F(Y (~w))

p1
and (2) the

closeness (in distance) to the given center supervision given

by
G([ ~w

[1]+~w
[3]

2 , ~w
[2]+~w

[4]

2 ])

p2
where p1 and p2 are the normal-

ization terms. The relative weighing of the two terms in the

objective function is set equal (see Algorithm 3 for details).

Informally, the optimization objective prefers the sliding win-

dows which are scored highly by F but they are penalized

more, the further the centers of the sliding windows are from

the given center supervision. This penalization is achieved by

a gaussian weighing function G([x, y]) which is given by a

bivariate normal distribution with mean [x, y] and covariance

[ 3 0
0 3 ].

4. EXPERIMENTAL RESULTS

We have used the challenging CUHK Square [21] and MIT

Traffic [22] video datasets which contain a variety of object

classes including low resolution pedestrians in the scene. The

CUHK and MIT videos are 60 and 90 minutes long respec-

tively and for each video, we split it to two equal halves.

During training (including unsupervised prior learning), we

only use the first half. The second half is kept purely for

evaluating the resulting pedestrian detectors which is sum-

marized in terms of recall-FPPI (False Positives Per Image)

curves. To score the bounding boxes, we use the PASCAL

50% overlap criteria [23]. We perform 3 different types of

experiments on each dataset: (1) the pedestrian detector ob-

tained by our weakly supervised algorithm (2) the detector

obtained by strong supervision (manual bounding box anno-

tation) and (3) the detector corresponding to the unsupervised

prior (as described in Algorithm 2). These experiments are

respectively named Weak supervision, Strong supervision and

Unsupervised prior in the curves shown in Fig. 3. In addition,

the cost comparison between weak and strong supervisions is

also shown in Fig. 3.

As illustrated, the detection performance of the proposed

algorithm closely matches that of the strong supervision. Yet,

the time it took to manually annotate training data for the pro-

posed algorithm is less than one quarter of the time taken for

the strong supervision. This means that our algorithm reduces

the manual human annotation effort by over 4 times to get the

same performance as the standard strongly supervised train-

ing in literature. We also evaluated unsupervised prior in or-

der to show the effectiveness of our fusion and optimization

framework. The unsupervised prior alone performs poorly;

however, when fused with the weak supervision, the result-

ing detector has a much higher performance than the unsu-

pervised prior.

5. CONCLUSION

We have proposed a novel weakly supervised learning algo-

rithm for training pedestrian detectors for videos. The algo-

rithm consists of learning an unsupervised prior using unla-

belled data in the video and then fusing the prior with the

weak supervision in an optimization framework to generate

bounding box annotations. We showed that the weakly su-

pervised algorithm reduces the amount of human annotation

effort by over 4 times without sacrificing the accuracy of the

resulting detector.
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