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Abstract

We consider the inverse problem of determining the time-dependent diffusivity in the one-
dimensional heat equation with periodic boundary conditions and nonlocal over-specified
data. The problem is highly nonlinear and it serves as a mathematical model for the
technological process of external guttering applied in cleaning admixtures from silicon
chips. First, the well-posedness conditions for the existence, uniqueness and continuous
dependence upon the data of the classical solution of the problem are established. Then,
the problem is discretised using the finite-difference method and recast as a nonlinear
least-squares minimization problem with a simple positivity lower bound on the unknown
diffusivity. Numerically, this is effectively solved using the lsqnonlin routine from the
MATLAB toolbox. In order to investigate the accuracy, stability and robustness of the
numerical method, results for a few test examples are presented and discussed.

Keywords: Inverse problem; Thermal diffusivity; Integral condition.

1 Introduction

Parameter identification from over-specified data plays an important role in applied
mathematics, physics and engineering. The problem of identifying the diffusivity was
investigated by many researchers under various boundary and overdetermination condi-
tions, [5–8, 14]. It is important to note that in [12], the time-dependent diffusion coef-
ficient has been determined from different over-determination conditions in the case of
self-adjoint auxiliary spectral problems.

In the present work, a nonlocal over-specified data is used together with periodic
boundary conditions for the determination of the time-dependent diffusivity. The math-
ematical formulation of the inverse problem under investigation is given in Section 2. In
Section 3, the existence, uniqueness and continuous dependence upon the data of the clas-
sical solution of the inverse problem for some small parameters are established by using
the generalized Fourier method. The numerical methods for solving the direct and inverse
problems are described in Sections 4 and 5, respectively. Numerical results are presented
in Section 6. Finally, conclusions are highlighted in Section 7.
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2 Mathematical Formulation

In the rectangle QT = {(x, t)| 0 < x < 1, 0 < t ≤ T} = (0, 1) × (0, T ], we consider the
inverse problem given by the heat equation

∂u

∂t
(x, t) = k(t)

∂2u

∂x2
(x, t), (x, t) ∈ QT , (1)

with unknown concentration/temperature u(x, t) and unknown time-dependent diffusivity
k(t) > 0, subject to the initial condition

u(x, 0) = φ(x), 0 ≤ x ≤ 1, (2)

where φ is a given function, the periodic and heat flux boundary conditions

u(0, t) = u(1, t), t ∈ (0, T ], (3)

ux(1, t) = 0, t ∈ (0, T ], (4)

and the over-determination condition, [9, 10],

p(t)u(0, t) +

∫ 1

0

u(x, t)dx = E(t), t ∈ [0, T ], (5)

with p(t) = α + βk−γ(t), where α, β, γ > 0 are segregation coefficients. This problem
arises in the mathematical modelling of the technological process of external guttering
applied, for example, in cleaning admixtures from silicon chips, [10]. In this case, φ(x)
is the distribution of admixture in the chip for x ∈ (0, 1) at the initial time t = 0, while
u(x, t) is its distribution at time t. Condition (3) means that the admixtures in the left
and right boundaries of the chip are the same. The adiabatic condition (4) means that
the right boundary x = 1 of the chip is perfectly insulated. Condition (5) means that part
of the substance is concentrated (segregated) on the left side x = 0 of the chip, [9, 10].

When α = β = 0 then, the resulting inverse problem has been previously investigated
in [5], and it is the purpose of this paper to investigate the non-trivial case when α and
β are non-zero.

3 Mathematical Analysis

3.1 Existence and Uniqueness

The pair (k(t), u(x, t)) from the class C [0, T ]×
(

C2,1 (QT ) ∩ C1,0
(

QT

))

for which condi-
tions (1)-(5) are satisfied and k(t) > 0 on the interval [0, T ] , is called the classical solution
of the inverse problem (1)-(5).

The analysis is similar to that of [4] for the identification of the time-dependent blood
perfusion coefficient in the bio-heat equation. Consider the spectral problem

X ′′(x) + λX(x) = 0, 0 ≤ x ≤ 1, (6)

X(0) = X(1), X ′(1) = 0. (7)

This problem is well-known in [3], as the auxiliary spectral problem for solving a nonlocal
boundary value problem for heat equation by the Fourier method.

2



It is easy to show that the problem (6) and (7) has the eigenvalues

λn = (2πn)2, n = 0, 1, 2, ...

and the system of eigenfunctions and associated functions

X0(x) = 2, X2n−1(x) = 4 cos(2πnx), X2n(x) = 4(1− x) sin(2πnx), n = 1, 2, ... (8)

The system of functions Xn(x), n = 0, 1, 2, ... is a basis in L2[0, 1], [3].
The adjoint problem to (6) and (7) has the form

Y ′′(x) + λY (x) = 0, 0 ≤ x ≤ 1, (9)

Y (0) = 0, Y ′(0) = Y ′(1). (10)

Analogously to the problem (6) and (7), the system of eigenfunctions and associated
functions of the problem (9) and (10) is given by

Y0(x) = x, Y2n−1(x) = x cos(2πnx), Y2n(x) = sin(2πnx), n = 1, 2, .... (11)

It is easy to show that the systems (8) and (11) form a bi-orthonormal system on the
interval [0, 1], i.e.

(Xi, Yj) =

∫ 1

0

Xi(x)Yj(x)dx = δij,

where δij is the Kronecker delta tensor.
The following lemmas are important for the mathematical analysis of the inverse

problem.

Lemma 1. If ϕ(x) ∈ C3 [0, 1] satisfies the conditions ϕ(0) = ϕ(1), ϕ′(1) = 0, ϕ′′(0) =
ϕ′′(1) then the inequalities

∞
∑

n=1

n2 |ϕ2n| ≤ c1 ∥ϕ∥C3[0,1] ,
∞
∑

n=1

n |ϕ2n−1| ≤ c2 ∥ϕ∥C3[0,1] , (12)

(c1 and c2 are constants)

hold, where ϕn =
1
∫

0

ϕ(x)Yn(x)dx.

Proof. Because ϕ(0) = ϕ(1), ϕ′′(0) = ϕ′′(1), the equality

ϕ2n =

1
∫

0

ϕ(x) sin (2πnx) dx = − 1

8π3n3

1
∫

0

ϕ′′′(x) cos (2πnx) dx

holds by three times integrating by parts. Analogously, by integrating by parts twice and
using that ϕ(0) = ϕ(1), ϕ′(1) = 0 we obtain that

ϕ2n−1 =
1
∫

0

ϕ(x)x cos (2πnx) dx = − 1
4π2n2

1
∫

0

[xϕ′′(x) + 2ϕ′(x)] cos (2πnx) dx.

3



From the above, by using the Schwarz and Bessel inequalities we obtain

∞
∑

n=1

n2 |ϕ2n| ≤
1

8π3

[ ∞
∑

n=1

1

n2

] 1
2







∞
∑

n=1





1
∫

0

ϕ′′′(x) cos (2πnx) dx
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1
2

≤ c1 ∥ϕ′′′∥L2[0,1]
≤ c1 ∥ϕ∥C3[0,1]

and

∞
∑

n=1

n |ϕ2n−1| ≤
1

4π2

[ ∞
∑

n=1

1

n2

] 1
2







∞
∑

n=1





1
∫

0

[xϕ′′(x) + 2ϕ′(x)] cos (2πnx) dx
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1
2

≤ c2
2
∥xϕ′′ + 2ϕ′∥L2[0,1]

≤ c2 ∥ϕ∥C3[0,1]

for some constants c1 and c2.

Lemma 2. If km(t) ∈ C [0, T ] satisfies the condition 0 < a ≤ km(t), m = 1, 2 then for
∀n ∈ N and ∀t ∈ [0, T ] the inequality

∣

∣

∣

∣

∣

e
−n

t
∫

0

k1(s)ds − e
−n

t
∫

0

k2(s)ds

∣

∣

∣

∣

∣

≤ 1

ae
∥k1 − k2∥C[0,T ] , (13)

holds.

Proof. For arbitrary fixed t ∈ [0, T ] and n ∈ N, by using the mean value theorem for the

function e−x we obtain that there exists θ between n
t
∫

0

k1(s)ds and n
t
∫

0

k2(s)ds such that

∣

∣

∣

∣

∣

e
−n

t
∫

0

k1(s)ds − e
−n

t
∫

0

k2(s)ds

∣

∣

∣

∣

∣

= e−θ

∣

∣

∣

∣

∣

∣

n

t
∫

0

k1(s)ds− n

t
∫

0

k2(s)ds

∣

∣

∣

∣

∣

∣

.

By using that xe−bx ≤ 1
be
; x ≥ 0, b = const. > 0, we obtain that

ne−θ

∣

∣

∣

∣

∣

∣

t
∫

0

(k1(s)− k2(s))ds

∣

∣

∣

∣

∣

∣

≤ e−natnt ∥k1 − k2∥C[0,T ] ≤
1

ae
∥k1 − k2∥C[0,T ] ,

and this proves (13).

The main result of subsection 3.1 is in the following theorem.

Theorem 1. Let the functions φ(x) ∈ C3 [0, 1] , E(t) ∈ C [0, T ] satisfy the conditions

φ(0) = φ(1), φ′(1) = 0, φ′′(0) = φ′′(1), (14a)

φ2k ≥ 0, φ2k−1 ≤ 0, k = 1, 2, ..., φ0 + 2φ1 < 0, E(t) < 2φ0, ∀t ∈ [0, T ], (14b)

where φn =
1
∫

0

φ(x)Yn(x)dx for n = 0, 1, 2, · · · . Then, there exist positive numbers α0

and γ0 such that the inverse problem (1)-(5) with the parameters α < α0 , γ > γ0 has a
unique solution, where the numbers α0 and γ0 are determined by the data of the problem.
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Proof. For arbitrary positive k(t) ∈ C[0, T ], using that φ ∈ C3[0, 1] satisfies the conditions
(14a), by applying the standard procedure of the Fourier series method we obtain the
solution of the direct problem (1)-(4) in the following form:

u(x, t) = φ0X0(x) +
∞
∑

n=1

φ2ne
−(2πn)2

t
∫

0

k(s)ds
X2n(x)

+
∞
∑

n=1

(φ2n−1 − 4πnφ2nt) e
−(2πn)2

t
∫

0

k(s)ds
X2n−1(x). (15)

The series in (15) and its x−partial derivative are uniformly convergent in Q̄T since
their majorizing sums are absolutely convergent by Lemma 1. Therefore, their sums
involved in expressing u(x, t) and ux(x, t) are continuous in Q̄T . Because the majorizing

sum
∞
∑

n=1

n3e−K(2πn)2ε (K = const. > 0) is convergent, the t−partial derivative and the

xx−second-order partial derivative series of (15) are uniformly convergent for t ≥ ε > 0
(ε is an arbitrary positive number). Thus, we have u (x, t) ∈ C2,1 (QT )∩C1,0

(

Q̄T

)

which
satisfies conditions (1)–(4) for arbitrary positive k(t) ∈ C[0, T ].

Applying the over-determination condition (5), we obtain

p(t) = ̥ [p(t)] , (16)

where

̥ [p(t)] =

2φ0 +
2
π

∞
∑

n=1

1
n
φ2ne

−(2πn)2
t
∫

0

k(s)ds
− E(t)

−2φ0 + 4
∞
∑

n=1

[4πnφ2nt− φ2n−1] e
−(2πn)2

t
∫

0

k(s)ds

,

k(t) =

[

β

p(t)− α

] 1
γ

. (17)

Denote

α0 =
2φ0 − Emax

−2φ0 + 4
∞
∑

n=1

(4πnφ2nT − φ2n−1)
, α1 =

2φ0 +
2
π

∞
∑

n=1

1
n
φ2n − Emin

−2φ0 − 4φ1

, (18)

where Emax = max
t∈[0,T ]

E(t), Emin = min
t∈[0,T ]

E(t). Then, from (14b), (16) and (17) it follows

that
0 < α0 ≤ p(t) ≤ α1, t ∈ [0, T ]. (19)

Under condition α0 > α, the inequalities

0 <

[

β

α1 − α

] 1
γ

≤ k(t) ≤
[

β

α0 − α

] 1
γ

(20)

hold.
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Let us denote

Cα0,α1 [0, T ] := {p(t) ∈ C[0, T ]|α0 ≤ p(t) ≤ α1, ∀ t ∈ [0, T ]}.

It is easy to verify that
̥ : Cα0,α1 [0, T ] → Cα0,α1 [0, T ].

Let us show that ̥ is a contraction mapping in Cα0,α1 [0, T ], for small α and large γ.
Indeed, ∀p1(t), p2(t) ∈ Cα0,α1 [0, T ] we have

̥ [p1(t)]−̥ [p2(t)] =

1
−2φ0+α1,2(t)

(

2φ0+α0,1(t)−E(t)

−2φ0+α1,1(t)
(α1,2(t)− α1,1(t))− (α0,2(t)− α0,1(t))

)

, (21)

where

α0,m(t) =
2

π

∞
∑

n=1

1

n
φ2ne

−(2πn)2
t
∫

0

km(s)ds
,

α1,m(t) = 4
∞
∑

n=1

(4πnφ2nt− φ2n−1) e
−(2πn)2

t
∫

0

km(s)ds
,

km =

[

β

pm(t)− α

] 1
γ

, m = 1, 2.

Lemma 2 and inequalities (20) imply

∣

∣

∣

∣

∣

e
−(2πn)2

t
∫

0

k1(s)ds − e
−(2πn)2

t
∫

0

k2(s)ds

∣

∣

∣

∣

∣

≤ (α1 − α)
1
γ

β
1
γ e

∥k1 − k2∥C[0,T ] .

Then, we obtain

|α0,2(t)− α0,1(t)| ≤ (α1 − α)
1
γ

β
1
γ e

(

2

π

∞
∑

n=1

1

n
φ2n

)

∥k1 − k2∥C[0,T ] ,

|α1,2(t)− α1,1(t)| ≤ (α1 − α)
1
γ

β
1
γ e

(

16πT
∞
∑

n=1

nφ2n − 4
∞
∑

n=1

φ2n−1

)

∥k1 − k2∥C[0,T ] .

From these inequalities and (21), we obtain

max
0≤t≤T

|̥ [p1(t)]−̥ [p2(t)]| ≤
(α1 − α)

1
γ

β
1
γ

δ ∥k1 − k2∥C[0,T ] , (22)

where

δ =
2

πe

(8π2Tα1 + 1)
∞
∑

n=1

nφ2n − 2πα1

∞
∑

n=1

φ2n−1

−2φ0 − 4φ1

. (23)

By using the mean value theorem and (20), it is easy to show that

|k1(t)− k2(t)| ≤
β

1
γ

γ (α0 − α)1+
1
γ

|p1(t)− p2(t)| . (24)
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Thus, from (22) and (24) we obtain

∥̥ [p1]−̥ [p2]∥C[0,T ] ≤
δ

(α0 − α)

1

γ

(

α1 − α

α0 − α

)1/γ

∥p1 − p2∥C[0,T ] .

Let us fix a sufficiently large number γ0 > 0 such that

K :=
δ

(α0 − α)

1

γ0

(

α1 − α

α0 − α

)1/γ0

≤ 1. (25)

Thus, in the case γ > γ0, equation (16) has a unique solution k(t) ∈ Cα0,α1 [0, T ], by the
Banach fixed point theorem.

We therefore obtain a unique positive function k(t), continuous on [0, T ], which, to-
gether with the solution of the problem (1)–(4) given by the Fourier series (15), form
the unique solution of the inverse problem (1)–(5). This concludes the proof of the theo-
rem.

3.2 Continuous Dependence Upon the Data

The following result on continuously dependence on the data of the solution of the inverse
problem (1)–(5) holds.

Theorem 2. Consider the (input) data in the form of Φ = {φ,E} which satisfy the
assumptions of Theorem 1 with

2φ0 − Emax ≥ N1 > 0, φ0 + 2φ1 ≤ −N2 < 0 (26)

and let
∥φ∥C3[0,1] ≤ N3, ∥E∥C[0,T ] ≤ N4 (27)

for some positive numbers N1, N2, N3 and N4. Then the solution (k(t), u(x, t)) of the
inverse problem (1)–(5) depends continuously upon the data for sufficiently small α and
large γ.

Proof. Let Φ = {φ, E} and Φ =
{

φ, E
}

be two sets of the data, which satisfy the
conditions of Theorem 1. Let us denote ∥Φ∥ := ∥φ∥C3[0,1] + ∥E∥C[0,T ] .

Let (k, u) and
(

k, u
)

be solutions of the inverse problem (1)–(5) corresponding to the

data Φ and Φ, respectively. According to (17),

p(t) =

2φ0 +
2
π

∞
∑

n=1

1
n
φ2ne

−(2πn)2
t
∫

0

k(s)ds
− E(t)

−2φ0 + 4
∞
∑

n=1

[4πnφ2nt− φ2n−1] e
−(2πn)2

t
∫

0

k(s)ds

, k(t) =

[

β

p(t)− α

] 1
γ

,

p(t) =

2φ̄0 +
2
π

∞
∑

n=1

1
n
φ̄2ne

−(2πn)2
t
∫

0

k̄(s)ds
− Ē(t)

−2φ̄0 + 4
∞
∑

n=1

[4πnφ̄2nt− φ̄2n−1] e
−(2πn)2

t
∫

0

k̄(s)ds

, k̄(t) =

[

β

p̄(t)− α

] 1
γ

.
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First, let us estimate the difference p− p̄. Using (12), (13) and (27), we obtain
∣

∣

∣

∣

∣

∞
∑

n=1

1

n
φ2ne

−(2πn)2
t
∫

0

k(s)ds

∣

∣

∣

∣

∣

≤ c ∥φ∥
C3[0,1]

≤ cN3,

∣

∣

∣

∣

∣

∞
∑

n=1

(4πnφ2nt− φ2n−1) e
−(2πn)2

t
∫

0

k(s)ds

∣

∣

∣

∣

∣

≤ 4πc(1 + T )N3,

∣

∣

∣

∣

∣

∞
∑

n=1

1

n
φ2ne

−(2πn)2
t
∫

0

k(s)ds
−

∞
∑

n=1

1

n
φ̄2ne

−(2πn)2
t
∫

0

k̄(s)ds

∣

∣

∣

∣

∣

≤ M1 ∥φ− φ∥
C3[0,1]

+M2

∥

∥k − k
∥

∥

C[0,T ]
,

∣

∣

∣

∣

∣

∞
∑

n=1

(4πnφ2nt− φ2n−1) e
−(2πn)2

t
∫

0

k(s)ds
−

∞
∑

n=1

(4πnφ̄2nt− φ̄2n−1) e
−(2πn)2

t
∫

0

k̄(s)ds

∣

∣

∣

∣

∣

≤ M3 ∥φ− φ∥
C3[0,1]

+M4

∥

∥k − k
∥

∥

C[0,T ]
,

where Mk, k = 1, 4 are some positive constants. By using these inequalities, simple
manipulations yield the estimate

|p(t)− p(t)| ≤
M5 ∥φ− φ∥

C3[0,1]
+M6

∥

∥k − k
∥

∥

C[0,T ]
+M7

∥

∥E − E
∥

∥

C[0,T ]

4N2
2

, (28)

where Mk, k = 5, 7 are some constants that are determined by c1, c2 and Nk, k = 1, 4.
It is known from (24) that, for α < α0,

∣

∣k(t)− k̄(t)
∣

∣ ≤ β
1
γ

γ (α0 − α)1+
1
γ

|p(t)− p̄(t)| , (29)

with α0 ≥ 2φ0−Emax

M8∥φ∥
C3[0,1]

≥ N1

M8N3
, for some positive constant M8. If α is sufficiently small

such that α < N1

M8N3
, using (29) in (28) we obtain

(1−M9) ∥p− p∥
C[0,T ]

≤ M10

(

∥φ− φ∥
C3[0,1]

+
∥

∥E − E
∥

∥

C[0,T ]

)

, (30)

for some positive constants M10 and M9 :=
M6

4N2
2

β
1
γ

γ
(

N1
M8N3

−α
)1+ 1

γ
.

The inequality M9 < 1 holds for sufficiently large γ. This means that p continuously

depends upon the data. Then, the equality k(t) =
[

β
p(t)−α

]1/γ

implies the continuous

dependence of k upon the data. Similarly, we can prove that u, which is given in (15),
depends continuously upon the data. This concludes the proof of the theorem.

4 Numerical Solution of Direct Problem

In this section, we consider the direct initial boundary value problem given by equations
(1)–(4) when k(t) is given and the dependent variable u(x, t) is the solution to be deter-
mined. We use the finite-difference method (FDM) with a Crank-Nicolson scheme, [13],
which is unconditionally stable and second-order accurate in space and time.
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The discrete form of the direct problem is as follows. Take two positive integer M
and N and let ∆x = 1/M and ∆t = T/N be step lengths in space and time directions,
respectively. We subdivided the domain QT = (0, 1) × (0, T ) into M × N subintervals
of equally step length. At the node (i, j) we denote ui,j = u(xi, tj), k(tj) = kj, where
xi = i∆x, tj = j∆t, for i = 0,M , j = 0, N . Considering the general partial differential
equation

ut = G(x, t, uxx), (31)

equation (31) subject to (2)–(4) can approximated as:

ui,j+1 − ui,j

∆t
=

1

2
(Gi,j +Gi,j+1) , i = 1,M, j = 0, (N − 1), (32)

ui,0 = φ(xi), i = 0,M, (33)

u0,j = uM,j, j = 0, N, (34)

uM+1,j = uM−1,j, j = 0, N, (35)

where

Gi,j = G

(

xi, tj,
ui+1,j − 2ui,j + ui−1,j

(∆x)2

)

, i = 1,M, j = 0, (N − 1). (36)

For our problem, equation (1) can be discretised in the form of (32) as

− Aj+1ui−1,j+1 + (1 + Bj+1)ui,j+1 − Aj+1ui+1,j+1 =

Ajui−1,j + (1−Bj)ui,j + Ajui+1,j, (37)

for i = 1,M , j = 0, (N − 1), where

Aj =
(∆t)kj
2(∆x)2

, Bj =
(∆t)kj
(∆x)2

.

At each time step tj+1, for j = 0, (N − 1), using the periodic boundary conditions (34),
the above difference equation can be reformulated as a M ×M system of linear equations
of the form,

Duj+1 = Euj, (38)

where

uj+1 = (u1,j+1, u2,j+1, ..., uM,j+1)
T,

D =















1 + Bj+1 −Aj+1 0 · · · 0 0 −Aj+1

−Aj+1 1 + Bj+1 −Aj+1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · −Aj+1 1 + Bj+1 −Aj+1

0 0 0 · · · 0 −2Aj+1 1 + Bj+1















M×M

,

and

E =















1−Bj Aj 0 · · · 0 0 Aj

Aj 1−Bj Aj · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · Aj 1− Bj Aj

0 0 0 · · · 0 2Aj 1−Bj















M×M

.
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4.1 Example

As an example, consider the direct problem (1)–(4) with T = 1 and

k(t) =
1 + t

2π2
, u(x, 0) = φ(x) = − cos(2πx). (39)

The exact solution is given by

u(x, t) = − cos(2πx)e−t2−2t. (40)

The required output (5) is

E(t) = p(t)u(0, t) +

∫ 1

0

u(x, t)dx = −
(

α + β

(

1 + t

2π2

)−γ
)

e−t2−2t. (41)

The numerical and exact solutions for u(x, t) at the interior points are shown in Figure 1
and also the absolute error between them is included. One can notice that an excellent
agreement is obtained. Figure 2 shows the numerical solution in comparison with the
exact one for E(t) for α = β = γ = 1. The numerical values for E have been calculated
using equation (34) and the trapezoidal rule approximation to the integral in (41) to result
in the formula

E(tj) = p(tj)u0,j +
1

M

M−1
∑

i=0

ui,j, j = 0, N. (42)

0

0.5

1

0

0.5

1
−1

−0.5

0

0.5

1

t

Exact solution

x

u(
x,

t)

0

0.5

1

0

0.5

1
−1

−0.5

0

0.5

1

t

Numerical solution

x

u(
x,

t)

0

0.5

1

0

0.5

1
0

2

4

6

8

x 10
−4

t

Error graph

x

A
bs

ol
ut

e 
er

ro
r

Figure 1: Exact and numerical solutions for u(x, t) and the absolute error for the direct problem

obtained with M = N = 40.
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5 Numerical Solution of Inverse Problem

We wish to obtain stable and accurate reconstructions of the time-dependent thermal
conductivity k(t) and the temperature u(x, t) satisfying the equations (1)–(5). We reduce
the inverse problem to a nonlinear minimization of the least-squares objective function

F (k) :=
∥

∥u(0, t)(α + βk−γ(t)) +

∫ 1

0

u(x, t)dx− E(t)
∥

∥

2

L2[0,T ]
. (43)

The discretised form of (43) is

F (k) =
N
∑

j=1

[

u(0, tj)(α + βk−γ
j ) +

1

M

M−1
∑

i=0

ui,j − E(tj)
]2

, (44)

where k = (kj)j=1,N , the values ui,j are computed from (38) and, for simplicity, we have
dropped the time-step multiplier T/N . It is worth mentioning that if the compatibility
condition u(0, 0) = φ(0) is satisfied then (5) applied at t = 0, yields

k(0) =

(

βφ(0)

E(0)−
∫ 1

0
φ(x)dx− αφ(0)

)1/γ

. (45)

The minimization of the objective functional (44), subjected to the physical simple bound
constraints k > 0 is accomplished using the MATLAB optimization toolbox routine
lsqnonlin, which does not require supplying (by the user) the gradient of the objective
function, [11]. Furthermore, within lsqnonlin we use the Trust-Region algorithm which
is based on the interior-reflective Newton method, [2]. Each iteration involves a large
linear system of equations whose solution, based on a preconditioned conjugate gradi-
ent method, allows a regular and sufficiently smooth decrease of the objective functional
(44), [1].

In the numerical computation, we take the parameters of the routine lsqnonlin as
follows:

• Number of variables M = N = 40.
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• Maximum number of iterations = 102 × (number of variables).

• Maximum number of objective function evaluations = 103 × (number of variables).

• Solution tolerance = 10−10.

• Object function tolerance = 10−10.

• Nonlinear constraint tolerance = 10−6.

The inverse problem (1)–(5) is solved subject to both exact and noisy measurements (5).
The noisy data is numerically simulated as

Eϵ(tj) = E(tj) + ϵj, j = 1, N, (46)

where ϵj are random variables generated from a Gaussian normal distribution with mean
zero and standard deviation σ given by

σ = ρ× max
t∈[0,T ]

|E(t)|, (47)

where ρ represents the percentage of noise. We use the MATLAB function normrnd to
generate the random variables ϵ = (ϵj)j=1,N as follows:

ϵ = normrnd(0, σ,N). (48)

The total amount of noise ϵ is given by

ϵ =
∣

∣ϵ
∣

∣ =

√

√

√

√

N
∑

j=1

(Eϵ(tj)− E(tj))2. (49)

In the case of noisy data (46), we replace E(tj) by Eϵ(tj) in (44).

6 Numerical Results and Discussion

In this section, we present and discuss a few test examples in order to illustrate the
accuracy, stability and robustness of the numerical scheme based on the FDM combined
with the minimization of the least-squares functional (44), as described in Section 5.

6.1 Example 1

In this example, we consider the inverse problem (1)-(5) with T = 1 and the input data

u(x, 0) = φ(x) = −cos(2πx)

e
, E(t) = −

(

1 + 8π2
√
1 + t

)

exp(−
√
1 + t), (50)
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and α = β = γ = 1. One can easily check that E(t) ∈ C[0, 1] and that C3[0, 1] ∋ φ(x)
satisfies the conditions in (14a). Moreover, using (11) we have

φ0 =

∫ 1

0

φ(x)Y0(x)dx = −1

e

∫ 1

0

x cos(2πx)dx = 0,

φ1 =

∫ 1

0

φ(x)Y1(x)dx = −1

e

∫ 1

0

x2 cos2(2πx)dx = − 1

4e
,

φ2k =

∫ 1

0

φ(x)Y2k(x)dx = −1

e

∫ 1

0

cos(2πx) sin(2πkx)dx = 0, k ≥ 1

φ2k−1 =

∫ 1

0

φ(x)Y2k−1(x)dx = −1

e

∫ 1

0

x cos(2πx) cos(2πkx)dx = 0, k ≥ 2

and hence, one can easily check that the conditions in (14b) are also satisfied. We can
also calculate from (18) and (23) that

α0 =
Emax

4φ1

≃ 74.45, α1 =
Emin

4φ1

≃ 79.95, δ =
α1

e
≃ 29.41, (51)

where

Emax = max
t∈[0,1]

E(t) = E(1) = −1 + 8π2
√
2

e
√
2

≃ −27.38,

Emin = min
t∈[0,1]

E(t) = E(1) = −1 + 8π2

e
≃ −29.41.

Then the quantity K in equation (25) is given by K = 0.4004
γ0

× (1.0749)1/γ0 , and K ≤ 1
if γ0 ≥ 0.5 for example. Anyway, our choice α = γ = 1 satisfies α < α0 = 74.45 and
γ > γ0 = 0.5 and hence according the Theorem 1 the solution of the inverse problem exits
and is unique. In fact, it can easily be checked by direct substitution that the analytical
solution is given by

k(t) =
1

8π2
√
1 + t

, u(x, t) = − cos(2πx) exp(−
√
1 + t). (52)

We take the initial guess for the unknown thermal diffusivity k(t) equal to the constant
k(0) = 1/(8π2) which is known from expression (45).

First, we attempt to retrieve the unknown diffusivity k(t) and the concentration/
temperature u(x, t) for exact input data, i.e. ρ = 0, as well as for ρ ∈ {2%, 20%} noisy
data. The objective function (44) is plotted, as a function of the number of iterations, in
Figure 3. From this figure, it can be seen that a very fast convergence is achieved in 4 to
8 iterations to reach a very low value of O(10−25). The associated numerically obtained
results for k(t) and u(x, t) are presented in Figures 4 and 5, respectively. From these
figures it can be seen clearly that the agreement between the numerical results and the
analytical solutions is excellent for exact data, i.e. ρ = 0, and is consistent with the errors
in the input data for ρ > 0. The numerical solutions for k(t) and u(x, t) converge to their
corresponding exact solutions in (52), as the percentage of noise ρ decreases from 20% to
2% and then to zero. The nonlinear least-squares minimization (44) produces good and
consistent reconstructions of the solution even for a large amount of noise such as 20%,
when the total amount of noise computed by (49) is ϵ = 33.7.
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Figure 3: Objective function (44), for Example 1 with ρ ∈ {0, 2%, 20%} noise.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.005

0.01

0.015

0.02

0.025

0.03

t

k(
t)

 

 
exact

ρ=0

ρ=2%

ρ=20%

Figure 4: Exact and numerical solutions for k(t), for Example 1 with ρ ∈ {0, 2%, 20%} noise.
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Figure 5: Exact and numerical solutions for u(x, t), for Example 1 with (a) no noise, (b) ρ = 2%

noise, and (c) ρ = 20% noise. The absolute error between them is also included.
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6.2 Example 2

Consider the inverse problem (1)-(5) with T = 1 and the input data

u(x, 0) = φ(x) = − cos(2πx), E(t) = −
(

1 +

(

1 + t

2π2

)−1
)

e−t2−2t, (53)

and α = β = γ = 1. As in Example 1, it is easy to check conditions (14a) and (14b)
of Theorem 1 are satisfied. We also obtain that φk = 0 for all k ∈ N \ {1}, φ1 = −1/4,
Emin = E(0) = −(1 + 2π2) ≃ −20.73, Emax = E(1) = −(1 + π2)e−3 ≃ −0.516, and
α0 = Emax/(4φ1) = 0.516. As the condition 1 < α < α0 = 0.516 of Theorem 1 is not
satisfied we can not conclude the unique solvability of the inverse problem. However, the
solution at least exists and is given by

k(t) =
1 + t

2π2
, u(x, t) = − cos(2πx) exp(−t2 − 2t). (54)

which can easily be verified by direct substitution.
The FDM numerical solution of the direct problem associated to this example has

already been presented and discussed in subsection 4.1. The uniqueness of solution (54)
is not guaranteed from theory, but numerically we can at least investigate the obtained
results from various initial guesses for the unknown diffusivity vector k which initiate
the minimization of the objective function (44). This will also test the robustness of the
iterative method with respect to the independence on the initial guess. This investigation
is illustrated in Figures 6, 7 and Table 1 for exact data with various initial guesses

k0(t) ∈ {1/(2π2), 1, 2}, t ∈ [0, 1]. (55)

Note that from (54) the initial guess k0(t) = 1/(2π2) corresponds to the value of k(0),
which can be assumed to be known from (45). In Table 1, the root mean square error
rmse value of k is calculated as

rmse(k) =

√

√

√

√

1

N

N
∑

j=1

(kj − kexact(tj))2. (56)
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Figure 6: Objective function (44) for Example 2 with no noise and various initial guesses (55).
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Table 1: Number of iterations, number of function evaluations, value of the objective function

(44) at final iteration, rmse value (56) and the computational time, for Example 2 with no noise

and various initial guesses (55).

ρ = 0 k0 = 1
2π2 k0 = 1 k0 = 2

No. of iterations 7 26 50
No. function evaluations 336 1134 2142
Value of objective function (44) at final iteration 7.3E-28 1.7E-27 6.2E-28
rmse(k) 1.6E-4 4.4E-4 7.6E-4
Computational time 31 sec 105 sec 198 sec

From Figure 6 and Table 1 it can be seen that, as expected, the farther the initial guess
is the more iterations and larger computational time are required to achieve convergence.
However, for all initial guesses (55) the objective function (44) converges to the same
minimum low value of O(10−28). This shows robustness with respect to the independence
on the initial guess. Furthermore, from Figure 7 and Table 1 it can be seen that the
agreement between the exact and the numerically obtained solutions with various initial
guesses is very good being of O(10−4). There is also a slightly better accuracy for the
closer initial guess k0 = 1/(2π2) to the exact solution for k(t) from (54).

In what follows, we take the initial guess for the unknown diffusivity k(t) equal to the
constant k(0) = 1/(2π2) which is known from expression (45).

Figure 8 shows the objective function (44) for ρ ∈ {0, 1%} as a function of the number
of iterations. From this figure, it can be seen that the objective functional (44) decreases
rapidly to a very low level of O(10−28) in about 7 to 8 iterations. The corresponding
exact and numerical solutions for k(t) and u(x, t) are presented in Figures 9 and 10,
respectively. First, from Figures 5 and 10 it can be observed that accurate and stable
solutions for u(x, t) are obtained for both Examples 1 and 2. Secondly, for exact data,
i.e. ρ = 0, the same conclusion regarding the excellent accuracy of the numerical solution
for k(t), as it was obtained for Example 1, can be drawn from Figure 4. However, for
ρ = 1% noisy data some instability starts to manifest in Figure 9, as it also happened for
Example 1 in Figure 4 for a much larger ρ = 20% amount of noise. We have also tried
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to add some regularization term λ∥k∥2L2[0,T ] with λ > 0 some regularization parameter to

the nonlinear least-squares function (43), but the stability of the numerical solution did
not improve.

We also mention that for higher amounts of noise, such as ρ = 2%, the lsqnonlin
minimization routine did not make significant progress after a large number of over 1000
iterations probably becoming trapped in a local minimum. One possible reason could be
that the expressions for k(t) given by equations (52) and (54) yield a stronger nonlinearity
in k−γ(t) in (43) for Example 2 than for Example 1.
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Figure 8: Objective function (44), for Example 2 with ρ ∈ {0, 1%} noise.
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Figure 9: Exact and numerical solutions for k(t), for Example 2 with ρ ∈ {0, 1%} noise.
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Figure 10: Exact and numerical solutions for u(x, t), for Example 2 with (a) no noise, and (b)

ρ = 1% noise. The absolute error between them is also included.

6.3 Example 3

The previous examples possessed analytical solutions available for the pair (k(t), u(x, t)),
as given by equations (52) and (54). In this subsection, we investigate an example for
which an explicit analytical solution for u(x, t) is not available. We take the initial con-
dition (2) given by

u(x, 0) = φ(x) =



















0, 0 ≤ x < 1/4,
1
4
− x, 1/4 < x ≤ 1/2,

x− 3
4
, 1/2 < x < 3/4,

0, 3/4 < x ≤ 1.

(57)

This is severe test example because the initial data (57) is non-smooth function. Clearly,
the initial data (57) violates some of the conditions of Theorem 1 which is not applicable
for this example. However, we can make the inverse problem at least solvable by solving
first the direct well-posed problem (1)–(4) with φ(x) given by (57) and the diffusivity k(t)
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given by

k(t) =
1

1 + t
, t ∈ [0, 1], (58)

in order to provide the data (5). This is performed numerically using FDM described in
Section 4.

The numerical results for E(t) (with α = β = γ = 1) are shown in Figure 11, for
various mesh sizes M = N ∈ {20, 40, 80}. From this figure it can be seen that that
numerical solution is convergent as the FDM mesh sizes decreases. Also, there is only a
small difference between the numerical results obtained with various mesh sizes showing
that the independence on the mesh has been achieved. Consequently, we take the results
for E(t) simulated from solving the direct problem with M = N = 80 as our exact input
data (5) in the inverse problem (1)–(5). In order to avoid committing an inverse crime,
in the inverse problem the number of space intervals is taken as M = 70 (different than
80), whilst the number of time steps N is kept the same 80.
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Figure 11: Numerical solution for E(t), for the direct problem of Example 3 with various mesh

sizes.

We take the initial guess k0 = 1, noting at the same time that since φ(0) = 0 and
E(0) = −1/16 equation (45) cannot be directly applied as it yields the non-determination
0/0 division.

Figure 12 shows the objective function evolution (44), as a function of the number
of iterations for no noise in the input data (5). From this figure it can be seen that a
fast convergence is achieved in 20 iterations to reach a very low value of O(10−12). The
associated numerically obtained results for k(t) are presented in Figure 13. From this
figure it can be seen that the agreement between the numerical and the exact solutions is
excellent, except for some slight unexpected discrepancy near t = 0.
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Figure 12: Objective function (44), for Example 3 with no noise.
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Figure 13: Exact and numerical solutions for k(t), for Example 3 with no noise.
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Figure 14: (a) Objective function (44) with horizontal noise threshold ϵ2=7.05E-4, and (b) the

rmse(k) values (56), for Example 3 with ρ = 1% noise.

Next we add ρ = 1% noise in the input data (5) numerically simulated as in (46).
Figure 14(a) presents the objective function (44), as a function of the number of iterations
together with the horizontal noise threshold ϵ2=7.05E-4 computed by (49). This threshold
is useful when applying the discrepancy principle in order to stop the iteration process
before the instability of solutions sets in. According to Figure 14(a) this criterion yields
the iteration under iterdiscr. = 2. Figure 14(a) also shows that the objective function (44)
has converged after iterconv. = 38. The rmse(k) values (56) for unknown k(t) are plotted,
versus the number of iteration in Figure 14(b). Form this figure it can be remarked that
the best retrieval occurs at iteropt. = 6. For more clarity, the results of Figure 14 are
summarised in Table 2 where the computational time is also included.

Finally, Figure 15 shows the exact solution (58) for k(t) in comparison with the nu-
merical solutions obtained after the iterations given by stopping criteria of Table 2. From
this figure it can be seen that if the iterative process is not stopped, after iterconv. = 38
we obtained a numerical approximation with rmse(k) = 0.2110 which moreover is not
so accurate in the region t ∈ [0, 0.2]. However, if we stop the iterative process after
iterdiscr. = 2 iterations given by the discrepancy principle, which is graphically illustrated
in Figure 14(a), then an accurate and stable numerical solution is achieved. Moreover, it
yields an rmse(k) = 0.0587 which is close to the optimal one of rmse(k) = 0.0358. The
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associated numerically obtained results for k(t) plotted according to stopping criterion in
Figure 15. From this figure it clear that the best retrieve for k(t) is the (-�-) lines which
meets the minimum rmse value.

Table 2: The number of iterations, the rmse(k) values (56) and the computational time based

on several stopping criteria, for Example 3 with p = 1% noise.

Criterion No. of iterations rmse(k) Computational time
to achieve convergence iterconv.= 38 0.2110 41 min
to achieve minimum rmse(k) iteropt.= 6 0.0358 8 min
discrepancy principle iterdiscr.= 2 0.0587 3 min
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Figure 15: Exact (—) and the numerical solutions for k(t) obtained after iterconv.=38 (- - -),

iteropt.=6 (-�-), and iterdiscr.=2 (-△-), for Example 3 with ρ = 1% noise.

7 Conclusions

An inverse nonlinear problem which requires identifying the time-dependent diffusivity
with periodic boundary condition and non-local boundary measurement has been inves-
tigated. The unique solvability and continuous dependence upon the input data have
all been proved. Numerically, the resulting inverse problem has been reformulated as a
nonlinear least-squares optimization problem which has been solved using the MATLAB
toolbox routine lsqnonlin. Numerical results show that accurate, robust and reasonably
stable solutions have been obtained. This problem seems rather stable and hence, in
general, no regularization was found necessary to be employed. However, for more severe
examples which violate the sufficient conditions under which the well-posedness of the
inverse problem hold, as expected, some regularization needs to be applied. For example,
in Subsection 6.3 for the minimization of the lsqnonlin routine used, the discrepancy
principle has been applied in order to terminate the iterative process before instability
sets in and this in turn has produced stable and accurate numerical solution.
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