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Amyloid Fibril Nucleation: Effect of Amino Acid Hydrophobicity 

 

ABSTRACT 

We consider the nucleation of amyloid fibrils when the process occurs by direct 

polymerization of fully extended peptides (i.e. β-strands) into fibrils composed of 

successively layered β-sheets with alternating weak and strong hydrophobic surfaces. We 

extend our recently developed nucleation model (Kashchiev, D.; Cabriolu, R.; Auer, S. J. 

Am. Chem. Soc. 2013, 135, 1531-1539) to derive general expressions for the work to form 

such fibrils, the fibril solubility, the nucleation work, the equilibrium concentration of 

nuclei, and the fibril nucleation rate as explicit functions of the supersaturation of the 

protein solution. Analysis of these expressions illustrates the effect of increased 

asymmetry between the weak and strong hydrophobic β-sheet surfaces on the 

thermodynamics and kinetics of the polymerization process. In particular, the application 

of our theoretical framework to a simple model peptide system shows that lowering the 

hydrophobicity of one β-sheet surface can hamper protein fibrillation, because the 

threshold concentration below which the fibril nucleation is practically arrested, and 

above which the process occurs vigorously, because then each monomer in the solution 

acts as a fibril nucleus, is shifted to higher concentrations. This effect is entirely due to the 

effect of asymmetry of the two hydrophobic β-sheet surfaces on the fibril solubility. In 

addition, with increasing asymmetry the nucleation rate of one fibril polymorph becomes 

increasingly dominant, illustrating that there is a morphological selection between the two 

possible polymorphs.  
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INTRODUCTION 

Proteins seem to have an intrinsic tendency to assemble into highly ordered fibrillar 

aggregates including amyloid fibrils which are associated with various neurodegenerative 

disorders such as Alzheimer’s and Parkinson’s diseases (e.g., refs 
1,2

). Structural studies 

(e.g., refs. 
3-5

) have shown that amyloid fibrils share a common cross-β structure formed 

by intertwined layers of β-sheets extending in a direction parallel to the fibril axis. The 

formation of such amyloid fibrils requires strong molecular interactions between the 

proteins with a preference in direction of the fibril axis.
6
 This might be attributed to the 

strongly directional protein backbone hydrogen bonding that enables β-strands to 

assemble into β-sheets arranged parallel to the fibril axis, and to the weaker side-chain 

side-chain interactions that cause the fibril to thicken and to form protofilaments.
7
 The 

strength of such bonds depends (among other factors) on the side-chain hydrophobicity of 

the amino acids in the β-strand. As the orientation of side-chains within a β-strand 

alternates (they successively orient along the positive and negative direction of the fibril 

thickening axis), the hydrophobicity of the two surfaces of a β-sheet is generally different, 

except for homo-polypeptides when all amino acids within a β-strand are composed of the 

same type of amino acid. In this article we address the question about how does an 

asymmetry in the hydrophobicity of the two β-sheet surfaces affect the thermodynamics 

and the kinetics of amyloid fibril nucleation? 

 The nucleation of amyloid fibrils refers to the process of random 

generation of such nanofibrils that have the ability to irreversibly grow. Unless the 

nanofibril size exceeds the size n* of the fibril nucleus, the nanofibril is more likely to 

dissolve than to grow (here n* is the number of peptide monomers in the fibril nucleus). 

In classical nucleation theory (CNT) (e.g., refs 
8,9

), at a given supersaturation the nucleus 

size n* has a unique value that can be obtained from thermodynamic considerations of the 
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energy gained when n* monomers in a supersaturated solution assemble into the nucleus, 

and the work needed to create the nucleus surface. Our recent simulations revealed,
10

 

however, that the strong interaction anisotropy that characterizes amyloid fibrils leads to a 

peculiar kind of nucleation not entirely complying with the paradigm of standard 

nucleation theory. The simulations showed that amyloid fibril nuclei are actually 

aggregates with ambiguous dimensionality, and the work on creating the nucleus/solution 

interface does not scale in a definite way with the nucleus size (in CNT this work scales 

as n*2/3 for 3D nuclei and as n*1/2  for 2D nuclei).
9
 As a consequence, at a given 

supersaturation the size n* does not have a unique value and amyloid nanofibrils of 

different size and shape can act as fibril nuclei. This called for a reconsideration of the 

theoretical description of amyloid fibril nucleation presented elsewhere,
11-13

 and a new 

theoretical approach
14

 provided a remarkably good agreement with the simulation data
10

 

for the nucleation of nanosized amyloid fibril composed of successively layered β-sheets 

with surfaces symmetric (i.e. equivalent) with respect to their hydrophobicity. The 

objective of this article is to extend our new nucleation model
14

 to address the question 

about the effect that the asymmetry in the hydrophobicity of the two β-sheet surfaces can 

have on the thermodynamics and the kinetics of amyloid fibril nucleation. 

The usefulness of the derived general expressions for the fibril nucleation rate J as 

an explicit function of the supersaturation s is twofold. First, they are a first step towards 

first-principle predictions of fibril nucleation rates based on the amino acid sequence of 

the proteins. Although existing models based on protein physiochemical properties are 

able to predict changes in aggregation propensities, they cannot provide information about 

the fibril nucleation barrier and rate (e.g. refs 
15-18

). Second, understanding the J(s) 

dependence of such fibrils is an indispensible ingredient in the set of rate equations 

describing the overall kinetics of unseeded amyloid fibrillation (see e.g. refs 
19-21

). 
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THEORETICAL METHODS 

 

Model. For describing the arrangement of virtually fully extended β-strands in a 

nanosized amyloid fibril (protofilament) of successively layered β-sheets with alternating 

weakly hydrophobic (WH) and strongly hydrophobic (SH) surfaces (Figure 1), we extend 

our recently developed lattice model.
12

 Each β-strand (a segment of a protein chain 

composed of several amino acids) is represented by a right rectangular prism. Due to their 

strong hydrogen bonds, the β-strands can arrange themselves laterally into β-sheets. The 

sheets consist of different number m of β-strands ( ,...3,2,1=m ) and are parallel to the 

fibril lengthening axis (the m axis in Figure 1). Along its thickening axis (the i axis in 

Figure 1), the fibril is built up of i β-sheets ( ,...3,2,1=i ) which are held together by e.g. 

relatively weak hydrophobicity-mediated bonds between the β-strands.
7
 The strength of 

such bonds depends on the side-chain hydrophobicity of the amino acids in the β-strand. 

As the orientation of side-chains within a β-strand alternates (they successively orient 

along the positive and negative direction of the m axis), the hydrophobicity of the two 

surfaces of a β-sheet is generally different, except for the case when all amino acids 

within a β-strand are identical. Since the fibril width is fixed and equal to the β-strand 

length, the fibril can be considered as a 2D aggregate in the m,i plane, with building 

blocks (the β-strands) arranged in a 2D lattice with simple rectangular symmetry (Figure 

1). The areas occupied by a β-strand at the fibril faces perpendicular to the m and i axes 

are a (m
2
) and ah (m

2
), respectively, and the area occupied by the β-strand in the m,i plane 

is a0 (m
2
) (Figure 1). These areas are given by dda

h
=

0
, dda

0
=  and 

hh
dda
0

= , where 
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dh (m) is the distance between the β-strands in a β-sheet, d (m) is the intersheet distance in 

the fibril, and d0 (m) is the β-strand length, i.e. the β-sheet width. 

The ontogenesis of the smallest (nanosized) amyloid fibrils in the m,i plane can be 

described by 2D crystal nucleation and growth theories.
8,9

 Essential parameters in these 

theories are the specific surface energies of the different crystal faces. In our model for 

amyloid fibril nucleation, three of the four fibril specific surface energies are of 

immediate importance: the first one is the specific surface energy σ  (J/m
2
) of the fibril 

face perpendicular to the m axis, the second and third one are the strong and weak specific 

surface energy σ
s
 (J/m

2
) and σ

w
 (J/m

2
) of the fibril faces perpendicular to the i axis, 

respectively. The fourth fibril specific surface energy, σ
0
 (J/m

2
), characterizes the fibril 

face parallel to the m,i plane and enters only implicitly, via the supersaturation, the 

description of the fibril energetics.
11

 To a first approximation, the surface energy is 

proportional to the energy of the broken bonds at the respective surface
 
and, for that 

reason, σ , σ
s
, and σ

w
 are largely determined by the strength of the bonds between the 

neighboring β-strands in the fibril. As fibril elongation is primarily driven by the 

formation of strong hydrogen bonds between the β-strands along the m axis, and fibril 

thickening along the i axis is due to the much weaker bonds between the β-strands arising, 

e.g., from the hydrophobic effect, for the amyloid fibrils we have the important inequality 

σ >>σ
s
,  σ

w
.
 

For the analysis to follow, we introduce the dimensionless specific surface 

energies ψ  and ψ
w

, ψ
s
 of the fibril faces perpendicular to the m axis and the i axis, 

respectively, which are given by 

ψ = aσ / kT = E / 2kT         (1) 

ψ
s
= a

h
σ

s
/ kT = E

s
/ 2kT        (2) 
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ψ
w
= a

h
σ

w
/ kT = E

w
/ 2kT        (3) 

where k is the Boltzmann constant and T (K) is the absolute temperature. The second 

equality in eqs 1 to 3 result from using the approximate relation
12

 σ = E / 2kT  between σ 

and the binding energy E of the bond between two nearest-neighbor β-strands in a β-

sheet, as well as the approximate relation σ
s
= E

s
/ 2kT  (or σ

w
= E

w
/ 2kT ) between σs  

(or σw) and the strong (or weak) hydrophobicity-mediated binding energy Es  (or Ew) of 

two nearest-neighbor β-strands in adjacent β-sheets.  

Importantly, the dimensionless specific surface energy ψ  perpendicular to the m 

axis can contain contributions from both nearest-neighbor hydrogen bonding and 

hydrophobicity-mediated bonds and is given by ψ =ψ
hb
+ c

s
ψ

s
+ c

w
ψ

w
. Here ψ

hb
 is the 

dimensionless specific surface energy due to hydrogen bonding and cs, cw are parameters 

determining the contributions of hydrophobicity-mediated bonds to ψ . For most of our 

illustrations we either set c
s
= c

w
= 0 , which means that there is no hydrophobic 

contribution to ψ , or we set c
s
= c

w
= 0.5  as in our previous work.

22
      

 

RESULTS AND DISCUSSION 

 

Nucleation Work. According to atomistic nucleation theory,
12

 an n-sized nanofibril 

composed of i β-sheets forms by a layer-by-layer nucleation mechanism. First, a 1β-sheet 

forms which at a transition size nt changes its shape to that of a 2β-sheet with a partially 

or fully built-up second β-sheet on one of its two sides. The so-formed 2β-sheet lengthens 

further by attachment of β-strands to the fibril ends till a second transition size nt is 

reached, at which the 2β-sheet changes its shape to that of a 3β-sheet with again a 

partially or fully built-up third β-sheet on one of its two sides. This process continues till 
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the n-sized nanofibril is composed of i β-sheets (see the schematic illustration of 

nanofibrils in Figure 2a). In our model (Figure 1) we assume that for a 1β-sheet the SH 

surface is always on top (indicated by the red line) whereas the WH surface is at the 

bottom (indicated by the blue line). In addition, a β-strand can only bind itself to a WH β-

sheet surface with its WH side, and to an SH β-sheet surface with its SH side. 

Consequently, the hydrophobicity of the surface of a nanofibril alternates with increasing 

number of layers. 

In order to write down a formula for the dimensionaless work w for nanofibril 

formation, we need to consider two different cases. The first is the formation of a fibril 

with an odd number i of β-sheets which, because of the assumed growth mechanism 

described above, always has one WH and one SH surface. Then w for sizes n =1,  2,...,  n
t
, 

can be written down as ( i =1,3, 5,... ) 

inisniw
sw

ψψψ 2]/)([),( ++−−=
      

(4) 

where s is the dimensionless supersaturation. The second case is the formation of a fibril 

with an even number i of β-sheets that can have either two WH or two SH surfaces. Then 

w for n =1,  2,...,  n
t
, can be written down as ( i = 2, 4, 6,... ) 

w(i,n) = −(s− 2ψ
w
/ i)n+ 2ψi        (5) 

w(i,n) = −(s− 2ψ
s
/ i)n+ 2ψi

 
       (6) 

for a fibril with two WH or two SH surfaces, respectively. In eqs 4, 5 and 6 the term –sn 

is the energy gained by assembling n monomers from the solution into an n-size 

nanofibril, and the ψ
w
,  ψ

s
and ψ  terms represent the work done on creating the total 

surface area of a nanofibril with the shape of an iβ-sheet without a β-strand on one of its 

two hydrophobic sides (in this case the nanofibril length m = n / i  is the same for all iβ-

sheets). 
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In order to write down formula for w for n = n
t
+1,  n

t
+ 2,...,  n

t
+m

t
 

(where inm
tt
/=  is the number of β-strands in any of the i equally long β-sheets 

constituting the iβ-sheet-shaped nanofibril when the first β-strand of the subsequent β-

sheet is attached to the nanofibril), we first consider the case of an iβ-sheet with an odd 

number of β-sheets (with one WH surface and one SH surface) that transforms into an 

(i+1)β-sheet where the new β-sheet forms by β-strand binding to the iβ-sheet’s either WH 

or SH side. Then w is given by  ( i =1,3, 5,... )  

)1(2)()]([),( ++−+−−++−= iimnimnmmsnniw
tsttwts

ψψψψ
  

(7) 

)1(2)()]([),( ++−+−−++−= iimnimnmmsnniw
twttstw

ψψψψ   (8) 

for the binding to the WH or SH side, respectively. In eqs 7 and 8, the third and fourth 

terms on the right side describe the change in the surface energy when the β-strands of the 

subsequent β-sheet attach to the WH or SH side of the nanofibril, respectively (the term 

( n− im
t
) is the number of β-strands in the subsequent layer). When a new layer forms, the 

hydrophobicity of the surface of a nanofibril changes from weak to strong (or strong to 

weak), see Fig. 1. In the second case, an iβ-sheet composed of an even number of layers 

(with two either WH or SH surfaces) transforms into an (i+1)β-sheet where the new β-

sheet forms by β-strand binding to one of the iβ-sheet two either WH or SH sides. Then w 

is given by  ( i = 2, 4, 6,... )   

)1(2)()]([),( ++−+−−++−= iimnimnmmsnniw
tsttwtw

ψψψψ
  

(9) 

)1(2)()]([),( ++−+−−++−= iimnimnmmsnniw
twttsts

ψψψψ   (10) 

for the binding to a WH or SH side, respectively. 

Figure 2 displays the n dependence of w from eqs 4 to 10 for nanofibril formation 

with exemplifying transition sizes n
t
=12 , 64, 144, 240. The lines are drawn with 

c
s
= c

w
= 0  at ψ =10 , ψ

s
=1  for ψ

w
=1 , 0.7, and 0.1, i.e. at three different ratios 
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ψ
w
/ψ

s
=1, 0.7 and 0.1 of the nanofibril hydrophobicity asymmetry. As seen in Figure 2a 

for the symmetric case (ψ
w
/ψ

s
=1), at s = 0.7ψ

s
, according to eq 4, w for a single β-sheet 

( i =1 ) increases linearly till n reaches the exemplifying transition size n
t
=12  

corresponding to transition length m
t
=12 ). The transformation from a 1β-sheet to a 1β-

sheet plus one β-strand on top of it, corresponds to a sharp increase of w between n =12  

and 13. After this shape transformation, according to eq 7, w diminishes linearly with n up 

to n = n
t
+m

t
= 24 . At this size, the nanofibril is composed of two equally long β-sheets 

and, according to eq 5, w for further elongation increases linearly again till the next 

exemplifying transition size n
t
= 64 . The transformation from a 2β-sheet to a 2β-sheet 

plus one β-strand on top of it, corresponds to a sharp increase of w between n = 64  and 

65. After this shape transformation, according to eq 9, w diminishes linearly with n up to 

n = n
t
+m

t
= 96 . After this size, the 3β-sheet can elongate unlimitedly, because at 

s = 0.7ψ
s
, according to eq 4, the work w(3,n)  also decreases with n. In standard 

nucleation theory, the nanofibril of size n*= n
t
+1= 65 , which requires the maximum 

formation work, is the fibril nucleus. 

The case of weak hydrophobicity asymmetry is illustrated in Figure 2b at 

ψ
w
/ψ

s
= 0.7  and s = 0.6ψ

s
. As before, according to eq 4, w for a single β-sheet ( i =1) 

increases linearly till n reaches the exemplifying transition size n
t
=12  corresponding to 

m
t
=12 . The sharp increase of w between n =12  and 13 now depends on whether the 1β-

sheet transforms into a 1β-sheet plus one β-strand on top or on bottom of the sheet. 

Binding of a β-strand with its SH side on top requires less work than binding of a β-strand 

with its WH side on bottom. Although the difference in w is small at n = n
t
+1=13 , 

according to eqs 7 and 8, it does increase as w diminishes linearly with n (with different 
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slopes) up to n = n
t
+m

t
= 24 , till the second β-sheet is fully formed. At this size, the 

nanofibril is composed of two equally long β-sheets with two either SH or WH surfaces. 

According to eqs 5 and 6, during further nanofibril elongation w increases linearly with 

different slopes till the next exemplifying transition size n
t
= 64 , as it requires more work 

to form a fibril with two SH surfaces than a fibril with two WH ones. There is a sharp 

increase of w between n = 64  and 65, when the 2β-sheet (with two either WH or SH 

sides) transforms into a 2β-sheet plus one β-strand attached either on top or on bottom, 

and according to eqs 9 and 10, w diminishes linearly (with different slopes) with n up to 

n = n
t
+m

t
= 96 . The 3β-sheets formed along these two different pathways are now 

energetically identical as they both have the same fibril structure with one WH and one 

SH surface. The 3β-sheet can elongate unlimitedly, because according to eq 4, at 

s = 0.6ψ
s
, the work w(3,n)  also decreases with n. In this case, the nanofibril of size 

n*= n
t
+1= 65 , which requires the maximum formation work, is also the fibril nucleus. 

The w(n)  dependence for the strongly asymmetric case, with ψ
w
/ψ

s
= 0.1  at 

s = 0.12ψ
s
, is illustrated in Figure 2c. The differences in w when fibrils with two SH or 

two WH surfaces form is now more pronounced. As can be seen in the figure, at the 

choosen s value, according to eq 5, w(2,n)  decreases with n for a fully formed 2β-sheet 

with two WH surfaces and it can elongate unlimitedly. In contrast, according to eq 6, 

w(2,n)  increases with n for a fully formed 2β-sheet with two SH surfaces. Furthermore, 

according to eq 4, w(3,n)  for a fully formed 3β-sheet also increases with n. Similarly, a 

fully formed 4β-sheet with two WH surfaces can elongate unlimitedly, whereas w(4,n)  

for a 4β-sheet with two SH surfaces, and w(5,n)  for a fully formed 5β-sheet increases 

with n. This implies that in a protein solution under such conditions preferably 2β-sheets 



! 12 

with two WH surfaces nucleate and grow, because 2β-sheets with two SH surfaces and 

3β-sheets dissolve. The growing 2β-sheets can transform into a 4β-sheet with again two 

WH surfaces, but for this to happen a potentially high nucleation barrier needs to be 

overcome (see Figure 2c).  

The transformation of fibrils from 2β-sheets to 4β-sheets, and 4β-sheets to 6β-

sheets was reported by Irbäck et al.
23

 observed in Monte Carlo simulations of essentially 

the same model peptide system. The underlying physical reason for such a behaviour is 

that increasing the hydrophobicity asymmetry of β-sheet surfaces can make iβ-sheets less 

soluble than (i+1) β-sheets, i.e. thinner nanofibrils are less soluble than thicker ones, 

which cannot be the case for the symmetric case (see e.g. the simulations by Zhang et al.
24

 

on the nucleation and elongation of amyloid fibrils). This will be discussed in the 

following section.   

 

Fibril Solubility. The coexistence supersaturations s
iβ  at which fibrils of fixed thickness 

of i β-sheets coexist with the protein solution are readily obtained by setting equal to zero 

the bracketed factor in eqs 4 to 6 because this factor is the driving force for fibril growth 

or dissolution. This is so, because at these s
iβ values w(i,n)  at fixed i does not change 

with n. Doing that leads to the formulas ( i =1,3, 5,... ) 

s
iβ = (ψw

+ψ
s
) / i         (11) 

for iβ-sheets with an odd number of layers and ( i = 2, 4, 6,... ) 

s
iβ ,w = 2ψw

/ i          (12) 

s
iβ ,s = 2ψs

/ i          (13) 

for iβ-sheets with an even number of β-sheets with two either WH or SH surfaces, 

respectively. For the symmetric case ( ψ
w
/ψ

s
=1 ), the above equations yield 
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s
iβ = siβ ,w = siβ ,s = 2ψs

/ i , i.e. then the coexistence supersaturations for the fibrils of 

thickness i =1, 2, 3, and 4 are given by s
iβ = 2 , 1, 2/3, and 1/2, respectively. As indicated 

in Figure 3a, the s > s
1β = 2  range (range i = 0  in the figure) corresponds to the 

metanucleation regime in which each β-strand in the solution acts as a fibril nucleus. 

Similarly, when s > s
2β =1 , the 2β-sheets can lengthen irreversibly. Thus, in the 

s
2β < s < s1β range (range i =1  in the figure), 1β-sheets tend to dissolve and the fibril 

nucleus is a 1β-sheet plus one β-strand attached to one of its two sides. The situation is 

analogous in the s
3β < s < s2β  range (range i = 2 ) and the s

4β < s < s3β  range (range i = 3 ) 

where the fibril nucleus is a 2β-sheet plus one β-strand attached sidewise and a 3β-sheet 

plus one β-strand attached sidewise, respectivley. 

For the weakly asymmetric case (Figure 3b), ψ
w
/ψ

s
= 0.7 , the coexistence 

supersaturations for iβ-sheets of thickness i =1 and 3 are obtained from eq 11 and are 

s
iβ =1.7  and 0.57, respectively. The coexistence supersaturations for the fibrils of 

thickness i = 2  and 4 with two WH surfaces are obtained from eq 12 and are s
iβw = 0.7  

and 0.35, respectively. Similarly, for fibrils with two SH surfaces, they are given by eq 13 

and are s
iβs =1  and 0.5, respectively. At this weak asymmetry, there exists a hierarchy of 

the coexistence supersaturations, s
4βw < s4βs < s3β < s2βw < s2βs < s1β , such that iβ-sheets are 

more soluble than (i+1)β-sheets. As indicated in Figure 3b, the s > s
1β =1.7  range (white 

area) corresponds to the metanucleation regime in which each β-strand in the solution acts 

as a fibril nucleus. When s > s
2βs =1, the 2β-sheets with two either WH or two SH 

surfaces can lengthen irreversibly, and in the s
2βs < s < s1β  range (orange area) the 1β-

sheet plus one β-strand attached to either side is a fibril nucleus. The situation changes 
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when s > s
2βw = 0.7 , as then only the 2β-sheets with two WH surfaces can lengthen 

irreversibly, whereas the one with two SH surfaces dissolves. Thus, in the 

s
2βw < s < s2βs range (yellow area) the 1β-sheet plus one β-strand attached to the β-sheet 

SH side is the fibril nucleus. In addition, we need to consider that in this supersaturation 

range also 3β-sheets can nucleate (although with a low rate) where the fibril nucleus is a 

2β-sheet with two SH sides plus one β-strand attached sidewise is a fibril nucleus. When 

s > s
3β = 0.57 , the 3β-sheet can lengthen irreversibly, and in the s

3β < s < s2βw  range 

(green area) the 2β-sheet with two either WH or SH surfaces plus one β-strand attached 

sidewise is the fibril nucleus. The situation when s > s
4βs = 0.5  is analogous to the one 

when s > s
2βs , and the situation when s > s

4βw = 0.35  is analogous to the one when 

s > s
2βw . 

For the strongly asymmetric case (Figure 3c), ψ
w
/ψ

s
= 0.1 , the coexistence 

supersaturations for the fibrils of thickness i =1 and 3 are also given by eq 11 and are 

s
iβ =1.1  and 0.37, respectively. The coexistence supersaturations for the fibrils of 

thickness i = 2  and 4 with two WH surfaces are given by eq 12 and are s
iβw = 0.1  and 

0.05, respectively, and with two SH surfaces they are given by eq 13 and are s
iβs =1  and 

0.5, respectively. At this strong asymmetry, the hierarchy of the coexistence 

supersaturations, s
4βw < s2βw < s3β < s4βs < s2βs < s1β , is such that iβ-sheets can be less 

soluble than (i+1)β-sheets. In particular, a 2β-sheet with two WH surfaces is less soluble 

than a 3β-sheet and a 4β-sheet with two SH surfaces. As can be seen in Figure 3c, 

although the threshold supersaturations have been shifted to lower values, for 

s > s
3β = 0.37  

the situation is analogous to that of the weakly asymmetric case, in the 

sense that the fibril nuclei are the same in the white, orange and yellow s ranges. When 
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s > s
2βw = 0.1 , however, a 2β-sheet and a 4β-sheet both with two WH surfaces can 

lengthen irreversibly. Thus, in the s
2βw < s < s3β  

range (green area) the 1β-sheet plus one 

β-strand attached to the sheet SH side and the 3β-sheet plus one β-strand attached to the 

sheet SH side are the fibril nuclei. In this asymmetry ratio, s
4βs = 0.5  (indicated by the 

dashed line) does not play a role. When s > s
4βw = 0.05 , the 4β-sheets with two WH 

surfaces can lengthen irreversibly, and in the s
4βw < s < s2βw  range (grey area) the 3β-sheet 

plus one β-strand attached to the SH side is the fibril nucleus. 

The threshold value of the asymmetry ratio above which there exists a hierarchy of 

the coexistence supersaturations, i.e. s
4βw < s4βs < s3β < s2βw < s2βs < s1β , where a (i+1)β-

sheet is less soluble than a iβ-sheet, is of practical relevance, as it allows to preferably 

nucleate and grow fibrils with a particular morphology, i.e. 2β-sheets with two weak 

hydrophobic surfaces (see section Nucleation Work). This threshold value can readily be 

obtained by setting equal the coexistence supersaturations 
w

s β2  and β3s  from eqs 11 and 

12, which gives ψ
w
/ψ

s
= 0.5 . 

 

Length Distribution of Nuclei. According to CNT in its self-consistent formulation, 

the equilibrium concentration C
m
t

*  of nuclei is given by the Boltzmann-type formula 

C
m
t

*
=C

1
e
w(1,1)−w* , where w(1,1)  is the dimensionless work to form the smallest nanofibril 

of one β-strand and w*≡ w(i,n*)  is the dimensionless nucleation work. From eq 4 we 

have w(1,1) = −s+ψ
s
+ψ

w
+ 2ψ . Setting n = n*  and using n*= n

t
+1= im

t
+1  in the eqs 7 

and 8, we obtain the following general formulas for the nucleation work of fibril nuclei 



! 16 

composed of an odd number of iβ-sheets plus one β-strand attached to its SH ( i =1,  3, 5, 

…; m
t
=1 , 2, 3, …; 2ψ

w
/ (i+1)< s < (ψ

s
+ψ

w
) / i ): 

w*= (ψ
w
+ψ

s
− is)m

t
−ψ

s
+ψ

w
− s+ 2ψ(i+1)      (14) 

or WH ( i =1,  3, 5, …; m
t
=1 , 2, 3, …; 2ψ

s
/ (i+1)< s < (ψ

s
+ψ

w
) / i ): 

w*= (ψ
w
+ψ

s
− is)m

t
−ψ

w
+ψ

s
− s+ 2ψ(i+1)      (15) 

side. Similarily, from eqs 9 and 10 we obtain the nucleation work for fibril nuclei with an 

even number of iβ-sheets plus one β-strand attached to either one of the β-sheet two WH 

( i = 2,  4, 6, …; m
t
=1 , 2, 3, …; (ψ

s
+ψ

w
) / (i+1)< s < 2ψ

w
/ i ): 

w*= (2ψ
w
− is)m

t
−ψ

w
+ψ

s
− s+ 2ψ(i+1)      (16) 

or two SH ( i = 2,  4, 6, …; m
t
=1 , 2, 3, …; (ψ

s
+ψ

w
) / (i+1)< s < 2ψ

s
/ i ): 

w*= (2ψ
s
− is)m

t
−ψ

s
+ψ

w
− s+ 2ψ(i+1)      (17) 

sides. Using w(1,1)  from above, and eqs 14 to 17, we now obtain the corresponding 

formulas for the equilibrium concentration of fibril nuclei composed of an odd number of 

iβ-sheets plus one β-strand attached to the β-sheet WH ( i =1,  3, 5, …; m
t
=1 , 2, 3, …; 

2ψ
s
/ (i+1)< s < (ψ

s
+ψ

w
) / i ): 

C
m
t

*
=m

t
C
1
e
is−(ψ

w
+ψ

s
)[ ]mt−2ψi+2ψw        (18) 

or SH ( i =1,  3, 5, …; m
t
=1 , 2, 3, …; 2ψ

w
/ (i+1)< s < (ψ

s
+ψ

w
) / i ): 

C
m
t

*
=m

t
C
1
e
is−(ψ

w
+ψ

s
)[ ]mt−2ψi+2ψs        (19) 

side, and ( i = 2,  4, 6, …; m
t
=1 , 2, 3, …; (ψ

s
+ψ

w
) / (i+1)< s < 2ψ

s
/ i ): 

C
m
t

*
= 2m

t
C
1
e
is−2ψ

w[ ]mt−2ψi+2ψw        (20) 
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for fibril nuclei with an even number of iβ-sheets plus one β-strand attached to either one 

of the β-sheet two WH sides or ( i = 2,  4, 6, …; m
t
=1 , 2, 3, …; 

(ψ
s
+ψ

w
) / (i+1)< s < 2ψ

s
/ i ): 

C
m
t

*
= 2m

t
C
1
e
is−2ψ

s[ ]mt−2ψi+2ψs        (21) 

when the β-strand attached to either one of the β-sheet two either SH sides. The factors 

m
t
 and 2m

t
 in these expressions take into account the fact that the β-strand can attach 

itself to m
t
 or 2m

t
 equivalent sites. Figure 4 displays C

m
t

*  from eqs 18 and 19 at ψ =10 , 

ψ
s
=1 , ψ

w
= 0.7 and s /ψ

s
=1.2  and 1.6 (as indicated). As can be seen from the figure, 

there exists a broad distribution of transition lengths m
t
 at which a 1β-sheet transforms 

into a 2β-sheet. Also, C
m
t

*  passes through a maximum at m
t
=m

t

* . We note that the length 

m
t
=m

t

*  of the most numerous nuclei and their concentration C
m
t

*

*  can easily be calculated 

from the condition for maximum of C
m
t

*

*  but we do not show the formulas here. As 

already mentioned earlier, such a distribution is in contrast to CNT, which assumes that 

the nucleus has a uniquely defined size. The concentration of fibril nuclei with thickness 

of one β-sheet plus one β-strand attached to the β-sheet SH side is higher than that when 

the β-strand is attached to the β-sheet WH side, whereas m
t

*  is similar for both cases. 

Increasing s shifts m
t

*

 to larger sizes and broadens the distribution.  

In order to calculate the fibril nucleation rate we need to know the total 

concentration C*= C
m
t

*

m
t
=1

∞

∑  of nuclei of all lengths. From eqs 18 to 21, with the aid of 

the exact formula px
p
= x / (1− x)2

p=1

∞

∑ , it follows that C *  is given by ( i =1,  3, 5, …; 

m
t
=1 , 2, 3, …; 2ψ

w
/ (i+1)< s < (ψ

s
+ψ

w
) / i ): 
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C*=C
1
e
i(s−2ψ )−ψw+ψs / (1− e

is−(ψw+ψs ))
2       (22) 

for fibril nuclei composed of an odd number of β-sheets plus one β-strand attached to the 

β-sheet SH or ( i =1,  3, 5, …; m
t
=1 , 2, 3, …; 2ψ

s
/ (i+1)< s < (ψ

s
+ψ

w
) / i ): 

C*=C
1
e
i(s−2ψ )−ψs+ψw / (1− e

is−(ψw+ψs ))
2       (23) 

two WH side, respectively, and by ( i = 2,  4, 6, …; m
t
=1 , 2, 3, …; 

(ψ
s
+ψ

w
) / (i+1)< s < 2ψ

s
/ i ): 

C*= 2C
1
e
i(s−2ψ )

/ (1− e
is−2ψw )

2        (24) 

for fibril nuclei with an even number of β-sheets plus one β-strand attached to either one 

of the β-sheet two WH or ( i = 2,  4, 6, …; m
t
=1 , 2, 3, …; (ψ

s
+ψ

w
) / (i+1)< s < 2ψ

w
/ i ): 

C*= 2C
1
e
i(s−2ψ )

/ (1− e
is−2ψ

s )
2        (25) 

two SH sides. 

 

Nucleation Rate. The fibril nucleation rate J (m
-3

 s
-1

) is the frequency of appearance of 

supernucleus fibrils per unit solution volume. We first determine J in the metanucleation 

range s >ψ
w
+ψ

s
 in which there is no nucleation barrier for fibril formation and a single 

β-strand in the solution is the fibril nucleus. Then J is the net number f
1
− g

2
 of monomers 

that attach per unit time to one of the two strong bonding sides of a monomer 

( s >ψ
w
+ψ

s
) (ref 

14
) 

J = ( f
1
− g

2
)C

1
         (26) 

Here the monomer-to-monomer attachment frequency f
1
= 2ka is twice the frequency k

a
 

(s
-1

) of monomer attachment to one of the two strong-bond sides of a monomer (Figure 

5a), and the detachment frequency g
2
= 2kd  is twice the frequency k

d
 (s

-1
) of monomer 
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detachment from one of the two strong-bond sides of a monomer (Figure 5b). Here k
a
 is 

expected to increase exponentially with s according to (ref 
10

)
 

k
a
(s) = k

e
e
s          (27) 

where k
e
 is the value of k

a
 at equilibrium (then 0=s ). In order to obtain an expression 

for the frequency of monomer detachment from one of the two strong-bond sides of a 

monomer, we derive a general expression for the detachment frequency k
d
(b,b

w
,b

s
)  of a 

monomer from the fibril periphery. As known from Boltzmann statistics, the probability 

for transition from an initial to a final state decreases exponentially with the work spent 

on the transition. The detachment of a peripheral monomer requires the work 

2bψ + 2b
w
ψ

w
+ 2b

s
ψ

s
, if the detaching β-strand is bound to neighboring β-strands with b, 

bw and bs bonds of energies 2ψ , 2ψ
w

 and 2ψ
s
 per bond, respectively. Therefore, the 

frequency k
d
(b,b

w
,b

s
)  of monomer detachment from the fibril periphery can be written 

down as kd (b,bw,bs ) = kref exp(−2bψ − 2bwψw − 2bsψs ) , where 
refk  is a reference 

frequency. Elimination of 
refk  can be achieved with the aid of the relation k

d,kink
= k

a
(0)  

for the equality between the frequency for monomer detachment from a kink site and the 

frequency of monomer attachment at equilibrium. Fibrils with one SH and one WH 

surface, however, have two such kink sites (Figure 5d), with detachment frequencies 

k
d
(1,1, 0)  and k

d
(1, 0,1) , and the work required to remove a monomer from them is 

different. Thus, for the frequency for monomer detachment from a kink site we use the 

geometric average kd,kink = kd (1,1, 0)kd (1, 0,1) = kref exp(−2ψ −ψs −ψw ) . Using this 

equation and Eq. (27) in k
d,kink

= k
a
(0)  leads to kref = ke exp(2ψ +ψw +ψs )  so that the 

general equation for the detachment frequency becomes  

k
d
(b,b

w
,b

s
) = k

e
e
2ψ (1−b)+ψw (1−2bw )+ψs (1−2bs )       (28)  
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The expression for monomer detachment from one of the two strong-bond sides of a 

monomer can then easily be obtained from eq 28 and is  

k
d
(1, 0, 0) = k

e
e
ψw+ψs         (29) 

Using the above expressions for f1, g2, ka, kd in eq 26, yields the general formula for the 

fibril metanucleation rate ( s >ψ
w
+ψ

s
) 

J = f
1
C
1
(1− e

ψs+ψw−s )         (30) 

 Similarly, we can determine J in the nucleation regime by 

J = ( f *−g*)C *         (31) 

where f *  and g*  are the frequencies of monomer attachment and detachment to and 

from the nucleus two kink sites (Figure 5c and 5d), respectively, and C *  is the total 

concentration of nuclei. As before, we set f *= f
1
= 2ka , k

a
 being given by eq 27. 

Concerning g*= 2kd,eff  
we need to take into account that this frequency depends on the 

nucleus thickness, i.e. the number i ≥1 of β-sheets constituting the nucleus. If the nucleus 

is composed of a 1β-sheet plus one β-strand on its SH side, 

( ) wekkkk eddeffd

ψ
==

2/1

, )1,0,1()0,0,1( is the geometric average of the detachment 

frequencies k
d
(1, 0, 0)

 
from one of the two strong-bond sides of a fibril and the 

detachment frequency k
d
(1, 0,1)

 
of a monomer from the fibril top kink site. Similarly, if 

the nucleus is composed of a 3β-sheet plus one β-strand on its SH surface, 

kd,eff = kd (1, 0, 0)kd (1, 0,1)kd (1,1, 0)kd (1, 0,1)( )
1/4
= kee

ψw /2

 
 is the geometric average of the 

detachment frequencies k
d
(1, 0, 0)

 
from one of the two strong-bond sides of a fibril, 

k
d
(1, 0,1)  from the fibril top kink site, k

d
(1,1, 0)

 
from the fibril bottom kink site, and 

k
d
(1, 0,1)

 
from the fibril top kink site. The general formula of the monomer detachment 

frequency from a nucleus composed of an odd number i =1 , 3, … of β-sheets plus one β-
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strand on its top SH side is kd,eff = kee
2ψw /(i+1) . Using the above expressions for f*, g*, ka, 

kd,eff in eq 31 yields the corresponding general formula for the fibril nucleation rate 

( i =1,  3,  5...;
 
2ψ

w
/ (i+1)< s < (ψ

s
+ψ

w
) / i ) 

J =C
1
f
1
e
i(s−2ψ )−ψw+ψs

1− e
2ψw /(i+1)[ ]−s

1− e
is− ψw+ψs( )( )

2       (32) 

Analogously, it can be shown that when the nucleus is composed of an odd number i =1, 

3, 5, … of β-sheets plus one β-strand bound to the β-sheet WH side, J is given by 

( i =1,  3,  5,...; ; 2ψ
s
/ (i+1)< s < (ψ

s
+ψ

w
) / i ) 

J =Cf
1
e
i(s−2ψ )−ψs+ψw

1− e
2ψs /(i+1)[ ]−s

1− e
is− ψw+ψs( )( )

2       (33)   

Next, we consider the case when the nucleus is composed of a 2β-sheet plus one β-strand 

on either of its two SH or WH sides. In both cases, 

kd,eff = kd (1, 0, 0)kd (1,1, 0)kd (1, 0,1( )
1/3
= kee

(ψw+ψs )/2 , and the general formula for the effective 

monomer detachment frequency from nuclei is kd,eff = kee
(ψw+ψs )/(i+1) . Using the above 

expressions for f*, g*, ka, kd,eff in eq 31, yields the general formula for the fibril nucleation 

rate  ( i = 2,  4,  6,  ...;
 
(ψ

s
+ψ

w
) / (i+1)< s < 2ψ

w
/ i ) 

J = 2C
1
f
1
e
i(s−2ψ ) 1− e

(ψs+ψw )/(i+1)[ ]−s

1− e
is−2ψw( )

2       (34)   

when the fibril nucleus is composed of an even number i of β-sheets plus one β-strand on 

either of its two WH sides, or by  ( i = 2,  4,  6,  ...;
 
(ψ

s
+ψ

w
) / (i+1)< s < 2ψ

s
/ i ) 

J = 2C
1
f
1
e
i(s−2ψ ) 1− e

(ψs+ψw )/(i+1)[ ]−s

1− e
is−2ψs( )

2       (35)   
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when the β-strand is on either of its two SH sides. Equations 30 and 32-35 are the central 

result of the present study. 

Figure 3 shows the dependence of the fibril nucleation rate J on supersaturation s 

obtained from Equations 30, 32-35 with c
s
= c

w
= 0  at ψ =10 , ψ

s
=1 for asymmetry 

ratios ψ
w
/ψ

s
=1, 0.7, 0.1 (as indicated). As shown in section Fibril Solubility, for the 

symmetric case, ψ
w
/ψ

s
=1, the coexistence supersaturations for the fibrils of thickness 

i =1, 2, 3, and 4 are given by s
iβ = 2 , 1, 2/3, and 1/2, respectively. As indicated in Figure 

3a, the rate J  (Equation 30) in the  s > s
1β  range (range i = 0  in the figure) corresponds to 

the metanucleation regime in which each β-strand in the solution acts as a fibril nucleus. 

In the nucleation regime, J from Equations 32-35 are identical and exhibit jumps at the 

transition supersaturations s
iβ = 2 , 1, 2/3, and 1/2. This is so, because at these 

supersaturations the nucleus changes from e.g. a monomer to a 1β-sheet plus one β-strand 

at the nucleation/metanucleation border s
1β = 2 , or in general from an iβ-sheet plus one β-

strand to an (i+1)β-sheet plus one β-strand at s
iβ . 

For the weakly asymmetric case, ψ
w
/ψ

s
= 0.7 , as shown in section Fibril 

Solubility, there exists a hierarchy of the coexistence supersaturations, 

s
4βw < s4βs < s3β < s2βw < s2βs < s1β , such that iβ-sheets are more soluble than (i+1)β-sheets. 

In the metanucleation range, s > s
1β =1.7 , the nucleation rate J is again described by 

Equation 30. In the s
2βs < s < s1β  

range (orange area in Figure 3b), when the fibril nucleus 

is either a 1β-sheet plus one β-strand attached to the β-sheet either WH or SH side, J is 

described by Equations 32 and 33, respectively. In this supersaturation range the 

difference between the two rates is small, mainly because the work to form the 

corresponding fibril nuclei is similar. The situation changes in the s
2βw < s < s2βs range 
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(yellow area in Figure 3b), because in this range the fibril nuclei are 1β-sheets plus one β-

strand attached to their SH side and 2β-sheets with two WH surfaces plus one β-strand 

attached to either surface. For the former, J is described by Equation 32, and is many 

orders of magnitude higher than J for the latter (described by Equation 34). In the 

s
3β < s < s2βw  

range (green area in Figure 3b), the fibril nuclei are 2β-sheets plus one β-

strand attached to either one of the two WH or SH sides, and J is described by Equations 

34 and 35, respectively. In this supersaturation range the difference between the two rates 

is small again, because the work to form the two different types of nuclei is similar. In the 

s
4βs < s < s3β  

range (brown area in Figure 3b), J is again described by Equations 32 and 

33, as in the s
2βs < s < s1β  range, and the difference between J for fibrils with two either 

WH or SH sides becomes large again.  

The strongly asymmetric case, ψ
w
/ψ

s
= 0.1 , is analogous to the weakly 

asymmetric case for supersaturations s > s
3β (the yellow, orange and white areas in Figure 

3c). The main effect of increasing the hydrophobicity asymmetry is that the nucleation 

rate J resulting from a fibril nucleus composed of a 1β-sheet plus one β-strand attached to 

the SH side is orders of magnitude higher than that of fibrils where the fibril nucleus is a 

1β-sheet plus one β-strand attached to the WH side or a 2β-sheet with two WH surfaces 

plus one β-strand attached to either surface. In the s
2βw < s < s3β  range (green area in the 

Figure 3c), as discussed in section Fibril Solubility, the fibril nuclei are composed of a 1β-

sheet plus one β-strand attached to the SH side and a 3β-sheet plus one β-strand attached 

to the SH side. In this s range, the nucleation rate J resulting from a fibril nucleus 

composed of a 1β-sheet plus one β-strand attached to the SH side is orders of magnitude 

higher than the one due to nuclei with the shape of a 3β-sheet plus one β-strand attached 

to the SH side. The prediction of J quantifies our previous suggestion in section 
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Nucleation Work (Figure 2c), that in a protein solution with strongly asymmetric 

hydrophobicity of β-strands, over a wide supersaturation range (the green and yellow 

areas in Figure 3c), preferably 2β-sheets with WH surfaces nucleate and grow. 

Finally, we note that, experimentally, it is not possible to directly measure 

nucleation rates for fibrils with different structures, but rather the overall nucleation rate. 

For example in the case illustrated in Figure 3b, in the orange range, it is not possible to 

directly measure the nucleation rate resulting from 2β-sheets with two WH surfaces and 

to distinguish it from that due to 2β-sheets with two SH ones. Instead, the overall 

nucleation rate Jtot is measured which is the sum of the two rates. In order to illustrate the 

main effect of increasing the hydrophobicity asymmetry we compare in Figure 6 the s 

dependence of Jtot obtained in each supersaturation regime with c
s
= c

w
= 0  at ψ =10 , 

ψ
s
=1and ψ

w
/ψ

s
=1, 0.7, 0.1 (as indicated). The main effect is that lowering ψ

w
 can 

increase the overall nucleation rate by many orders of magnitude at a given s value. As 

can be seen in the Figure, in particular in the low supersaturation range, 0.1< s < 0.7 , 

whereas Jtot for the symmetric and weakly asymmetric case is practically zero, for the 

strongly asymmetric case Jtot is high enough such that it can be detected experimentally. 

As we have found in a previous work
14

, the main reason for this is the dependence of the 

threshold supersaturation s
1β = e

ψ
w
+ψ

s   at the nucleation/metanucleation border on both ψ
s
 

and ψ
w

. Thus, at a given ψ
s

value, lowering ψ
w

shifts s
1β  to lower values thereby 

narrowing the nucleation range and broadening the metanucleation one. Furthermore, in 

this figure we also show the predictions of the dominating J in each supersaturation range 

(red lines in Figures 3b and 3c) showing that they are almost identical to Jtot.  

In order to illustrate and understand the practical implications of the effect of 

asymmetric hydrophobicity of the β-sheet surfaces, in the next section we apply the 
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developed formulas to a model peptide system, and predict absolute values for the fibril 

nucleation rate. 

 

Application to a model peptide system. Experiments on protein aggregation are 

often performed at fixed temperature T. Then the supersaturation can be controlled by the 

monomer protein concentration C
1
, because

11 

s = ln(C
1
/C

e
)          (36) 

where C
e
 is the fibril solubility. This enables us to derive formulas for the C

1
 dependence 

of the nucleation rate J. Using eq (36) in eq (27), and combining it with the relation 

f
1
= 2ka , yields the monomer attachment frequency f

1
= 2keC1 /Ce  

as a function of C
1
. 

Then the C
1
 dependence of the metanucleation rate obtained from eq 30 is (C

1
>C

e
e
ψ
w
+ψ

s ) 

J = A
1
C
1

2
(1− A

2
C
1

−1
)          (37) 

where A
1
= 2k

e
/C

e
 and A

2
=C

e
e
ψw+ψs . 

Similarly, we obtain the formula for J in the nucleation regime when the fibril 

nuclei are composed of an odd number i of β-sheets plus one β-strand 

( i =1,  3,  5,  ...;  C
e
e

2ψ
w

/(i+1)
<C1 <Ce

e
(ψ

w
+ψ

s
)/i

 or C
e
e

2ψ
s
/(i+1)

<C1 <Ce
e

(ψ
w
+ψ

s
)/i ): 

J = A
1
C
1

i+2 1− A2C1
−1

1− A
3
C
1

i( )
2         (38) 

Here A
1
= (2k

e
/C

e

i+1
)e

−2ψi−ψw+ψs  or A
1
= (2k

e
/C

e

i+1
)e

−2ψi−ψs+ψw  when the β-strand is on the 

nucleus SH or WH side, respectively, and A2 and A3 are given by A
2
=C

e
e
2ψw /(i+1)

 
and 

A
3
=C

e

−i
e
−(ψw+ψs )  in both cases.  

Furthermore, when the fibril nuclei are composed of an even number i of β-sheets plus 

one β-strand, the fibril nucleation rate is given again by eq (38), but with  ... ,6 ,4 ,2=i , 
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C
e
e
(ψ

w
+ψ

s
)/(i+1)

<C
1
<C

e
e
2ψ

w
/i or C

e
e
(ψ

w
+ψ

s
)/(i+1)

<C
1
<C

e
e
2ψ

s
/i ,  A

1
= (4k

e
/C

e

i+1
)e

−2ψi  and 

A
2
=C

e
e
(ψw+ψs )/(i+1) . As to the constant A3, it is different when the β-strand is on one of the 

nucleus two WH or SH sides:
 
A
3
=C

e

−i
e
−2ψw  or A

3
=C

e

−i
e
−2ψs  in the former or the latter 

case, respectively. 

Equations 37 and 38 are also a central result in the present study, and in the 

following we apply them to a model peptide system. The peptides are composed of 10 

amino acids that can arrange in their fully extended conformation as β-strands in a 

nanosized amyloid fibril (protofilament) of successively layered β-sheets with alternating 

WH and SH surfaces (Figure 1). The β-strand length is approximately d
0
= 0.4  nm (e.g. 

ref.
7
), the known value for the distance between the β-strands in a β-sheet is d

h
= 0.5  nm 

(e.g. ref.
7
), and the intersheet distance in the fibril is d =1  nm. Taking these values 

together with σ = 20  mJ/m
-2

 (estimated value, ref.
25

) and σ
s
= 4  mJ/m

-2
 (e.g. ref.

26
), it 

follows from eqs 1 and 2 that ψ =19 , ψ
s
=1.9 , and ψ /ψ

s
=10  for this model peptide at 

T = 300  K. Importantly, as the binding energy of β-strands within the fibrils is different 

for each ψ
w
=1.9 , 1.33 and 0.19 corresponding to asymmetry ratios  ψ

w
/ψ

s
=1,  0.7, and 

0.1, respectively, we expect that the fibril solubility C
e
 is different. As the effect of 

asymmetry of the two hydrophobic β-sheet surfaces on C
e
 has not been determined 

experimentally, we estimate it theoretically by making use of the van’t Hoff equation and 

the Haas-Drenth lattice model for protein crystals.
27

 The integrated van’t Hoff equation is 

given by C
e
=C

r
e
−λ  where C

r  
is a practically temperature independent reference 

concentration and λ = L / kT is the dimensionless latent heat of peptide aggregation into 

β-sheets. Here L is the latent heat of peptide aggregation into such aggregates. In the 

Haas-Drenth lattice model for protein crystals λ is half the binding energy of peptides in 
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the aggregates, which is equivalent to the broken bond energy λ = 2ψ +ψ
s
+ψ

w
 at the 

periphery of a fibril in the m,i plane. The fibril solubility is then given by  

C
e
=C

r
e
−2ψ−ψ

s
−ψ

w            (39) 

where ψ =ψ
hb
+ c

s
ψ

s
+ c

w
ψ

w
. Assuming that C

e
= 6.0×10

21  m
-3

 (= 10 µM) (e.g. ref 
28

) for 

fibrils composed of short peptides, and that the coefficients c
s
= c

w
= 0 , we can calculate 

C
r
 to be 8.6×1039  m

-3
. Using this Cr value and ψ =19 , ψ

s
=1.9  in eq 39, the solubilities 

for fibrils with ψ
w
=1.33 , and 0.19 (corresponding to asymmetry ratio 0.7 and 0.1) are 

C
e
=1.1×10

22  m
-3

 (= 18 µM) and C
e
= 3.3×10

22

 
m

-3
 (= 55 µM), respectively. Thus, 

lowering ψ
w

 at constant ψ
s
 shifts C

e
 to higher concentrations. Assuming that k

e
=10

−4  s
-

1
 (e.g. ref 

29
) enables us to calculate the J(C1)  dependence from eq 38, and thus J

tot
(C

1
)  

with c
s
= c

w
= 0 at ψ =19 , ψ

s
=1.9  for ψ

w
=1.9 , 1.33, 0.19 (Figure 7a). The 

characteristic feature of the J
tot
(C

1
)  dependence is the sharp rise (10 orders of magnitude) 

at the nucleation/metanucleation border over a very narrow concentration range. Below 

this threshold concentration, fibrils can be nucleated within a day only in volumes of 1 

mm
3
 or larger, used in in vitro experiments. In volumes of about 1 µm

3
 or smaller, 

comparable to that of biological cells, the fibril nucleation rate is practically negligible 

(less than 1 nucleus per year). This illustrates the important role of the threshold 

concentration C
1β  

in amyloid fibril nucleation, and by combining eq 11 with eq 36 it is 

given by  

C
1β =Ce

e
ψ
s
+ψ

w          (40) 

Combining eqs 39 and 40 shows that the threshold concentration C
1β  does not change 

when lowering ψ
w

 at constant ψ
s
, because the shift of C

e
 to higher concentrations 

compensates the shift of C
1β  lower ones. 
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The important role of the fibril solubility in amyloid fibril nucleation can be 

further illustrated when we consider that the binding energy in direction of the fibril axis 

is a combination of hydrogen bonding energy and the hydrophobic energies, i.e 

ψ =ψ
hb
+ (ψ

s
+ψ

w
) / 2  where we set c

s
= c

w
= 0.5 . Using again that ψ =19 ,ψ

s
=1.9  for 

this model peptide at T = 300  K, and considering that for the symmetric case ψ
w
=1.9 , 

we calculate that ψ
hb
=17.1 . Thus, the ψ

 
values with c

s
= c

w
= 0.5  at ψ

hb
=17.1 , ψ

s
=1.9

 

for ψ
w
=1.33  and 0.19 (corresponding to asymmetry ratio 0.7 and 0.1) are ψ =18.7  and 

ψ =18.2 , respectively. Assuming that C
e
= 6.0×10

21  m
-3

 (= 10 µM) (e.g. ref 
28

) for fibrils 

composed of short peptides, we calculate from eq 39 that C
r
= 8.6×10

39  m
-3

 as above. 

Substituting this Cr value in eq 39, the solubilities for such fibrils with ψ
w
=1.33  and 0.19 

(corresponding to asymmetry ratio 0.7 and 0.1) are C
e
=1.9×10

22  m
-3

 (= 31 µM) and 

C
e
=1.8×10

23

 
m

-3
 (= 306 µM), respectively. Thus, considering the contribution of 

hydrophobicity to ψ
 
when lowering ψ

w
 shifts C

e
 to substantially higher concentrations 

as when they are neglected. With k
e
=10

−4  s
-1

 (e.g. ref 
29

) we again calculate the J(C1)  

dependence from eq 38, and thus J
tot
(C

1
)  with c

s
= c

w
= 0.5  for asymmetry ratios 

ψ
w
/ψ

s
=1, 0.7, 0.1 (Figure 7b). As can be seen from this figure, the main effect of 

increasing the asymmetry (decreasing ψ
w

 at constant ψ
s

) is to shift C
1β  to higher 

concentration and to hamper protein fibrillation, because metanucleation commences at 

higher C
1

 values. Using the Ce values calculated above in eq 40, the threshold 

concentrations for fibrils with asymmetry ratios ψ
w
/ψ

s
=1 , 0.7 and 0.1 are 

C
1β = 2.7×10

23  m
-3

 (= 45 µM), C
1β = 4.8×10

23  m
-3

 (= 0.79 mM) and C
1β =1.5×10

24

 
m

-3
 

(= 2.47 mM), respectively.  
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The central result of this discussion is that increasing the hydrophobicity 

asymmetry (decreasing ψ
w

 at constant ψ
s
) can shift C

1β  to higher concentrations thereby 

hampering protein fibrillation, because metanucleation commences at higher C
1
 values. 

This effect is entirely due to the effect of asymmetry of the two hydrophobic β-sheet 

surfaces on the fibril solubility, because it shift C
e
 to higher concentrations. This effect 

becomes more pronounced if we consider that the binding energy in direction of the fibril 

axis is a combination of hydrogen bonding energy and the hydrophobic energies. 

  

CONCLUSIONS  

 

In this study we provide insight into the thermodynamics and kinetics of the direct 

polymerization of peptides into nanofibrils composed of successively layered β-sheets 

with alternating WH and SH surfaces.  

Analysis of the work w for fibril formation reveals that an n-sized nanofibril can 

from by two polymerization pathways. Along the first pathway, a 1β-sheet forms first, 

which then changes its shape to that of a 2β-sheet with two SH surfaces, which then 

changes its shape to a 3β-sheet with one WH and one SH surface, and then transforms 

into a 4 β-sheet with two SH surfaces. This process continues in the same way during the 

further fibril thickening. Along the second pathway, the 1β-sheet changes its shape to that 

of a 2β-sheet with two WH surfaces, which changes its shape to a 3β-sheet with one WH 

and one SH surface, and then transforms into a 4 β-sheet with two WH surfaces. As the 

surface tension of fibrils with two WH surfaces is lower than that of fibrils with two SH 

surfaces, the corresponding nucleation work w* is lower and the fibrils preferably 

nucleate along the second pathway. The larger the asymmetry of the surface energies of 
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the two hydrophobic surfaces (i.e. the smaller the ratio ψ
w
/ψ

s
), the less likely it is that 

fibrils form by the first pathway. 

Regarding the thermodynamics, analysis of the work w for fibril formation 

provides expressions for the threshold supersaturations s
iβ  above which iβ-sheets can 

elongate irreversibly. This analysis shows that there exists a threshold hydrophobicity 

asymmetry ratio ψ
w
/ψ

s
= 0.5  above which the hierarchy of the coexistence 

supersaturations is such that thicker iβ-sheets are less soluble than thinner ones (i.e. 

s
3β < s2βw < s2βs < s1β ). In contrast, below this threshold ratio this hierarchy becomes 

distorted, such that thicker iβ-sheets can be more soluble than thinner ones. In particular, 

we show that s
2βw < s3β < s4βs < s2βs < s1β  at ψ

w
/ψ

s
= 0.1 , implying that a 2β-sheet with 

two WH surfaces is less soluble than a 3β-sheet with one WH and one SH surface and a 

4β-sheet with two SH surfaces. Importantly, the order of the threshold supersaturations 

s
iβ  

determines the type of fibril nuclei in a given s range. For example, in the range 

s
2βs < s < s1β  the 1β-sheet tends to dissolve whereas a 2β-sheet with two WH surfaces can 

irreversibly elongate, and we found that the 1β-sheet plus one β-strand attached to the 

sheet either WH or SH surface is the fibril nucleus.  

In each of the supersaturation ranges, there exists an equilibrium concentration 

C
m
t

*

 
of nuclei with a broad distribution of transition lengths m

t
 at which an iβ-sheet 

transforms into an (i+1)β-sheet. In the example above, the 1β-sheet can transform into a 

2β-sheet at any transition length m
t
. Such a distribution is in contrast to classical 

nucleation theory, which assumes that the nucleus has a uniquely defined size. Due to the 

asymmetry of the surface energies of the two hydrophobic surfaces there exist two such 

distribution functions in a given s range. As the nucleation work w* of fibrils with two 
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WH surfaces is less than that of fibrils with two SH surfaces, the concentration of the first 

kind of fibril nuclei in the protein solution is much higher than that of the second kind of 

nuclei. 

Regarding the kinetics of fibril formation, we obtain general formulas for the J(s)
 

dependence given by eqs 30 and 32 to 35. In each s range there exist two nucleation rates 

that are due to the fact that fibrils can nucleate by the two pathways described above. A 

comparison between the J(s)
 
dependences of fibrils that nucleate along the first and the 

second pathways, and the overall nucleation rate J
tot

 (the sum of the two rates) shows that 

Jtot is almost identical to J for the second pathway over the whole supersaturation range. 

So, kinetically, there is a segregation (or morphological selection) between the two types 

of fibrils, and only one type is relevant. The characteristic feature of the J
tot
(s)  

dependence is a sharp drop at the nucleation/metanucleation border. We show that the 

main effect of increasing the hydrophobicity asymmetry, i.e. of lowering ψ
w

 at a given 

ψ
s
value, is a shift of s

1β  to lower s values and, thereby, a stimulation of protein 

fibrillation. However, application of our considerations to a model peptide system (and to 

derivation of a general formula for the J(C
1
)

 
dependence, eq 38) shows that increasing 

the hydrophobicity asymmetry (decreasing ψ
w

 at constant ψ
s
) can shift C

1β  to higher 

concentrations and to hamper protein fibrillation, because metanucleation commences at 

higher C
1
 values. This effect is entirely due to the effect of asymmetry of the two 

hydrophobic β-sheet surfaces on the fibril solubility, because it shifts C
e

 to higher 

concentrations. This effect becomes more pronounced if we consider that the binding 

energy in direction of the fibril axis is a combination of hydrogen bonding energy and the 

hydrophobic energies. 
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Finally, we emphasize that the results obtained above apply to one-step fibril 

nucleation, i.e when the monomeric proteins polymerize directly into fibrils, and that the 

analysis treats homogeneous nucleation of amyloid fibrils occurring when nucleation-

active foreign particles or substrates are absent from the solution. The derived general 

expressions for the fibril nucleation rate J as an explicit function of the supersaturation are 

a step towards first-principle predictions of fibril nucleation rates based on the amino acid 

sequence of the proteins. The application to specific protein systems, however, requires 

knowledge of the fibrils structure, the fibril solubility, the broken bond energies of amino 

acids (or alternatively the surface tensions of the fibril lengthening and thickening axis). It 

should be mentioned that entropic effects such as the loss of entropy when a β-strand is 

attached to the fibril or the entropy due to vibrations of the β-strand within fibrils are not 

explicitly considered. However, entropic effects on the fibril solubility and entropic 

contributions to the broken bond energies are automatically accounted for when 

experimental data for Ce and ψ, ψh are used.  

The results obtained in this study highlight the importance of the fibril solubility in 

amyloid fibril nucleation. Currently, the focus of experimental studies on amyloids is 

mostly on their structure, assembly mechanism and their interactions with the biological 

environment. Not so many experiments focus on determining the fibril solubility and how 

it changes with the fibril structure and amino acid sequence. Similarly, computational and 

theoretical studies of amyloid focus less on determining the fibril solubility and a better 

understanding is urgently needed. Nevertheless, the analysis made offers answers to the 

fundamental question of the effect of asymmetry between the weak and strong 

hydrophobic β-sheet surfaces on the thermodynamics and kinetics of the polymerization 

process, which could be a helpful guide in studying the intriguing phenomenon of 

amyloid fibril nucleation. 
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Figure 1. Schematic of nanosized amyloid fibril (protofilament) with thickness of i β-

sheets and length of m  β-strands. The σ ’s are the specific surface energies of the fibril 

surfaces, and the a’s are the areas of the β-strand faces. The red and blue areas indicate 

the β-sheet SH and WH surfaces, respectively. In our model we assume that for a 1β-

sheet the SH surface is always on top (indicated by the red line) whereas the WH surface 

is at the bottom (indicated by the blue line). In addition, a β-strand can only bind itself to 

a WH β-sheet surface with its WH side (blue binds to blue) and to an SH β-sheet surface 

with its SH side (red binds to red). Thus, the hydrophobicity of the surface of a nanofibril 

alternates with increasing number of β-sheets (red, blue, red, blue, etc.). 
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Figure 2. Work w for nanofibril formation as a function of the nanofibril size n with 

c
s
= c

w
= 0  at ψ =10 and ψ

s
=1 . In panel (a) ψ

w
/ψ

s
=1 (symmetric hydrophobicity) at 

s /ψ
s
= 0.7 , in panel (b) ψ

w
/ψ

s
= 0.7  (weakly asymmetric hydrophobicity) at 

s /ψ
s
= 0.6 , and in panel (c) ψ

w
/ψ

s
= 0.1  (strongly asymmetric hydrophobicity) at 

s /ψ
s
= 0.12 . The transition sizes n

t
=12 , 64, 144, 240 are the same for all three ψ

w
/ψ

s
 

ratios (as indicated). Successive nanofibril shapes are schematically shown to visualize 

the nanofibril transitions from 1β- to 2β-sheet, from 2β- to 3β-sheet, and so on. The 

smallest rectangle represents a single β-strand and it is shown in red when it binds itself to 

an SH β-sheet surface and in blue when it binds itself to a WH one. The red and blue lines 

correspond to the formation work w of nanofibrils that form along a low- and high-energy 

pathway,respectively. 
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Figure 3. Rate J of fibril nucleation as a function of the supersaturation s with c
s
= c

w
= 0  

at ψ =10 , ψ
s
=1

 
for ψ

w
/ψ

s
=1  (panel a), ψ

w
/ψ

s
= 0.7  (panel b), and ψ

w
/ψ

s
= 0.1  

(panel c). Shapes of the fibril nuclei are schematically shown in the different 

supersaturation ranges indicated by the white, orange, yellow, green, brown, and grey 

areas. The red and blue lines correspond to the nucleation rates obtained for fibril nuclei 

with a β-strand attached on the nucleus SH (red monomer) or WH (blue monomer) sides, 

respectively. 
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Figure 4. Length distribution of fibril nuclei with thickness of one β-sheet: lines 1.2 and 

1.6 are at s /ψ
s
=1.2  and 1.6, respectively, i =1, ψ =10 , ψ

s
=1  and ψ

w
= 0.7 . The red 

and blue lines correspond to fibril nuclei with a β-strand on the SH (red) or WH (blue) 

side of the β-sheet, respectively. 
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Figure 5. Schematic illustration of the monomer attachment and detachment frequencies 

k
a
, k

d
 and k

d,kink
. The red and blue monomers indicate the attachment to the fibril SH and 

WH side, respectively. The pluses indicate the nanofibril kink sites.  
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Figure 6. Overall nucleation rate Jtot for fibril formation as a function of the 

supersaturation s with c
s
= c

w
= 0  at ψ =10 , ψ

s
=1  for ψ

w
=1 , 0.7, 0.1 corresponding to 

asymmetry ratios ψ
w
/ψ

s
=1, 0.7, 0.1 (as indicated). The black and red lines indicate the 

rate in the metanucleation and nucleation regimes, respectively. The dotted green line 

indicate the highest rate from eq 38 in the corresponding s range (red lines from Figure 3b 

and 3c).  
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Figure 7. (a) Concentration dependence of the overall nucleation rate Jtot for the model 

peptide system with c
s
= c

w
= 0  at ψ =19 , ψ

s
=1.9  for ψ

w
=1.9  (black line), 1.33 (red 

line), 0.19 (blue line) corresponding to asymmetry ratios ψ
w
/ψ

s
=1 , 0.7, 0.1. (b) 

Concentration dependence of the overall nucleation rate Jtot for the model peptide system 

with c
s
= c

w
= 0.5  at ψ =19 , ψ

s
=1.9  for ψ

w
=1.9  (asymmetry ratio ψ

w
/ψ

s
=1 ), at 

ψ =18.72 , ψ
s
=1.9  for ψ

w
=1.33  (asymmetry ratio ψ

w
/ψ

s
= 0.7 ), and at ψ =18.15 , 

ψ
s
=1.9  for ψ

w
= 0.19  (asymmetry ratio ψ

w
/ψ

s
= 0.1 ), as indicated. The black and red 

lines indicate the rate in the metanucleation and nucleation regimes, respectively. 

 

 


