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Development of the inner ear
Tanya T Whitfield

The vertebrate inner ear is a sensory organ of exquisite design

and sensitivity. It responds to sound, gravity and movement,

serving both auditory (hearing) and vestibular (balance)

functions. Almost all cell types of the inner ear, including

sensory hair cells, sensory neurons, secretory cells and

supporting cells, derive from the otic placode, one of the

several ectodermal thickenings that arise around the edge of

the anterior neural plate in the early embryo. The developmental

patterning mechanisms that underlie formation of the inner ear

from the otic placode are varied and complex, involving the

reiterative use of familiar signalling pathways, together with

roles for transcription factors, transmembrane proteins, and

extracellular matrix components. In this review, I have selected

highlights that illustrate just a few of the many recent

discoveries relating to the development of this fascinating

organ system.
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Introduction
The mature vertebrate inner ear has a highly ordered and

complex architecture, and contains a multitude of differ-

ent cell types. Understanding the generation of this organ

in the embryo requires an analysis of developmental

processes at many different levels: the factors that estab-

lish otic identity in the early embryo, the dynamics of cell

fate decisions, the morphogenetic movements that sculpt

the labyrinth, and the expression of cell type-specific

proteins that govern the maturation and physiological

function of specialist cell types such as the sensory hair

cell. The following sections cover some of the recent

advances in each of these steps in a range of different

model organisms.

Early ear development: otic placode induction
and otic vesicle formation
The inner ear develops from pre-placodal region (PPR), a

zone of ectoderm running around the anterior border of

the neural plate (Figure 1a). It has been known for many

years that graded BMP activity contributes to the overall

dorso-ventral patterning of the embryo, but it is now clear

that substantial modulation of the initial gradient is

important for the establishment of different ectodermal

fates, in particular to generate the PPR (reviewed in Ref.

[1]). Using a reporter line to give a direct visual readout of

BMP signalling in the zebrafish embryo, Reichert and

colleagues have provided direct confirmation that BMP

activity is specifically attenuated in the presumptive PPR

at neural plate stages. A strong candidate to mediate this

down-regulation is the BMP inhibitor Bambi-b, which is

expressed in the PPR under the control of Dlx3b [2�].

The PPR is further segregated according to fate, first into

a common otic/epibranchial precursor domain (OEPD),

followed by induction of the otic placode itself. These

steps remain an area of active research interest, and the

identity of new molecular players is adding detail to a

model that is now reasonably well established. Otic

placode induction requires not only inducing signals from

surrounding tissues, but also the expression of appropriate

competence factors in the PPR. Transcription factors of

the Foxi, Gata, Tfap and Dlx families are important for

conferring competence to form otic tissue, while signal-

ling molecules of the Fgf family are critical for providing

the inducing signals [3–6]. Within the PPR, otic placode

cells must segregate from neighbouring trigeminal, lateral

line (if present) and epibranchial fates. In chick and

Xenopus, mutual repression between Gbx2 and Otx2

controls segregation between otic (Gbx2-positive) and

trigeminal (Otx2-positive) progenitors [7�], while in zeb-

rafish, graded levels of Pax transcription factors are

important for the segregation of otic and epibranchial

fates [8��].

A detailed fate map provides the foundation for inter-

preting the results of any perturbation of the otic devel-

opmental programme. A recent study used the classical

technique of homotypic quail-chick grafting to generate a

fate map of the chick otic placode at the 10 somite stage,

showing that different otic fates arise from distinct dorso-

ventral zones in the placode, with little evidence of cell

mixing [9]. While it is tempting to speculate that this

arrangement reflects the influence of a morphogen gradi-

ent distributed across the dorso-ventral axis, such as Wnt

signalling, the morphogenetic movements that form the

otocyst may bring ventral regions into contact with dorsal
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signalling sources at later stages. It will be necessary to

integrate gene expression, morphogenetic and fate map

data to get a full understanding of the dynamics and

control of fate acquisition in the ear.

Following induction, the otic placode undergoes invagi-

nation (amniotes) or cavitation (fish) to form the otocyst or

otic vesicle. The task of linking the placodally expressed

transcription factors to the cellular behaviours that effect

these morphogenetic events is just beginning. One ap-

proach is to search for transcriptional targets of genes that

are expressed in the PPR and otic placode at early stages.

For example, a microarray study using an over-expression

assay in Xenopus has identified nearly 30 genes expressed

in the otocyst that are possible Six1 targets [10]. This and

similar studies will provide not only a more complete

picture of the transcriptional profile of early otic cells, but

also new candidate genes for auditory disorders such as

Branchio-Oto-Renal syndrome.

The morphogenetic changes that generate the otocyst

from the otic placode have been investigated in the chick

embryo [11]. Here, invagination to form the otic cup and

otocyst involves two phases: an initial basal expansion of

placodal cells, followed by their apical constriction. Sai

and colleagues used a variety of inhibitory approaches to

elucidate a pathway — triggered by activation of the

planar cell polarity mediator Celsr1 and involving RhoA,

ROCK and myosin-II activation — leading to actin-me-

diated apical constriction of otic placodal cells, driving the

second phase of the invagination process [11]. This model

has close similarities with the events leading to neural

tube closure. In the fish, both the otic vesicle and the

neural tube form via cavitation (from the otic placode and

neural keel, respectively), rather than invagination

[12,13]. It will be interesting to compare similarities

and differences between the molecular mechanisms of

invagination and cavitation in the different species.

Neurogenesis: generation of the VIIIth
ganglion
The otic vesicle is the source of nearly all the cell types in

the inner ear, including the afferent neurons of the VIIIth

cranial ganglion, which innervate the auditory and ves-

tibular sensory hair cells. A neurogenic/non-neurogenic

fate decision is made very early in the otic developmental

programme (reviewed in Ref. [14]). In zebrafish, the b380

deletion mutant has been informative in revealing — and

ruling out — some of the key players in this process [15�].

The b380 deletion removes the genes dlx3b, dlx4b and

sox9a, resulting in an almost complete loss of otic tissue.

Nevertheless, neurod-expressing otic neuroblasts still

form, although are reduced in number. Development

of these neuroblasts is dependent on foxi1 activity: addi-

tional knockdown of foxi1 abolishes expression of neuro-

nal markers in the otic region. Knockdown of foxi1 or

dlx3b/4b alone has highlighted their roles in specifying

neuronal and sensory competence, respectively, within

the otic region [15�]. Notably, however, a population of

common neurosensory progenitors (giving rise to both

neuroblasts and hair cells) has been identified in the

posteromedial part of the zebrafish ear [16�].

Various signalling pathways are required for otic neuro-

genesis, in particular Fgf and RA signalling in the zebra-

fish [17�,18�]. Once specified, neuroblasts leave the

zebrafish otic vesicle and enter a transit amplifying pop-

ulation (Figure 1b); Fgf-dependent feedback inhibition

from mature neurons in the newly-formed statoacoustic

(VIIIth) ganglion is thought to regulate both specification

and maturation of neuroblasts, ensuring control over

numbers of differentiating neurons [18�]. Neurogenesis

in the ear, as in the central nervous system, is also under

the control of lateral inhibition mediated by Notch sig-

nalling: classical neurogenic phenotypes (an overproduc-

tion of neuroblasts) result when Notch signalling is

disrupted, as reviewed elsewhere. In the mouse and

chick, imaging and ablation studies have revealed the

close association between the developing cochleovestib-

ular (VIIIth) ganglion neurons and neural crest-derived

glial precursors [19].

Sensory hair cell differentiation and cochlear
tonotopy
Sensory hair cells in the ear are the mechanoreceptors that

convert sound into electrical energy. They have a spec-

tacular and highly polarised cellular architecture, with a

stereociliary bundle on the apical surface and ribbon

synapses at the basal surface. The developmental mech-

anisms that control the specification and differentiation of

hair cells are often conserved across the different model

systems. Expression of Sox2, for example, marks the

prosensory domain in different species, prefiguring the

appearance of hair cells (reviewed in Ref. [20]). Fgf

signalling is required for the maintenance of Sox2 expres-

sion and normal hair cell development in the developing

mouse cochlea [21�,22�]. Interestingly, while complete

inhibition of Fgf signalling in the zebrafish resulted in a

loss of hair cells, low level inhibition resulted in a signifi-

cant expansion of the sox2-expressing sensory domain,

which went on to develop supernumerary hair cells after

relief of Fgf inhibition [17�]. Treatment with retinoic acid

(RA) gave an identical result [17�]. These and other

studies indicate that precise levels of signalling, together

with balance and feedback between different signalling

pathways, are essential for normal sensory patterning.

As for otic neurogenesis, development of the sensory

epithelium is also dependent on Notch signalling. Here,

Notch has a dual role: initially, Notch-mediated lateral

induction results in specification of the Sox2-positive

prosensory domain, within which Notch-mediated lateral

inhibition selects hair and supporting cell fates (see Refs.

[23,24��], and references within). A study combining
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Schematic illustrations of the various stages of ear development highlighted in the text (not to scale). See text for details of progress in

understanding the developmental mechanisms that pattern each of these steps. (a) Formation of the PPR, otic placode and otocyst (otic vesicle)

from cranial ectoderm. The otocyst is the source of nearly all cell types of the mature ear (F). (b) Otic neurogenesis: neuroblasts are specified from

otic vesicle epithelium, but delaminate from it and accumulate beneath the ear in a transit amplifying population (light blue). Neurons (dark blue)

differentiate from this population, and innervate sensory hair cells in the overlying otic epithelium. The ganglion develops in close association with

neural crest cells (green), which give rise to glia. (c) Early otolith formation in the zebrafish otic vesicle. At least three distinct populations of cilia

can be distinguished: immotile hair cell kinocilia (red), which tether the otolith at early stages; motile cilia (blue) in the vicinity of the sensory hair

cells, which do not bind otolithic material, and shorter immotile cilia (green). (d) Schematic comparison of semicircular canal formation in the

zebrafish ear (top row) and a generalised amniote ear (bottom row). A single canal is illustrated for clarity. Epithelia adhere at a fusion plate, from

which cells are cleared to make the duct. The end result of both events is the same (right hand image), but the fusion plate is much smaller in the

zebrafish. (e) Comparative sketches of inner ears from adult zebrafish and late stage chick and mouse embryos. Sensory (red), neuronal (blue) and
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experimental manipulation in the chick embryo and

mathematical modelling has underlined the importance

of differential signalling strength driven by different

Notch ligands (Jag1 and Dl1). Competition between

the two ligands allows for the switch from lateral induc-

tion to lateral inhibition, and biases selection of hair cell

fate [24��].

A key player in hair cell differentiation is the autoregu-

latory basic helix-loop-helix factor Atoh1, which induces

expression of Dl1, and is regulated by both Sox2 and

Notch [24��,25,26]. Atoh1 is known to be both necessary

and sufficient for hair cell specification and differentiation

(see Ref. [27] for review), but recent work has revealed

additional roles for Atoh1 at different stages of hair cell

development. Conditional knockout of Atoh1 in mice,

based on an inducible Cre-lox system, has demonstrated

roles for Atoh1 in hair cell survival, stereociliary bundle

maturation and hair cell function [28,29]. Other new

insights into hair cell integrity and survival include the

identification of the actin bundling proteins of the Eps8

family, which show exquisite localisation to stereociliary

tips in murine cochlear hair cells, and are required for

maturation, maintenance and function of the stereociliary

bundle [30,31]. Work in the zebrafish has generated new

models of Usher syndrome, demonstrating that ER stress

is likely to underlie the hair cell death in this disorder

[32].

Tonotopy of the auditory system (its ordered arrange-

ment according to frequency sensitivity) is one of the

marvels of the inner ear and its central processing path-

ways. In the cochlea, tonotopy is manifest as gradients of

hair cell density, morphology, physiology and gene ex-

pression, many of which are established at very early

stages of cochlear development (reviewed in Ref. [33]).

Recent studies have suggested mechanisms that contrib-

ute to the establishment of this tonotopic arrangement.

The first of these used conditional approaches in mice to

demonstrate a role for Shh signalling from the spiral

ganglion in controlling growth of the cochlear duct and

timing of hair cell differentiation in the organ of Corti

[34�]. In the absence of Shh signalling from the spiral

ganglion, hair cell precursors — normally differentiating

from base to apex — now underwent premature cell cycle

exit, and differentiated precociously in an apical to basal

wave. Similar precocious hair cell differentiation in apical

regions was observed in mice with a conditional knockout

of the Hh transducer Smoothened in the cochlea [35�].

In the chick, Mann and colleagues propose that non-

canonical BMP signalling is a key mechanism in estab-

lishing the tonotopic organisation of the cochlea [36�].

Using microarray, RNA-seq and qPCR approaches, they

demonstrated that Bmp7 is expressed in an increasing

proximal-to-distal gradient in the cochlea, while Chordin-

like1, a BMP antagonist, is expressed in an increasing

distal-to-proximal gradient. Moreover, manipulation of

Bmp signalling by over-expression of either Bmp7 or

Chordin-like1 abolished gradients of hair cell density

and morphology as expected [36�]. A second RNA-seq

transcriptome analysis has highlighted the graded expres-

sion of genes coding for RA-synthesising or RA-degrading

enzymes along the developing cochlea in the chick [37�].

Although further elements of each model remain to be

elucidated, dynamic gradients of signalling molecules,

established and maintained by cross-regulatory feedback

loops, are attractive candidates for the instructive cues

that establish tonotopic differences in hair cell morphol-

ogy and function along the cochlea.

Fluid production in the ear: the endolymph
As the otic vesicle develops, it becomes filled with

endolymph, a specialised extracellular fluid with unusual

ionic composition that is essential for sensory hair cell

function. Disruption to endolymph generation or homeo-

stasis can have profound effects on otic development and

physiology. For example, in mice lacking function of the

anion exchanger SLC26A4 (Pendrin), an endolymphatic

hydrops develops, resulting in both hearing loss and

vestibular dysfunction. In an exciting and thorough study,

Li and colleagues restored Slc26a4 expression specifically

to the endolymphatic sac in mice otherwise lacking

Slc26a4 function. Although Slc26a4 is normally expressed

in many sites throughout the labyrinth, expression in the

endolymphatic sac alone was sufficient to restore normal

morphology and function to the entire inner ear [38��].

This promising work paves the way for the design of

spatially and temporally restricted therapeutic interven-

tions for human hearing loss caused by mutations in the

SLC26A4 gene.

Formation and tethering of otoliths and
otoconia
Normal endolymph composition is also important for the

development of otoliths or otoconia in the ear. These are

the biomineralised ‘ear stones’ that sit above vestibular

hair cells of the saccule and utricle, enabling the detection

of gravity and linear acceleration. In the zebrafish, it is

possible to observe the very earliest steps in otolith

formation in the live embryo (Figure 1c). Here, otolith

precursor particles tether to the tips of the kinocilia of the

first hair cells (tether cells) in the ear, in a process defined

as otolith seeding. Cells bearing motile cilia are found in

close proximity to the tether cells; the motile cilia do not

Development of the inner ear Whitfield 115

(Figure 1 Legend Continued) endolymph-regulating (yellow) cells are shown for the mouse ear. Abbreviations: A, ampulla; BP, basilar papilla; HC,

hair cell; L, lagena; LM, lagenar macula; MN, maturing neurons; NB, neuroblasts; NCC, neural crest cells; NP, neural plate; Nt, notochord; ooC,

organ of Corti; Ot, otolith; OV, otic vesicle; PPR, preplacodal region; S, saccule; SVG, spiral and vestibular ganglion; TA, transit amplifying

population of neuroblasts; U, utricle.
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bind otoliths, but contribute to the accuracy of the seed-

ing process [39�]. Surprisingly, disruption of cilia or ciliary

motility results in only mild perturbations of otolith

seeding and characteristic otolith defects; in the absence

of cilia, otolith precursor particles adhere directly to the

apical surfaces of the hair cells [40�,41�]. Disruption of

hair cell differentiation, however (through morpholino-

mediated knockdown of atoh1b), results in a failure of

otolith seeding [40�]. Although these results predict the

existence of a hair cell-specific otolith precursor-binding

factor that becomes localised to the kinociliary tips, the

identity of such a factor has so far proved elusive.

As an aside, the developing zebrafish ear is a really beauti-

ful system in which to study cilia. All cells of the early otic

epithelium are monociliated, and at least three different

ciliary types (hair cell kinocilia, motile cilia and immotile

short cilia) are present from early stages, and can be

visualised easily in the live embryo [40�] (Figure 1c).

Moreover, different otic hair cell kinociliary subtypes have

different genetic requirements [42], and the kinocilium

plays an unexpected role in the development of mechan-

osensitivity in zebrafish hair cells [43�]. The possibilities

for live imaging coupled with transgenic and mutant

analysis make this an area ripe for further study.

Semicircular canal morphogenesis
The three semicircular canals of the ear sense rotational

movements (angular accelerations) of the head. The

generation of these canals — involving the topological

conversion of the otic vesicle into a labyrinth of inter-

connected ducts and chambers — is a fascinating prob-

lem for the developmental biologist (Figure 1d and e).

Work in the zebrafish has identified an adhesion class G

protein-coupled receptor, Gpr126 that is required for the

early fusion step in canal formation [44�]. Possible tran-

scriptional targets for the Gpr126 signalling pathway in

the ear include genes coding for various extracellular

matrix (ECM) components: dynamic and spatially re-

stricted expression of several ECM genes accompanies

outgrowth of the epithelial projections that form the canal

system. In the gpr126 mutant, expression of versican and

other ECM genes persists at abnormally high levels in the

ear [44�]. It remains to be tested whether down-regulation

of ECM genes is a prerequisite for the fusion events that

ensure normal development of the canal ducts.

Fgf, RA and Wnt signalling also play an important role in

the development of the vestibular system. In the zebrafish,

Fgf promotes, whereas RA restricts, the otic expression of

otx1b [17�], which has a conserved role in formation of the

horizontal semicircular canal. In mice, disruption of the

RA-synthesising enzyme gene Raldh3 results in both

morphological and functional deficits of the entire vestib-

ular system [45]. Another study in mice has demonstrated

the importance of Wnt/b-catenin signalling in sculpting

the semicircular canal ducts via regulation of Netrin1-

mediated cell resorption at the canal fusion plate [46].

Sensory hair cell regeneration
The quest to understand the regenerative capacity of hair

cells in some organisms and the inability to regenerate hair

cells in others is still a major research endeavour and one

that is of enormous clinical significance. Recent studies

demonstrate that species-specific differences in hair cell

regenerative capacity correlate with the degree of thick-

ening and stability of F-actin bands at junctions between

supporting cells, which may explain the inability of mam-

mals to replace damaged hair cells [47,48]. Nevertheless,

various approaches may be able to overcome this problem.

Following on from promising work using Notch inhibitors

in embryonic or neonatal systems, two studies have shown

that localised treatment with inhibitors of Notch signalling

can rescue both outer hair cell number (via direct trans-

differentiation of supporting cells) and some limited hear-

ing function in the noise-damaged mature mammalian

cochlea [49,50]. Indeed, the importance of Notch signal-

ling in the regenerative process has been underlined by a

comprehensive transcriptome analysis of the regenerating

chick utricle [51]. This and related studies in the zebrafish

[52] provide a rich source of candidate genes and pathways

to target in the mammalian system.

Conclusions
Over the past two years, there have been many excep-

tional new insights into the developmental mechanisms

that pattern the inner ear. The diversity of studies relating

to this single sensory organ meant that it was a real

challenge to decide what to include for this compilation.

Inevitably, I have had to leave out discussion of many

interesting findings, including studies on the develop-

ment of hair cell apico-basal and planar polarity, physio-

logical function and neuronal circuitry, together with new

studies on the evolutionary developmental biology of the

ear. Progress in developmental studies has also under-

pinned a large body of work aiming to restore hearing

using cell-based therapies (see, for example, Ref. [53�]).

One particularly exciting report demonstrates recapitula-

tion of the entire otic developmental programme — from

murine embryonic stem cells to vesicular organoids con-

taining functional hair cells and sensory neurons — in

vitro [54��]. This illustrates the sophisticated level of

understanding that we now have for the developmental

mechanisms underlying inner ear organogenesis, and

holds promise for the design of improved and persona-

lised therapies for human hearing loss. Nevertheless,

many areas remain to be explored, and these are likely

to yield new discoveries well into the future.
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